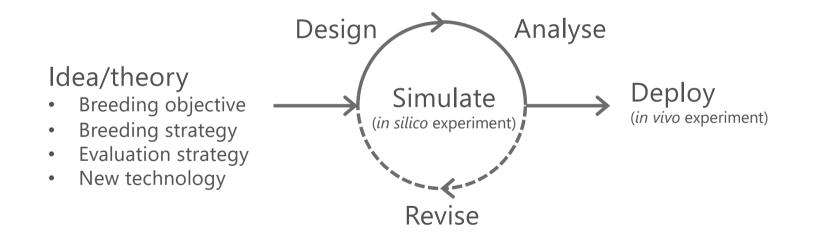


Jon Bancic, Chris Gaynor, Daniel Tolhurst, Gregor Gorjanc

UNE, Armidale 2024-02-05



Learning objectives

- Understand why we simulate breeding programs
- Understand the steps for simulating a breeding program
- Learn to simulate a plant breeding program
- Learn to simulate an animal breeding program

Why simulate breeding programs?

- Breeding programs are complex (genetics, reproduction, production, disease, data, statistics,...)
- Empirical testing is ineffective, expensive and time-consuming
- Great tool for testing ideas and theory before practical implementation

Why simulate breeding programs?

- Tool to gain insight and understanding
 - "If you can simulate it, you can understand it"
 - Educational at all stages of career and skill set
- From breeder's perspective
 - Forces you to understand the breeding program
 - Forces communication and justification of breeding actions

Steps for simulating a breeding program

- 1. Defining questions of interest
- 2. Outlining the breeding program
- 3. Specifying global parameters
- 4. Simulating genomes and founders
- 5. Filling the breeding pipeline
- 6. Running the burn-in phase
- 7. Running the future phase with competing scenarios
- 8. Replication and statistical comparison

1. Defining questions of interest

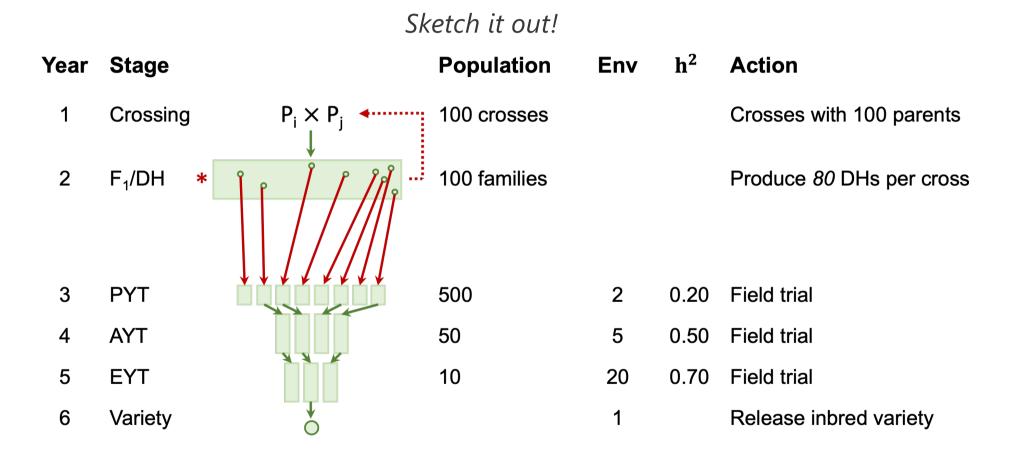
- What is the research question?
- Determine whether simulation is necessary
- What level of complexity? → Start simple!

2. Outlining the breeding program

Crop details

- Biology (e.g., type of mating, reproduction rate)
- Genome and evolution (genome size, mutation and recombination rates, demography)

Breeding program


- Objectives (e.g., yield, protein content)
- Numbers per breeding stage (e.g., genotypes, trials, heritabilities)
- Type of selection (e.g., individual-, family-, testcross-based)
- Breeding population (e.g. mean, variance, inbreeding, trait correlations)
- Program specificities (e.g. target growing region, statistical model)
- Logistical constraints (e.g. nursery space, number of growing environments)

Base breeding program

Sketch it out!

Year	Stage		Population	Env	h ²	Action
1	Crossing	$\begin{array}{c} P_{i} \times P_{j} & \blacktriangleleft \end{array}$	100 crosses			Crosses with 100 parents
2	F₁/DH		100 families			Produce 100 DHs per cross
3	HDRW		10,000	1	0.10	Grow DHs
4	PYT		500	2	0.20	Field trial
5	AYT		50	5	0.50	Field trial
6	EYT		10	20	0.70	Field trial
7	Variety	$\overline{\mathbf{v}}$		1		Release inbred variety

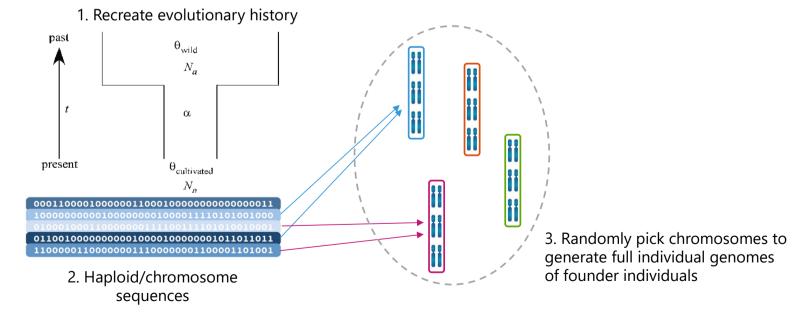
Alternative breeding program

2. Outlining the breeding program

Obtain approximate costs of key actions for fair comparison

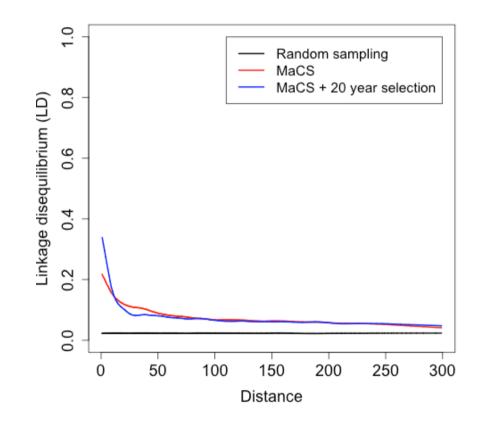
			Phenotypic		Genomic	
Action	Cost $(\$)$	Env	# Units	Cost (\$)	# Units	Cost (\$)
Cross	30/cross	/	100	3,000	100	$3,\!000$
Grow F_1s	$30/\mathrm{plant}$	/	100	$3,\!000$	100	$3,\!000$
Make DHs	$30/\mathrm{plant}$	/	10,000	300,000	$8,\!900$	$267,\!000$
Genotype	$15/\mathrm{plant}$	/	/	/	$8,\!900$	$133,\!400$
HDRW	10/plot	1	10,000	100,000	/	/
$\mathbf{P}\mathbf{Y}\mathbf{T}$	$20/\mathrm{plot}$	5	500	50,000	500	50,000
AYT	$50/\mathrm{plot}$	15	50	$37,\!500$	50	$37,\!500$
EYT	$50/\mathrm{plot}$	20	10	$10,\!000$	10	10,000
			Total	$503,\!500$	Total	$504,\!500$

3. Specifying global parameters


Pick simulation parameters that mimic a real breeding program

Parameter	Definition	Value	-
nReps	Number of simulation replications	10	
nBurnin	Number of years in the burn-in phase	20	\succ General parameters
nFuture	Number of years in future phase	20) .
nQTL	Number of QTL per chromosome	20	
nSnp	Number of SNPs per chromosome	400^{*}	
initMeanG	Initial population mean genetic value for yield trait	0	
initVarG	Initial population genetic variance for yield trait	1	\succ Trait parameters
initVarGE	Initial GxE interaction variance for yield trait	2	
varE	Yield trial error variance for yield trait	4	
nParents	Number of parents to start a breeding cycle	50	1
newParents	Number of new parents each breeding cycle	50	
nCrosses	Number of crosses among parents to start a breeding cycle	100	
nDH	Number of DH individuals produced per cross	100/89	
famMax	Maximum number of DH individuals per cross to enter PYT	10	
nPYT	Number of entries in PYT	500	
nAYT	Number of entries in AYT	50	\succ Program parameters
nEYT	Number of entries in EYT	10	
repHDRW	Effective replication in HDRW	4/9	
repPYT	Effective replication in PYT	1	
repAYT	Effective replication in AYT	4	
repEYT	Effective replication in EYT	8	
startTP	Year to start collecting training records for GS	18^{*}	

4. Simulating genomes and founders


Backward-in-time coalescent simulation (MaCS, Chen et al. 2009)

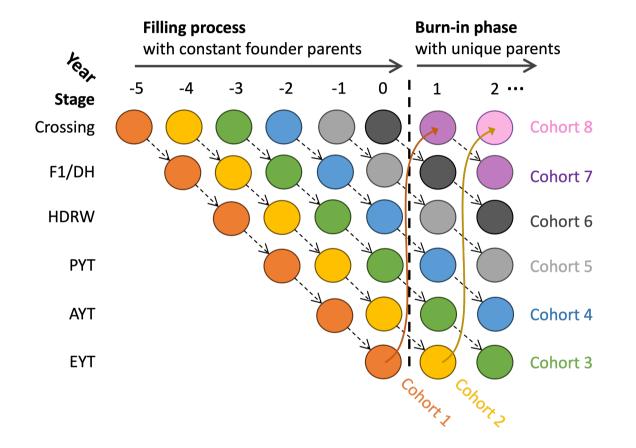
- 1. Recreate the evolutionary history of the species (chromosome size, mutation and recombination rate, effective population size)
- 2. Produce genome and haplotypes
- 3. Generate founder individuals

Creating founder haplotypes in AlphaSimR

- Random sampling of haplotypes
- MaCS coalescent simulation
 - Select from pre-defined species
 - Specify own evolution history
- Externally obtained haplotypes
 - SNP data
 - Other simulators (e.g., msprime)

4. Simulating genomes and founders

Phase	Action	Feature				
Burn-in	Specifying Founder Genomes	100,000 Generations of Evolution				
		50 inbred founders				
		10 chromosome pairs	Conomo poromotoro			
		1.43 Morgans per chromosome Genome para				
		8×10^8 base pairs per chromosome				
		2×10^{-9} mutation rate				
	Specifying Trait Features	Grain yield	-			
		1,000 QTL per chromosome				
		Normally distributed QTL effects				
		For other values, see Table 3				
	Simulating Recent Breeding 20 years of breeding					
		Doubled haploid lines				
		Phenotypic selection				
		Track mean, variance, and selection accuracy				
Future	Simulating Future Breeding	20 years of breeding				
		Test genomic selection				
		Constrained and unconstrained costs				
		4K SNP array				
		5 years of training records for genomic selection				
		Ridge regression BLUP for genomic select	tion			


4. Simulating genomes and founders

Phase	Action	Feature					
Burn-in	Specifying Founder Genomes	100,000 Generations of Evolution					
		50 inbred founders					
		10 chromosome pairs					
		1.43 Morgans per chromosome					
		8×10^8 base pairs per chromosome					
		2×10^{-9} mutation rate					
	Specifying Trait Features	Grain yield					
		1,000 QTL per chromosome	Trait parameters				
		Normally distributed QTL effects	Trait parameters				
		For other values, see Table 3					
	Simulating Recent Breeding	20 years of breeding					
		Doubled haploid lines					
		Phenotypic selection					
		Track mean, variance, and selection accuracy					
Future	Simulating Future Breeding	20 years of breeding					
		Test genomic selection					
		Constrained and unconstrained costs					
		4K SNP array					
		5 years of training records for genomic selection					
		Ridge regression BLUP for genomic selection					

5. Filling the breeding pipeline

- Start of *forward-in-time* simulation in AlphaSimR
 - Model traits and recombination
 - Model breeding programs
- Fill stages with distinct populations (or cohorts) to mimic overlapping generations
 - Use constant founder parents to create cohorts
 - Unique cohorts arise due to randomness in crosses, selection, genetic drift and environmental noise

5. Filling the breeding pipeline

6. Running the burn-in phase

- Before formal evaluation of alternative scenarios commences
 - 1. Represent historical breeding and create realistic starting point
 - 2. Generate a population structure that reflects a real population
 - 3. Removes burn-in oddities
- Uses the simplest program as the template

Start collecting simulation parameters

7	# A tibble: 4×7									
	ScenarioName	Rep	Year	Stage	GeneticMean	GeneticVariance	SelectionAccuracy			
	<chr></chr>	<db1></db1>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>			
1	Base	1	21	HDRW	2.4	0.5	0.3			
ć	2 Alternative	1	21	HDRW	2.8	0.45	0.4			
1	Base	1	21	EYT	3.1	0.2	0.4			
4	↓ Alternative	1	21	EYT	3.3	0.23	0.4			

Store lists

[[1]] An object of class "Pop" Ploidy: 2 Individuals: 100 Chromosomes: 10 Loci: 1000 Traits: 1

[[2]]

An object of class "Pop" Ploidy: 2 Individuals: 100 Chromosomes: 10 Loci: 1000 Traits: 1

7. Running the future phase with competing scenarios

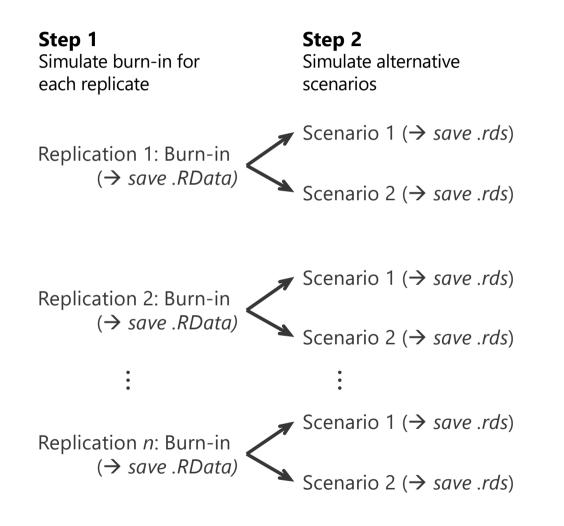
- Evaluation of alternative scenarios commences
- Approach depends on the purpose of the study
 - **Sensitivity analysis** (e.g., number of parents)
 - Vary a single simulation parameter at the time to avoid confounding
 - Pick extreme and reasonable values from parameter space \rightarrow find the breaking point
 - **Method development** (e.g., breeding program restructuring, parent selection strategy)
 - Consider unconstrained and constrained costs
- Continue collecting simulation parameters
- Use external software for specific analysis (e.g., pedigree model)

8. Replication and statistical comparison

- Replication is necessary to account for stochasticity
 - 1. Capture and understand the key sources of variation
 - 2. Calculate summary statistics (mean and variance) of tracked simulation parameters and test for significance
- No rule of thumb (at least 10 replications)
 - Number of replications depends on the desired precision, complexity and computing resources

Parallelizing replication

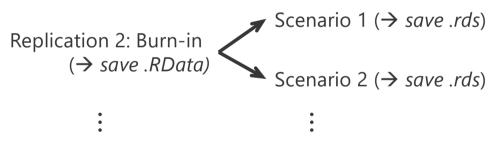
Step 1 Simulate burn-in for each replicate


Replication 1: Burn-in (→ save .RData)

Replication 2: Burn-in (→ save .RData)

•

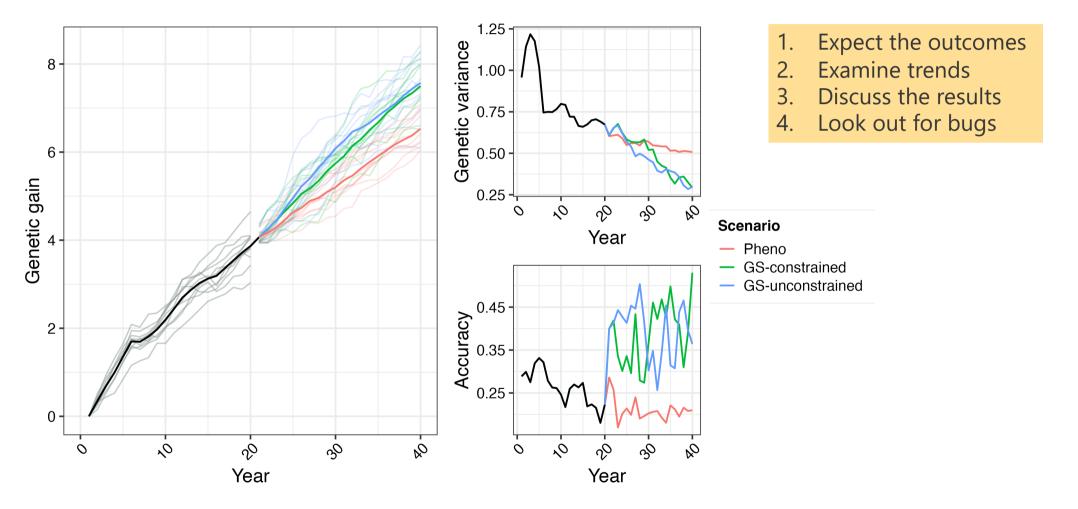
Replication *n*: Burn-in (→ save .RData)


Parallelizing replication

Parallelizing replication

Step 1 Simulate burn-in for each replicate **Step 2** Simulate alternative scenarios

Replication 1: Burn-in (\rightarrow save .RData) Scenario 2 (\rightarrow save .rds)


Replication *n*: Burn-in (\rightarrow save .RData) Scenario 2 (\rightarrow save .rds)

Step 3

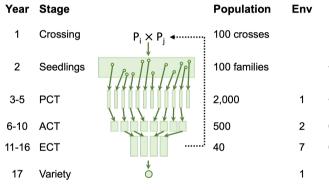
Collate results, summarize across replicates and apply statistical tests

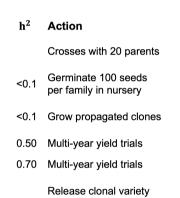
	Year	Stage	Program	GEI	variable	value_Mean	value_SE
	<dbl></dbl>	<fct></fct>	<fct></fct>	<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>
1	20	AYT	Genomic Selection	High	GeneticMean	1.72	0.101
2	20	AYT	Genomic Selection	Low	GeneticMean	6.93	0.321
3	20	AYT	Genomic Selection	Moderate	GeneticMean	4.75	0.198
4	20	AYT	Genomic Selection	No	GeneticMean	11.3	0.442
5	20	AYT	Phenotypic Selection	High	GeneticMean	0.885	0.091 <u>1</u>
6	20	AYT	Phenotypic Selection	Low	GeneticMean	4.74	0.175
7	20	AYT	Phenotypic Selection	Moderate	GeneticMean	3.21	0.135
8	20	AYT	Phenotypic Selection	No	GeneticMean	8.34	0.344

Summarising and examining results

Take away messages

- Every breeding program should have a digital twin
- Clearly define the research problem
- Gather as much information
- Start simple and gradually build up
- Track as many parameters as you want and look for bugs
- Use existing templates


Plant breeding simulations with AlphaSimR


Jon Bančič^{1*†}, Philip Greenspoon^{1†}, Chris R. Gaynor^{1,2} and Gregor Gorjanc¹

 ^{1*}The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, Midlothian, United Kingdom.
 ²Bayer Crop Science, 700 Chesterfield Pkwy W., Chesterfield, MO 63017, Missouri, USA.

https://www.biorxiv.org/content/10.1101/2023.12.30.573724v1.article-metrics

Hybrid breeding program

Year	Stage	Male pool	Female pool	Population	Env	h ²	Action
1	Parents	P _{Mi} × P _{Mj} ↓	$P_{Fi} \times P_{Fj} \blacktriangleleft$	80 crosses			Crosses with 50 parents
2	F ₁			80 families			Grow F1s and produce DHs
2	TC1	× V	∲ ×	4,000 inbreds			Testcross with 1 tester
2	TC1-YT			4,000 entries	1	0.06	Testcross yield trial 1
3	TC2		◊◊◊ × 📩	400 inbreds			Testcross with 3 testers
3	TC2-YT			1,200 entries	2	0.10	Testcross yield trial 2
4	ТСЗ	× * * * * * * * * * * * * * * * * * * *	***	40			Testcross with 5 testers
4	TC3-YT			200 entries	4	0.20	Testcross yield trial 3
5	Hybrid YT1			20 hybrids	8	0.40	Hybrid yield trial 1
6	Hybrid YT2			4 hybrids	100	0.90	Hybrid yield trial 2
7	Release				1		Release hybrid variety

Know simulation limitations

- Simplified versions of reality
- Lengthy tunning process

AlphaSimR demonstration

10 minute Tutorial (Jon): Plant breeding program simulation
30 min Exercise: Plant breeding program
10 minute Tutorial (Gregor): Animal breeding program simulation
30 min Exercise: Animal breeding program
Remaining time: Other AlphaSimR features