

Genome-based genetic evaluation

Gregor Gorjanc, Chris Gaynor, Jon Bancic, Daniel Tolhurst

UNE, Armidale 2024-02-07

Learning objectives

- Understand limitations of estimates from the pedigree-based model → why we would need genome-based model
- Understand how to combine phenotype information from all relatives connected via genomic data
- Practice inference of breeding values with the genomebased model
 - simple cases using R matrix algebra
 - using other packages

Linear Models for the Prediction of the Genetic Merit of Animals

CABI Biotechnology Series

September 2023 | 412pp

Raphael A Mrode Ivan Pocrnic

Robin Thompson Gregor Gorjanc $H = \begin{bmatrix} A_{1} + A_{2} & A_{3} \\ A_{2} & A_{3} \\ H = \begin{bmatrix} A_{1} + A_{3} & A_{3} \\ A_{3} & A_{3} \\ H = \begin{bmatrix} A_{1} + A_{3} & A_{3} \\ A_{1} & A_{2} \\ A_{2} & A_{3} \\ A_{3} & A_{3} \\ A_$

See chapters 11-14!

KNOWLEDGE FOR LIFE

Learning objectives

- Understand limitations of estimates from the pedigree-based model
- Understand how to combine phenotype information from all relatives connected via genomic data
- Practice inference of breeding values with the genomebased model
 - simple cases using R matrix algebra
 - using other packages

- With pedigrees we can *apriori* describe expected amount of variation
 - between pedigree founders (assumed unrelated)
 - between families
 (variation between family means / parent average terms)
 - within families

(variation between Mendelian sampling terms)

Expected and realised relatedness

Realised

Expected and realised relatedness

- With pedigrees we can *apriori* describe expected amount of variation
 - between pedigree founders (assumed unrelated)
 - between families
 (variation between family means / parent average terms)
 - within families

(variation between Mendelian sampling terms)

When we fit the model, we aposteriori estimate "realised" deviations

(phenotype resemblance <u>updates</u> assumed pedigree relationships) \rightarrow the more information per individual, the higher accuracy

- What does all this mean in practice:
 - Decent accuracy of estimated breeding values for individuals with own phenotypic data or progeny with phenotypic data (genomic data won't add much more information!)

- What does all this mean in practice:
 - Decent accuracy of estimated breeding values for individuals with own phenotypic data or progeny with phenotypic data (genomic data won't add much more information!)
 - Low accuracy of estimated breeding values for individuals without own phenotypic data or progeny with phenotypic data (genomic data can add more information)

- What does all this mean in practice:
 - Decent accuracy of estimated breeding values for individuals with own phenotypic data or progeny with phenotypic data (genomic data won't add much more information!)
 - Low accuracy of estimated breeding values for individuals without own phenotypic data or progeny with phenotypic data (genomic data can add more information)
 - <u>Zero</u> accuracy of estimated breeding values within a family with progeny prediction!!! → we can not differentiate full-sibs :(
 (progeny prediction does not capture Mendelian sampling terms, so genomic data can add a lot of information)

- Pedigree could be
 - wrong!
 - partially missing
 - missing altogether!
- Genomic data should help with all the mentioned issues!

Data

Recall the 0/1 encoding of haplotypes and 0/1/2 encoding of genotypes

Haplotype 1	0	1	1	0	0	1
Haplotype 2	1	1	1	1	0	0
Genotype	1	2	2	1	0	1

Data - example

ID	Pheno	Marker1	Marker2	Marker3	Marker4	Marker5
1	7.2	2	2	2	0	1
2	3.5	0	2	1	1	0
3	5.7	1	1	1	1	1
4	6.3	2	1	0	1	2

How could we model this data?

• Let's focus on one locus first

How could we model this data?

Let's focus on one locus first

- We have:
 - continuous variable (Pheno) \rightarrow response
 - continuous variable (Marker1) \rightarrow covariate

Linear regression (single marker)

 Estimating the association between phenotypic value and marker 1 genotypes (as allele dosage)

$$y_{1} = 7.2 = \mu + 2\alpha_{1} + e_{1}$$

$$y_{2} = 3.5 = \mu + 0\alpha_{1} + e_{2}$$

$$y_{3} = 5.7 = \mu + 1\alpha_{1} + e_{3}$$

$$y_{4} = 6.3 = \mu + 2\alpha_{1} + e_{4}$$

$$e_{i} \sim N(0, \sigma_{e}^{2})$$

• Assuming causality, α is allele substitution effect

Linear regression (single marker)

 Estimating the association between phenotypic value and marker 1 genotypes (as allele dosage)

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} 7.2 \\ 3.5 \\ 5.7 \\ 6.3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} (\mu) + \begin{pmatrix} 2 \\ 0 \\ 1 \\ 1 \end{pmatrix} (\alpha_1) + \begin{pmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \end{pmatrix}$$
$$\begin{aligned} y = Xb + W\alpha + e \left(\begin{array}{c} X^T E^{-1} X \\ W^T E^{-1} X \\ W^T E^{-1} W \end{array} \right) \left(\widehat{b} \\ \widehat{\alpha} \right) = \begin{pmatrix} X^T E^{-1} y \\ W^T E^{-1} y \\ W^T E^{-1} y \end{pmatrix}$$
$$Var(\alpha | y) = diag(C^{-1})_{\alpha} \sigma_e^2$$

Breeding values at single marker

• Model:
$$\begin{pmatrix} a_{1,1} \\ a_{2,1} \\ a_{3,1} \\ a_{4,1} \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 1 \\ 1 \end{pmatrix} (\alpha_1) = \alpha_1 = W\alpha$$

 $E(\alpha_1) = E(W\alpha) = WE(\alpha)$
 $Var(\alpha_1) = Var(W\alpha) = WVar(\alpha)W^T$

Breeding values at single marker

• Model:
$$\begin{pmatrix} a_{1,1} \\ a_{2,1} \\ a_{3,1} \\ a_{4,1} \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 1 \\ 1 \end{pmatrix} (\alpha_1) = \alpha_1 = W \alpha$$

 $E(\alpha_1) = E(W\alpha) = WE(\alpha)$
 $Var(\alpha_1) = Var(W\alpha) = WVar(\alpha)W^T$

• Estimator/Predictor:

 $E(\boldsymbol{a}_1|\boldsymbol{y}) = \hat{\boldsymbol{a}}_1 = \boldsymbol{W}\hat{\boldsymbol{\alpha}}$ $Var(\boldsymbol{a}_1|\boldsymbol{y}) = \boldsymbol{W}Var(\boldsymbol{\alpha}|\boldsymbol{y})\boldsymbol{W}^T$

Questions?!

Multiple linear regression (multiple markers)

 Estimating the association between phenotypic value and marker 1-5 genotypes (as allele dosage)

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} 7.2 \\ 3.5 \\ 5.7 \\ 6.3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} (\mu) + \begin{pmatrix} 2 & 2 & 2 & 0 & 1 \\ 0 & 2 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \\ \alpha_5 \end{pmatrix} + \begin{pmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \end{pmatrix}$$

$$y = Xb + W\alpha + e$$
$$e \sim N(0, E\sigma_e^2)$$

Multiple linear regression (multiple markers)

 Estimating the association between phenotypic value and marker 1-5 genotypes (as allele dosage)

Role of the prior for marker effects $\alpha \sim N(0, I\sigma_{\alpha}^2)$

Breeding values over all markers

• Model:
$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix} = \begin{pmatrix} 2 & 2 & 2 & 0 & 1 \\ 0 & 2 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \\ \alpha_5 \end{pmatrix} = \mathbf{a} = \mathbf{W} \mathbf{\alpha}$$
$$E(\mathbf{a}) = E(\mathbf{W} \mathbf{\alpha}) = \mathbf{W} E(\mathbf{\alpha}) = \mathbf{0}$$
$$Var(\mathbf{a}) = Var(\mathbf{W} \mathbf{\alpha}) = \mathbf{W} Var(\mathbf{\alpha}) \mathbf{W}^T = \mathbf{W} \mathbf{W}^T \sigma_{\alpha}^2$$

Breeding values over all markers

• Model:
$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix} = \begin{pmatrix} 2 & 2 & 2 & 0 & 1 \\ 0 & 2 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \\ \alpha_5 \end{pmatrix} = a = W\alpha$$
$$E(a) = E(W\alpha) = WE(\alpha) = 0$$
$$Var(a) = Var(W\alpha) = WVar(\alpha)W^T = WW^T\sigma_{\alpha}^2$$

• Estimator/Predictor:

 $E(\boldsymbol{a}_1|\boldsymbol{y}) = \hat{\boldsymbol{a}}_1 = \boldsymbol{W}\hat{\boldsymbol{\alpha}}$ $Var(\boldsymbol{a}_1|\boldsymbol{y}) = \boldsymbol{W}Var(\boldsymbol{\alpha}|\boldsymbol{y})\boldsymbol{W}^T$

Questions?!

Prediction of genomic prediction accuracy ("global")

• Effective no. of chr. segments

$$M_e = 2N_e LC / ln(N_e L)$$

• Prop. of genetic variance captured by markers

$$q^2 = M/(M + M_e)$$

- Reliability of GEBV $R^2 = T/(1+T), T = n q^2 h^2 / M_e$
- Reliability of EBV $R^2 = (T/(1+T))q^2$

Goddard (2011), Dekkers (2007)

Inputs

- M no. of genome-wide markers
- $N_{\rm e}$ effective population size
- L average size of chromosomes in Morgans
- C no. of chromosomes
- h² heritability of training phenotypes
- n no. of training individuals

Maize example (train and predict in family)

- <u>M no. of genome-wide markers = 200</u>
- N_e effective population size = 1
- L average size of chromosomes = 2
- C no. of chromosomes = 10
- h² heritability of phenotype included into training = 0.25
- <u>n no. of training individuals = 100</u>
- Effective no. of chr. segments $M_e = 2N_eLC/ln(N_eL) = 2 \times 1 \times 2 \times 10/ln(1 \times 2) = 58$
- Prop. of genetic variance captured by markers q²=M/(M+M_e)=200/(200+58)=0.76
- Reliability of GEBV

R^ž≈T/(1+T), T=nq²h²/M_e T=100×0.76×0.25/58=0.34, R²≈0.25, r≈0.5

Reliability of EBV

R²≈(T/(1+T))q²=0.19, r≈0.44

Maize example (predict from other families)

- <u>M no. of genome-wide markers = 10,000</u>
- <u>N_e effective population size = 50</u>
- L average size of chromosomes = 2
- C no. of chromosomes = 10
- h² heritability of phenotype included into training = 0.25
- <u>n no. of training individuals = 2000</u>
- Effective no. of chr. segments $M_e=2N_eLC/ln(N_eL)=2\times50\times2\times10/ln(50\times2)=434$
- Prop. of genetic variance captured by markers q²=M/(M+M_e)=10000/(10000+434)=0.96
- Reliability of GEBV

 $R^2 \approx T/(1+T)$, T=nq²h²/M_e T=2000×0.96×0.25/434=1.1 P²~0.53

- T=2000×0.96×0.25/434=1.1, R²≈0.53, r≈0.72
- Reliability of EBV

R²≈(T/(1+T))q²=0.50, r≈0.71

Dairy bulls example

- <u>M no. of genome-wide markers = 50,000</u>
- <u>N_e effective population size = 50</u>
- L average size of chromosomes = 1
- C no. of chromosomes = 30
- h² heritability of phenotype included into training = 0.80
- <u>n no. of training individuals = 1000</u>
- Effective no. of chr. segments $M_e=2N_eLC/ln(N_eL)=2\times50\times1\times30/ln(50\times1)=767$
- Prop. of genetic variance captured by markers q²=M/(M+M_e)=50,000/(50,000+767)=0.98
- Reliability of GEBV
 - R²≈T/(1+T), T=nq²h²/M_e T=1000×0.98×0.80/767=1.02, R²≈0.50, r≈0.71
- Reliability of EBV

R²≈(T/(1+T))q²=0.50, r≈0.70

Dairy cows example

- <u>M no. of genome-wide markers = 50,000</u>
- <u>N_e effective population size = 50</u>
- L average size of chromosomes = 1
- C no. of chromosomes = 30
- h² heritability of phenotype included into training = 0.30
- <u>n</u> no. of training individuals = ??? How many to get R² EBV of 0.50???
- Effective no. of chr. segments $M_e=2N_eLC/ln(N_eL)=2\times50\times1\times30/ln(50\times1)=767$
- Prop. of genetic variance captured by markers q²=M/(M+M_e)=50000/(50000+767)=0.98
- Reliability of GEBV

R²≈T/(1+T), T=nq²h²/M_e T=???×0.98×0.30/767=???, R²≈??? , r≈???

• Reliability of EBV

R²≈(T/(1+T))q²=??? , r≈???

Dairy cows example

~10,000 ***good*** markers works quite well

de Los Campos et al. (2010)

Information for an individual – pedigree vs. genomics

Questions?!

Marker & individual genome-based models

Marker genome-based model (SNP-BLUP)

 $y = Xb + W\alpha + e$ $e \sim N(0, E\sigma_e^2)$ $\alpha \sim N(0, I\sigma_\alpha^2)$

Individual genome-based model (G-BLUP)

 $y = Xb + ZW\alpha + e$ y = Xb + Za + e $e \sim N(0, E\sigma_e^2)$ $a \sim N(0, ?\sigma_\alpha^2)$ Z so we can include non-phenotyped individuals

Marker & individual genome-based models

Marker genome-based model (SNP-BLUP)

 $y = Xb + W\alpha + e$ $e \sim N(0, E\sigma_e^2)$ $\alpha \sim N(0, I\sigma_\alpha^2)$

Individual genome-based model (G-BLUP)

 $y = Xb + ZW\alpha + e$ y = Xb + Za + e $e \sim N(0, E\sigma_e^2)$ $a \sim N(0, ?\sigma_\alpha^2)$

Z so we can include non-phenotyped individuals

 $Var(\boldsymbol{a}) = Var(\boldsymbol{W}\boldsymbol{\alpha})$ $= \boldsymbol{W}Var(\boldsymbol{\alpha})\boldsymbol{W}^{T}$ $= \boldsymbol{W}\boldsymbol{W}^{T}\boldsymbol{\sigma}_{\boldsymbol{\alpha}}^{2}$

Marker & individual genome-based models

• Marker genome-based model (SNP-BLUP)

$$\begin{array}{ll} \boldsymbol{y} = \boldsymbol{X}\boldsymbol{b} + \boldsymbol{W}\boldsymbol{\alpha} + \boldsymbol{e} & \begin{pmatrix} \boldsymbol{X}^{T}\boldsymbol{E}^{-1}\boldsymbol{X} & \boldsymbol{X}^{T}\boldsymbol{E}^{-1}\boldsymbol{W} \\ \boldsymbol{e} \sim N(\boldsymbol{0}, \boldsymbol{E}\sigma_{e}^{2}) & \begin{pmatrix} \boldsymbol{W}^{T}\boldsymbol{E}^{-1}\boldsymbol{X} & \boldsymbol{W}^{T}\boldsymbol{E}^{-1}\boldsymbol{W} + \boldsymbol{I}\frac{\sigma_{e}^{2}}{\sigma_{\alpha}^{2}} \end{pmatrix} \begin{pmatrix} \widehat{\boldsymbol{b}} \\ \widehat{\boldsymbol{\alpha}} \end{pmatrix} = \begin{pmatrix} \boldsymbol{X}^{T}\boldsymbol{E}^{-1}\boldsymbol{y} \\ \boldsymbol{W}^{T}\boldsymbol{E}^{-1}\boldsymbol{y} \end{pmatrix} \\ \boldsymbol{\alpha} \sim N(\boldsymbol{0}, \boldsymbol{I}\sigma_{\alpha}^{2}) & \quad Var(\boldsymbol{\alpha}|\boldsymbol{y}) = diag(\boldsymbol{C}^{-1})_{\boldsymbol{\alpha}}\sigma_{e}^{2} \end{array}$$

Individual genome-based model (G-BLUP)

 $y = Xb + ZW\alpha + e$ y = Xb + Za + e $a \sim N(\mathbf{0}, E\sigma_e^2)$ $a \sim N(\mathbf{0}, WW^T\sigma_\alpha^2)$ $X^T E^{-1}X \quad X^T E^{-1}Z = WW^T \sigma_\alpha^2 \qquad Xar(a|y) = diag(C^{-1})_a \sigma_e^2$ $\sum_{\alpha \in \mathcal{A}} \sum_{\alpha \in \mathcal{A}}$

Genomic covariance-like coefficient matrices

- Genotype matrix W is nInd x nLoc
- Between individuals

 $Var(\boldsymbol{a}) = Var(\boldsymbol{W}\boldsymbol{\alpha})$ $= \boldsymbol{W}Var(\boldsymbol{\alpha})\boldsymbol{W}^{T}$ $= \boldsymbol{W}\boldsymbol{W}^{T}\boldsymbol{\sigma}_{\boldsymbol{\alpha}}^{2}$

Covariance-like coefficients between individuals (nInd x nInd) similar to NRM matrix

- Between loci
 - sum-of-squares $\boldsymbol{W}^T \boldsymbol{W}$

Covariance-like coefficients between loci (nLoc x nLoc) similar to LD matrix

- covariance $Cov(W) = C = (W - E(W))^T (W - E(W))/(n-1)$ - correlation $Cor(W) = diag(C)^{-\frac{1}{2}}Cdiag(C)^{-\frac{1}{2}}$

 $\rightarrow WW^T$

Genomic covariance-like coefficient matrices

Genomic covariance-like coefficient matrices

- Genotype matrix W is nInd x nLoc
- Between individuals

 sum-of-squares WW^T

Covariance-like coefficients between individuals (nInd x nInd) similar to NRM matrix

T

- covariance
$$Cov(W^T) = C = (W - E(W))(W - E(W))'/(n-1)$$

- correlation
$$Cor(W^T) = diag(C)^{-\frac{1}{2}}Cdiag(C)^{-\frac{1}{2}}$$

I want the genome-based NRM (following the pedigree-based NRM)!?

• Maybe we don't need it! $Var(\alpha) = Var(W\alpha)$ = $WVar(\alpha)W^T$ = $WW^T\sigma_{\alpha}^2$

- Maybe we don't need it! $Var(\alpha) = Var(W\alpha)$ = $WVar(\alpha)W^T$ = $WW^T\sigma_{\alpha}^2$
- Many proposed versions:
 - -[-1, 0, 1] centering $(W 1)(W 1)^{T}$
 - diagonals = the number of homozygous loci for individuals
 - off-diagonals = the number of alleles shared between individuals

- Maybe we don't need it! $Var(\alpha) = Var(W\alpha)$ = $WVar(\alpha)W^T$ = $WW^T\sigma_{\alpha}^2$
- Many proposed versions:

$$-[-1, 0, 1]$$
 centering $(W - 1)(W - 1)^T$

- diagonals = the number of homozygous loci for individuals
- off-diagonals = the number of alleles shared between individuals
- VanRaden 1 (to match pedigree NRM)

$$G = (W - E(W))(W - E(W))^{T} / \sum diag(Cov(W))$$

$$E(W_{i}) = 2p_{i}$$

$$Var(W_{i}) = 2p_{i}q_{i}(1 + F_{i})$$

- Many other versions!!!

- Whatever the choice, there is useful information in **G**!
- Take a trio of diploid individuals and use [-1, 0, 1] coding in w

 $w_{f(i)} = w_{f(i),1} + w_{f(i),2}$ $w_{m(i)} = w_{m(i),1} + w_{m(i),2}$ $w_{i} = w_{i,1} + w_{i,2}$

Realised shared number of alleles between individuals

$$\begin{pmatrix} \boldsymbol{w}_{f(i)} \boldsymbol{w}_{f(i)}^{T} & sym. \\ \boldsymbol{w}_{m(i)} \boldsymbol{w}_{f(i)}^{T} & \boldsymbol{w}_{m(i)} \boldsymbol{w}_{m(i)}^{T} \\ \boldsymbol{w}_{i} \boldsymbol{w}_{f(i)}^{T} & \boldsymbol{w}_{i} \boldsymbol{w}_{m(i)}^{T} & \boldsymbol{w}_{i} \boldsymbol{w}_{i}^{T} \end{pmatrix}$$

Genome-based NRM - What do these terms mean?

 $\begin{pmatrix} \mathbf{w}_{f(i)}\mathbf{w}_{f(i)}^{T} & sym. \\ \mathbf{w}_{m(i)}\mathbf{w}_{f(i)}^{T} & \mathbf{w}_{m(i)}\mathbf{w}_{m(i)}^{T} \\ \mathbf{w}_{i}\mathbf{w}_{f(i)}^{T} & \mathbf{w}_{i}\mathbf{w}_{m(i)}^{T} & \mathbf{w}_{i}\mathbf{w}_{i}^{T} \end{pmatrix}$ • Diagonal: prior variances indicating how much individual breeding values **could** deviate from population mean

Genome-based NRM - What do these terms mean?

 $\begin{pmatrix} w_{f(i)}w_{f(i)}^{T} & sym. \\ w_{m(i)}w_{f(i)}^{T} & w_{m(i)}w_{m(i)}^{T} \\ w_{i}w_{f(i)}^{T} & w_{i}w_{m(i)}^{T} & w_{i}w_{i}^{T} \end{pmatrix}$ • Off-diagonal: prior co-variances indicating how much individual breeding values *could* correlate compared to the "average pair"

Genome-based NRM - gametic relationships

• If genotypes are phased we can build gametic relationships $W_{1}(x) = W_{2}(x) + W_{2}(x)$

 $w_{f(i)} = w_{f(i),1} + w_{f(i),2}$ $w_{m(i)} = w_{m(i),1} + w_{m(i),2}$ $w_{i} = w_{i,1} + w_{i,2}$

→ How much gametes/genomes could deviate or correlate

Genome-based NRM – between & within family

$$w_{f(i)} = w_{f(i),1} + w_{f(i),2}$$

$$w_{m(i)} = w_{m(i),1} + w_{m(i),2}$$

$$w_{i} = w_{i,1} + w_{i,2}$$

 Expected genotype (=parent average) & deviation (=Mendelian sampling)

$$E(\mathbf{w}_{i}) = E\left(\frac{1}{2}\mathbf{w}_{f(i)} + \frac{1}{2}\mathbf{w}_{m(i)} + \mathbf{w}_{i}^{r}\right) = \frac{1}{2}\mathbf{w}_{f(i)} + \frac{1}{2}\mathbf{w}_{m(i)}$$

 \rightarrow How many alt. alleles do we expect from parents (vs. mean)

$$\boldsymbol{w}_i^r = \boldsymbol{w}_i - \left(\frac{1}{2}\boldsymbol{w}_{f(i)} + \frac{1}{2}\boldsymbol{w}_{m(i)}\right)$$

 \rightarrow How many more or less alt. alleles did individual get

Genome-based NRM – between & within family

• Expected genotype (=parent average) & deviation (=Mendelian sampling) per genome $E(\boldsymbol{w}_{i,1}) = E(\frac{1}{2}\boldsymbol{w}_{f(i),1} + \frac{1}{2}\boldsymbol{w}_{f(i),2} + \boldsymbol{w}_{i,1}^r) = \frac{1}{2}\boldsymbol{w}_{f(i),1} + \frac{1}{2}\boldsymbol{w}_{f(i),2}$ $\boldsymbol{w}_{i,1}^r = \boldsymbol{w}_{i,1} - (\frac{1}{2}\boldsymbol{w}_{f(i),1} + \frac{1}{2}\boldsymbol{w}_{f(i),2})$

 \rightarrow from father

$$E(\mathbf{w}_{i,2}) = E(\frac{1}{2}\mathbf{w}_{m(i),1} + \frac{1}{2}\mathbf{w}_{m(i),2} + \mathbf{w}_{i,1}^{r}) = \frac{1}{2}\mathbf{w}_{m(i),1} + \frac{1}{2}\mathbf{w}_{m(i),2}$$

$$\mathbf{w}_{i,2}^{r} = \mathbf{w}_{i,2} - (\frac{1}{2}\mathbf{w}_{m(i),1} + \frac{1}{2}\mathbf{w}_{m(i),2})$$

 \rightarrow from mother

Genome-based NRM variants & interpretation

• Centering shifts reference population

$$y = Xb + W\alpha + e$$

= $Xb + W\alpha - E(W)\alpha + E(W)\alpha + e$
= $Xb + (W - E(W))\alpha + E(W)\alpha + e$
= $Xb + (W - E(W))\alpha + c + e$
= $(Xb + c) + (W - E(W))\alpha + e$
= $Xb^{c} + W^{c}\alpha + e$

Genome-based NRM variants & interpretation

- Scaling changes variance meaning
 - $= WW^T \sigma_{\alpha}^2$ $= WW^T \sigma_{\alpha}^2 k_{\mu}^1$ $=\frac{WW^T}{k}\sigma_{\alpha}^2k$ $= G\sigma_{a}^{2*}$ $k = \sum 2p_i q_i$ $\sigma_a^{2*} = \sigma_a^2 \sum 2p_i q_i$
 - $Var(\boldsymbol{a}) = Var(\boldsymbol{W}\boldsymbol{\alpha}) \qquad \bullet \text{ Depending on k we can get} \\ = \boldsymbol{W}\boldsymbol{W}^T \sigma_{\boldsymbol{\alpha}}^2 \qquad \bullet \text{ very different estimates of } \sigma_{\boldsymbol{\alpha}}^{2*} \\ = \boldsymbol{W}\boldsymbol{W}^T \sigma_{\boldsymbol{\alpha}}^2 k_{-}^1 \qquad (\text{genomic variance})$
 - Many pedigree and genomic variance comparisons may be

dubious?

Flexible (temporal and genomic) analysis of genetic variation

www.nature.com/hdy

ARTICLE OPEN Temporal and genomic analysis of additive genetic variance in breeding programmes

Letícia A. de C. Lara^{[1][™]}, Ivan Pocrnic^[0], Thiago de P. Oliveira^[0], R. Chris Gaynor^[0] and Gregor Gorjanc^[0]

Temporal analysis of genetic variation

Topics not covered

- "Bayesian models" different assumptions about marker effects & commonly approached with methods used in Bayesian statistics (MCMC/VB)
- Single-step GBLUP (ssGBLUP and variants) combining all phenotype, pedigree, and genomic data
- "APY"/SVD/... approximations for large-scale
- Non-additive genetic or other effects
 (note that *α* captures a bit of dominance, epistasis, GxE, ...)

Limitations with current genome-based models?

• Markers vs. QTL

. . .

- Admixed populations, multiple populations, ...
- Whole-genome sequence data

Learning objectives

- Understand limitations of estimates from the pedigree-based model → why we would need genome-based model
- Understand how to combine phenotype information from all relatives connected via genomic data
- Practice inference of breeding values with the genomebased model
 - simple cases using R matrix algebra
 - using other packages

Questions?!

Genome-based genetic evaluation

Gregor Gorjanc, Chris Gaynor, Jon Bancic, Daniel Tolhurst

UNE, Armidale 2024-02-07

