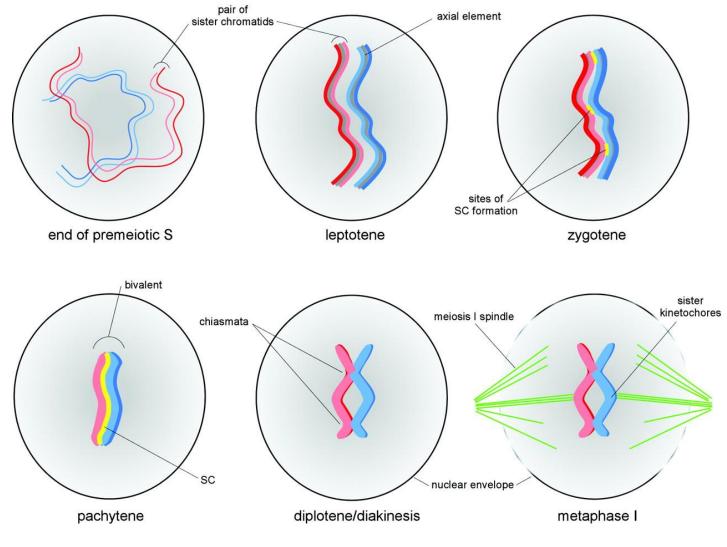
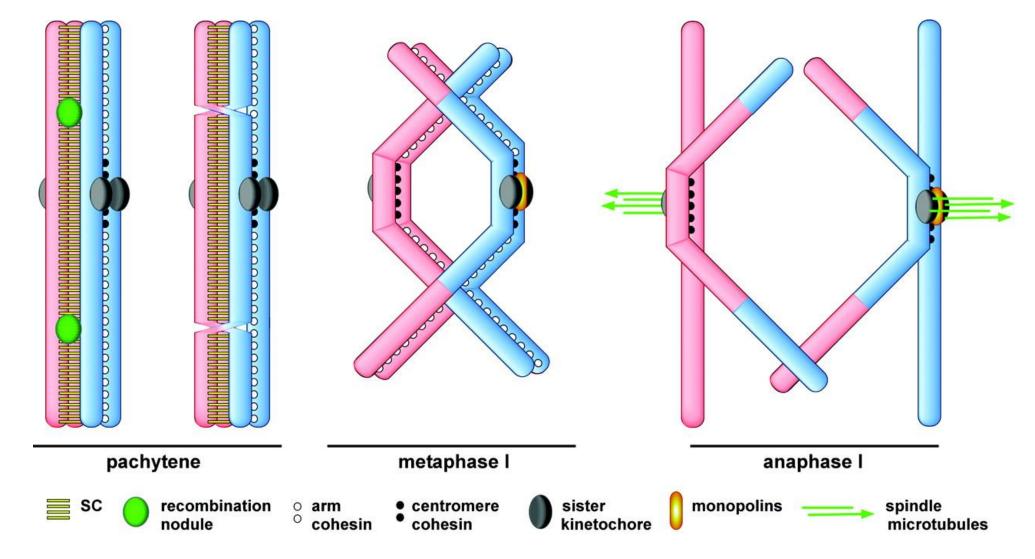


Biotechnology and Biological Sciences Research Council


Day 2 Genetic Maps and Recombination

Chris Gaynor, Jon Bancic, Daniel Tolhurst, Gregor Gorjanc

Armidale, 2024-02-06



Meiosis Review

Source: Page and Hawley (2003)

Meiosis Review

Source: Page and Hawley (2003)

Genetic Map Development

- Morgan observed "linked" traits working on fruit flies
 - Developed pearls on a string hypothesis for genes
 - Used recombination and crossing over as an explanation
- Sturtevant developed the first linkage map
 - A student in Morgan's lab
 - Map used recombination rate as a mapping unit
 - Rate is not additive, and they acknowledged this
 - Also documented the occurrence of crossover interference

Genetic Mapping Functions

- Haldane developed the first genetic mapping function
 - Converts recombination rate to an additive mapping unit
 - Expected number of recombinations
 - One Morgan means one expected recombination
 - Doesn't account for crossover interference
- Kosambi first incorporated interference in a mapping function
 - Fits fly data very well
 - Different levels of interference in other species
 - Many subsequent mapping functions developed

Simple Modeling of Recombination

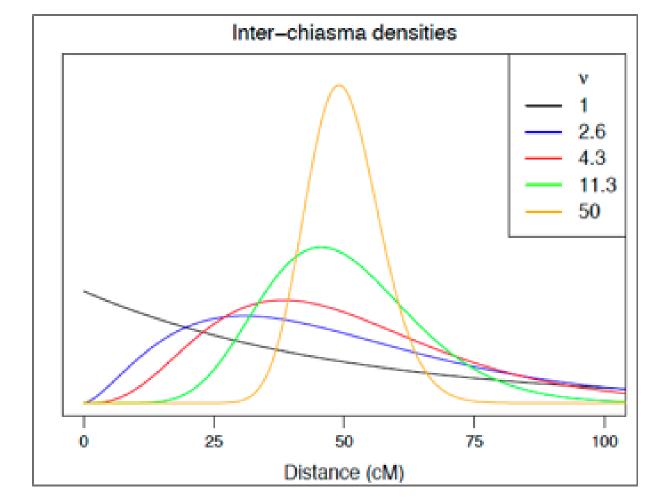
- Randomly choose a starting chromosome
- Determine if crossover occurs between 1st and 2nd locus

 Convert genetic distance to recombination rate
- Repeat process for all intervals between loci
- Doesn't model crossover interference

 Consistent with Haldane mapping function
- Easy to implement but very slow computation

Count-Location Model

- More complex implementation but faster computation
 - Sample number of chiasmata from Poisson distribution (rate = 2M)
 - Thin by half to account for the 4 chromatids (tetrad)
 - Sample positions of crossovers from uniform distribution (0-M)
 - Randomly pick a starting chromosome and resolve crossovers
- Does not model crossover interference
 - Consistent with Haldane mapping function
- Original AlphaSimR model


Gamma Model

- Positions of chiasmata sampled using a gamma distribution
 - Shape = v, rate = 2v

- Incorporates crossover interference (v)
 - Able to approximate many mapping functions
- Can incorporate species specific crossover interference
 The value v can be estimated from real data

Interference in Gamma Model

- Crossover interference parameter (v)
 - Haldane: v = 1
 - Kosambi: v ≈ 2.6
 - Humans: v = 4.3
 - Mice: v = 11.3

Source: Karl Broman

Gamma "Sprinkling" Model

- Models two pathways for recombination
 - Type I, no crossover interference
 - Type II, crossover interference
- Involves sampling from two separate gamma distributions
 Parameter controlling the proportion from each pathway
- Current AlphaSimR model
 - Default set to v=2.6 and no type I crossovers (~Kosambi)

AlphaSimR Demonstration