IDENTIFYING AND INCORPORATING GENETIC MARKERS AND MAJOR GENES IN ANIMAL BREEDING PROGRAMS

course notes

Brian Kinghorn & Julius van der Werf University of New England Armidale, Australia

Belo Horizonte (Brazil)

31 May – 5 June 2000

IDENTIFYING AND INCORPORATING GENETIC MARKERS AND MAJOR GENES IN ANIMAL BREEDING PROGRAMS

Brian Kinghorn & Julius van der Werf University of New England Armidale, Australia

Chapter 12 based on slides from Jack Dekkers

Belo Horizonte (Brazil) 31 May – 5 June 2000

Time Table

Lecture 1 2 P	Day 1-am	Part I: Introduction and building blocks Overview Animal Breeding and the role of QTL Building Blocks of Quantitative Genetics Practical	JW BK JW
3 P	1-pm	Calculation of genotype probabilities from phenotypic data or DNA tests Practical	BK BK
4		Introduction to some aspects of Molecular Genetics	JW
5 P	2-am	Part II Linkage analysis and gene mapping Basics of Linkage and mapping Practical	JW JW
6 7 P 8	2-pm	Part III Detection and mapping of QTL Principles of estimating QTL effects (single markers) Use of multiple markers: interval mapping Practical QTL detection in designed experiments and in outbred	BK JW JW BK
9 10 P	3-am	populations Methods for QTL analysis Genetic models for detecting multiple QTL Practical	JW BK JW
11 12 13 14	3-pm	Multiple trait models for QTL analysis Experimental strategies for QTL detection Fine mapping and IBD mapping Positional cloning, candidate genes, and comparative mapping	JW BK JW BK
Р		Practical/Discussion	
15 16	4-am	Part IV Marker Assisted Selection Basics of Marker Assisted Selection Consequences and applications with direct and indirect markers	JW BK
Р 17	5-am	Practical Genetic evaluation for marker assisted selection: QTL- BLUP	JW
17 18 19		Genetic Evaluation for MAS: Fixed effects approach Examples of marker assisted selection Targeting QTL using mate selection	BK JW BK

Table of contents

Part I: Introduction and building blocks

1	Overview Animal Breeding and the role of QTL	1
2	Building Blocks of Quantitative Genetics	9
3	Calculation of genotype probabilities from phenotypic data	23
	or DNA tests	
4	Introduction to some aspects of Molecular Genetics	35
	Part II Linkage analysis and gene mapping	
5	Basics of Linkage and mapping	45
	Part III Detection and mapping of QTL	
6	Principles of estimating QTL effects (single markers)	55
7	Use of multiple markers: interval mapping	61
8	QTL detection in designed experiments and in outbred populations	71
9	Methods for QTL analysis	79
10	Genetic models for detecting multiple QTL	91
11	Multiple trait models for QTL analysis	99
12	Experimental strategies for QTL detection	105
13	Fine mapping and IBD mapping	109
14	Positional cloning, candidate genes, and comparative mapping	115

Part IV Marker Assisted Selection

15	Basics of Marker Assisted Selection	119
16	Implementation of direct and indirect markers	129
17	Genetic evaluation at individual QTL	139
18	Examples of marker assisted selection	147
19	Targeting QTL using mate selection	153