

Day 2 Quantitative Genetics: Dominance Effects

Chris Gaynor, Jon Bancic, Daniel Tolhurst, Gregor Gorjanc

Armidale, 2024-02-06

AlphaSimR Implementation of Dominance

- Dominance effects are a function of additive effects $d = \delta |a|$
- User specifies distribution of dominance degrees $\delta \sim N(\mu_{\delta}, \sigma_{\delta}^2)$
- No dominance: $\delta = 0$
- Complete dominance: $\delta = 1$
- Partial dominance: $0 < \delta < 1$
- Over-dominance: $\delta > 1$

Average Effect of an Allele Substitution

- The textbook formula assumes HWE $\alpha = a + (q p)d$
- General formula not assuming HWE $\alpha = a + \frac{1-F}{1+F}(q-p)d$
- It is just a regression coefficient
 - Regress genetic value on genotype dosage
 - Assuming a base population without LD
 - Many other descriptions require HWE
 - See Falconer 1985
 - Allows for generalizations to other cases

Breeding Values

- Average effects are used to calculate breeding values
 Dreading values are points on the regression line
 - Breeding values are points on the regression line
- Breeding values used to calculate additive genetic variance

 Remember this is not variance of additive effects
- There are some special properties of breeding values
 - Only valid under HWE and random mating
 - See Falconer 1985

Dominance Deviations

• Used to calculate dominance variance

- You can think of these as the lack-of-fit in a regression
 - Breeding values came from a regression
- You can also think of them as a quadratic polynomial
 - Constructed to be orthogonal
 - This thinking is needed for polyploids

AlphaSimR Demonstration

Heterosis and Inbreeding Depression

Source: Jones (1924)

Quantitative Genetics of Heterosis

Source: Labroo et al. (2021)

Maize Breeding Program

- Want to model genomic selection (GS) in a maize program
 - Produces hybrids and selects on general combining ability (GCA)
 - Expect GS accuracy to be lower when adding dominance
 - GCA represents a moving target
- What we know
 - Dominance gene action can explain heterosis
 - Evidence for strong partial dominance in maize
 - Measure of long-term genetic gain for inbreds and hybrids

Dominance Theories for Heterosis

Genotype012Genetic Value-ada

- Overdominance
 d>a
- (Partial) Dominance
 - a>d>0
 - Pseudo-overdominance

Pseudo-overdominance Example

Locus 2 (a=1, d=0.1)	Locus 1 (a=1, d=0.1)		
	0	1	2
0	-2a (-2)	d-a (-0.9)	0 (0)
1	d-a (-0.9)	2d (0.2)	a+d (1.1)
2	0 (0)	a+d (1.1)	2a (2)

- All possible combinations
- Homozygote is best

Pseudo-overdominance Example

Locus 2 (a=1, d=0.1)	Locus 1 (a=1, d=0.1)		
	0	1	2
0	-2a (-2)	d-a (-0.9)	0 (0)
1	d-a (-0.9)	2d (0.2)	a+d (1.1)
2	0 (0)	a+d (1.1)	2a (2)

- Repulsion linkage (complete)
 - Unobserved combinations
- Heterozygote is best

Long-term Genetic Gain in Maize

Source: Troyer and Wellin (2009)

Quantitative Genetics for Heterosis (Hybrids)

- Inbred midparent heterosis
 - Deviation of hybrids from midparent value
 - Heterosis from two sources
 - Recovery of inbreeding
 - Split between pools

$$H_{IMP} = \sum_{i=1}^{n_{QTL}} 2\bar{p}_i \bar{q}_i d_i + \frac{1}{2} (p_{1i} - p_{2i})^2 d_i$$

Quantitative Genetics in AlphaSimR

$$a \sim N(0, S_a^2)$$
$$d = d|a|$$
$$d \sim N(m_d, S_d^2)$$

$$E(H_{IMP}) = \frac{m_{d}S_{G} \mathring{a}_{i=1}^{n_{QTL}} 2\bar{p}_{i}\bar{q}_{i} + \frac{1}{2}(p_{1i} - p_{2i})^{2}}{\sqrt{2p}\mathring{a}_{i=1}^{n_{QTL}}\bar{p}_{i}\bar{q}_{i}}$$

Quantitative Genetics in AlphaSimR (cont'd)

$$E(H_{IMP}) = \frac{M_{d}S_{G} \mathring{a}_{i=1}^{n_{QTL}} 2\bar{p}_{i}\bar{q}_{i} + \frac{1}{2}(p_{1i} - p_{2i})^{2}}{\sqrt{2p}\mathring{a}_{i=1}^{n_{QTL}}\bar{p}_{i}\bar{q}_{i}}$$

$$\begin{split} H_{IMP}\left(S_{G}\right) & \mid S_{G} \\ H_{IMP}\left(\mathcal{A}\right) & \mid \mathcal{M}_{\mathcal{A}} \\ H_{IMP}\left(n_{QTL}\right) & \mid \mathcal{Y} \\ y & \sqrt{n_{QTL}} \end{split}$$

Setting Dominance Level for Maize

- Trade-off between two key values
 - Number of QTL
 - Mean dominance degree
 - Others matter to a lesser degree
- Estimated optimal values
 - 300 QTL per chromosome
 - 0.92 mean dominance degree
- Provides a good approximation to long-term genetic gain
 - Reasonable but not necessarily realistic

About that Troyer and Wellin Paper

- They argued for eliminating the first round of testcrosses
 To be replaced with a *per se* evaluation of inbreds
- We can examine this in simulation
 - Using the dominance values from before
- Simulation supports their recommendation

Replacing First Testcross with per se Evaluation

Inbred genetic gain

Hybrid genetic gain

AlphaSimR Demonstration

Heterosis in Animal Breeding

- Exploited with crossbreeding
 - Terminal crossbreeding similar to maize
- Results aren't as drastic as in maize
 - Animals aren't fully inbred
 - Lines/breeds are somewhat inbred
 - Exploiting panmictic midparent heterosis

Two Breeds or Lines (HWE)

Midparent Value

Crossbred Animals

Unequal Means

Intermate Crossbreds (HWE)

Inbreeding Depression in Animals

- Important for all breeding programs
 - Avoid mating relatives
- Textbook example of inbreeding
 - Split population into lines
 - The lines become inbred
- Key point: inbreeding is a relative value

Line Breeding (without Selection)

Inbreeding Depression

Population mean (no epistasis)
$$M_{F} = \sum (p-q)a + 2pq(1-F)d$$

Decrease in mean due to inbreeding

$$I = M_{F=0} - M_{F=1} = \sum 2pqd$$

Heterosis

Population means $M_{P_1} = \sum (p - q)a + 2pqd$ $M_{P_2} = \sum (p' - q')a + 2p'q'd$

Panmictic Midparent Heterosis

$$H = M_{F_1} - M_{\bar{P}} = \sum (p - p')^2 d = \sum 4\bar{p}\bar{q}Fd$$

Simulating QTL effects

Additive effects

 $a \sim N(0, \sigma_a^2)$

Dominance effects $d = S[\alpha]$

 $d = \delta |a|$

Dominance degrees $\delta \sim N(\mu_{\delta}, \sigma_{\delta}^2)$

Mean of dominance effects $E(d) = E(\delta)E(|a|) = \mu_{\delta}\sigma_a\sqrt{2/\pi}$

Inbreeding Depression in Simulation

$$E(I) = \sum 2pqE(\mathbf{d}) = \mu_{\delta}\sigma_{a}\sqrt{2/\pi}\sum 2pq$$

- Depends on user supplied parameters
 - Mean dominance degree
 - Number of QTL
- Depends on additive effect variance

Heterosis in Simulation

$$E(H) = \sum (p - p')^2 E(d) = \mu_{\delta} \sigma_a \sqrt{2/\pi} \sum (p - p')^2$$

- Depends on user supplied parameters
 - Mean dominance degree
 - Number of QTL
 - Allele frequency difference

• Depends on additive effect variance

Additive Effect Variance (σ_a^2)

- Tuned for additive genetic variance (V_A)
 - User specified value
- Accomplished using linear scaling
 - 1. Sample effects from a standard normal
 - 2. Calculate variance
 - 3. Calculate and apply scaling constant

Behind the Scenes

Variance scaled using a single breed (HWE)

Additive genetic variance

$$V_A = 2\sum pq\alpha^2 + 4\sum_{i< j} D_{i,j}\alpha_i\alpha_j$$

Average effect $\alpha = a + d(q - p)$

Average Effect Expectations

$$E(\alpha^{2}) = E(a^{2}) + E(d^{2})(q-p)^{2} + 2E(ad)(q-p)$$
$$= \sigma_{a}^{2} \left[1 + \left(\mu_{\delta}^{2} + \sigma_{\delta}^{2}\right)(q-p)^{2} \right]$$

$$E(\alpha_1 \alpha_2) = E(\alpha_1)E(\alpha_2) + \dots + E(\alpha_1)E(\alpha_2)(q_1 - p_1)(q_2 - p_2)$$
$$= \sigma_a^2 \mu_\delta^2 \left(\frac{2}{\pi}\right)(q_1 - p_1)(q_2 - p_2)$$

Expectation for σ_a^2

$$E(\sigma_a^2) = \frac{V_A}{C_1 + (\mu_\delta^2 + \sigma_\delta^2)C_2 + \mu_\delta^2 C_3}$$

 $C_1 = 2\sum pq$

$$C_2 = 2\sum pq(q-p)^2$$

$$C_{3} = \frac{8}{\pi} \sum_{i < j} (q_{i} - p_{i}) (q_{j} - p_{j}) D_{i,j}$$

Expectation for Inbreeding Depression

$$E(I) = 2\sum pqE(\mathbf{d}) = \mu_{\delta}\sigma_{\mathbf{a}}C_{1}\sqrt{2/\pi}$$

$$E(I) = \frac{\mu_{\delta}C_1\sqrt{2V_A/\pi}}{\sqrt{C_1 + (\mu_{\delta}^2 + \sigma_{\delta}^2)C_2 + \mu_{\delta}^2C_3}}$$

Expectation for heterosis is similar

Deciphering the Equation

$$E(I) = \frac{\mu_{\delta}C_1\sqrt{2V_A/\pi}}{\sqrt{C_1 + (\mu_{\delta}^2 + \sigma_{\delta}^2)C_2 + \mu_{\delta}^2C_3}}$$

- Increasing V_A increases inbreeding depression - Use $\frac{I}{\sqrt{V_A}}$ for making comparisons
- Increasing σ_{δ}^2 decreases inbreeding depression

Simplifying Assuming p = 0.5

$$E(I) = \frac{\mu_{\delta}}{\sqrt{\frac{V_A n_{QTL}}{\pi}}}$$

 $E(I) \propto \mu_{\delta}$

 $E(I) \propto \sqrt{n_{QTL}}$

Key point: trade-off between μ_{δ} and n_{QTL}

Practical Application

- No unique solution
- Narrow search space if possible
 - Dominance variance
 - Purebred-crossbred correlations
- Test a range of values
 - Checks sensitive to assumptions
 - Use the equations to help with this

Concluding Comments

Incorporating dominance gets tricky

- Make sure doing so is necessary
 - Strategies for avoiding inbreeding depression
 - Strategies for exploiting heterosis

- Remember all models are wrong
 - We are seeking a useful model

AlphaSimR Demonstration