Genome-based genetic evaluation

Gregor Gorjanc, Chris Gaynor, Jon Bancic, Daniel Tolhurst

UNE, Armidale
2024-02-07

Learning objectives

- Understand limitations of estimates from the pedigree-based model \rightarrow why we would need genome-based model
- Understand how to combine phenotype information from all relatives connected via genomic data
- Practice inference of breeding values with the genomebased model
- simple cases using R matrix algebra
- using other packages

Linear Models for the Prediction of the Genetic Merit of Animals

CABI Biotechnology Series

September 2023 | 412pp

Raphael A Mrode

Linear Models for
the Prediction of the
Genetic Merit of Animals
Alth Edition

Raphael A. Mrode
and Ivan Pocrnic

See chapters
11-14!

Ivan Pocrnic

Robin Thompson Gregor Gorjanc

Learning objectives

- Understand limitations of estimates from the pedigree-based model
- Understand how to combine phenotype information from all relatives connected via genomic data
- Practice inference of breeding values with the genomebased model
- simple cases using R matrix algebra
- using other packages

Limitations with pedigree-based model

- With pedigrees we can apriori describe expected amount of variation
- between pedigree founders (assumed unrelated)
- between families
(variation between family means / parent average terms)
- within families
(variation between Mendelian sampling terms)

Expected and realised relatedness

Expected

Realised

Expected and realised relatedness

b

4 individuals from 2 families, including 1 MZ twin pair and 1 DZ twin pair

Within-family design

4 individuals from 2 families, including 2 full sibling pairs
$\mathbf{G}=\left[\begin{array}{ccccc}1.002 & & & \\ -0.016 & 1.018 & & \\ -0.003 & -0.006 & 0.994 & \\ 0.015 & 0.021 & -0.011 & 0.983\end{array}\right]$

Population design
4 'unrelated' individuals from the same population

Vinkhuyzen et al. (2013)

Limitations with pedigree-based model

- With pedigrees we can apriori describe expected amount of variation
- between pedigree founders (assumed unrelated)
- between families
(variation between family means / parent average terms)
- within families
(variation between Mendelian sampling terms)
- When we fit the model, we aposteriori estimate "realised" deviations
(phenotype resemblance updates assumed pedigree relationships)
\rightarrow the more information per individual, the higher accuracy

Limitations with pedigree-based model

- What does all this mean in practice:
- Decent accuracy of estimated breeding values for individuals with own phenotypic data or progeny with phenotypic data (genomic data won't add much more information!)

Limitations with pedigree-based model

- What does all this mean in practice:
- Decent accuracy of estimated breeding values for individuals with own phenotypic data or progeny with phenotypic data (genomic data won't add much more information!)
- Low accuracy of estimated breeding values for individuals without own phenotypic data or progeny with phenotypic data (genomic data can add more information)

Limitations with pedigree-based model

- What does all this mean in practice:
- Decent accuracy of estimated breeding values for individuals with own phenotypic data or progeny with phenotypic data (genomic data won't add much more information!)
- Low accuracy of estimated breeding values for individuals without own phenotypic data or progeny with phenotypic data (genomic data can add more information)
- Zero accuracy of estimated breeding values within a family with progeny prediction!!! \rightarrow we can not differentiate full-sibs :((progeny prediction does not capture Mendelian sampling terms, so genomic data can add a lot of information)

Limitations with pedigree-based model

- Pedigree could be
- wrong!
- partially missing
- missing altogether!
- Genomic data should help with all the mentioned issues!

Data

Recall the $0 / 1$ encoding of haplotypes and $0 / 1 / 2$ encoding of genotypes

Haplotype 1
Haplotype 2

0	1	1	0	0	1
1	1	1	1	0	0
1	2	2	1	0	1

Data - example

ID	Pheno	Marker1	Marker2	Marker3	Marker4	Marker5
1	7.2	2	2	2	0	1
2	3.5	0	2	1	1	0
3	5.7	1	1	1	1	1
4	6.3	2	1	0	1	2

How could we model this data?

- Let's focus on one locus first

How could we model this data?

- Let's focus on one locus first

- continuous variable (Pheno) \rightarrow response
- continuous variable (Marker1) \rightarrow covariate

Linear regression (single marker)

- Estimating the association between phenotypic value and marker 1 genotypes (as allele dosage)

$$
\begin{aligned}
& y_{1}=7.2=\mu+2 \alpha_{1}+e_{1} \\
& y_{2}=3.5=\mu+0 \alpha_{1}+e_{2} \\
& y_{3}=5.7=\mu+1 \alpha_{1}+e_{3} \\
& y_{4}=6.3=\mu+2 \alpha_{1}+e_{4} \\
& e_{i} \sim N\left(0, \sigma_{e}^{2}\right)
\end{aligned}
$$

- Assuming causality, α is allele substitution effect

Linear regression (single marker)

- Estimating the association between phenotypic value and marker 1 genotypes (as allele dosage)

$$
\begin{aligned}
& \left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right)=\left(\begin{array}{l}
7.2 \\
3.5 \\
5.7 \\
6.3
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)(\mu)+\left(\begin{array}{l}
2 \\
0 \\
1 \\
1
\end{array}\right)\left(\alpha_{1}\right)+\left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3} \\
e_{4}
\end{array}\right) \\
& \left.\begin{array}{l}
y=\boldsymbol{X} \boldsymbol{b}+\boldsymbol{W} \boldsymbol{\alpha}+\boldsymbol{e}\left(\begin{array}{ll}
\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{E}^{-1} \boldsymbol{X} & \boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{E}^{-1} \boldsymbol{W} \\
\boldsymbol{W}^{\boldsymbol{T}} \boldsymbol{E}^{-1} \boldsymbol{X} & \boldsymbol{W}^{\boldsymbol{T}} \boldsymbol{E}^{-1} \boldsymbol{W}
\end{array}\right)(\widehat{\boldsymbol{b}} \\
\widehat{\boldsymbol{\alpha}}
\end{array}\right)=\binom{\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{E}^{-1} y}{\boldsymbol{W}^{\boldsymbol{T}} \boldsymbol{E}^{-1} y} \\
& \left.\operatorname{Var}(\boldsymbol{0}, \boldsymbol{\alpha} \mid y)=\operatorname{diag}\left(\boldsymbol{C}_{e}^{2}\right)\right)_{\alpha} \sigma_{e}^{2}
\end{aligned}
$$

Breeding values at single marker

- Model: $\left(\begin{array}{l}a_{1,1} \\ a_{2,1} \\ a_{3,1} \\ a_{4,1}\end{array}\right)=\left(\begin{array}{l}2 \\ 0 \\ 1 \\ 1\end{array}\right)\left(\alpha_{1}\right)=a_{1}=\boldsymbol{W} \boldsymbol{\alpha}$

$$
E\left(a_{1}\right)=E(\boldsymbol{W} \alpha)=W E(\alpha)
$$

$$
\operatorname{Var}\left(a_{1}\right)=\operatorname{Var}(\boldsymbol{W} \alpha)=\boldsymbol{W} \operatorname{Var}(\alpha) \boldsymbol{W}^{T}
$$

Breeding values at single marker

- Model: $\left(\begin{array}{l}a_{1,1} \\ a_{2,1} \\ a_{3,1} \\ a_{4,1}\end{array}\right)=\left(\begin{array}{l}2 \\ 0 \\ 1 \\ 1\end{array}\right)\left(\alpha_{1}\right)=a_{1}=\boldsymbol{W} \boldsymbol{\alpha}$

$$
\begin{aligned}
& E\left(a_{1}\right)=E(\boldsymbol{W} \boldsymbol{\alpha})=\boldsymbol{W} E(\boldsymbol{\alpha}) \\
& \operatorname{Var}\left(a_{1}\right)=\operatorname{Var}(\boldsymbol{W} \boldsymbol{\alpha})=\boldsymbol{W} \operatorname{Var}(\boldsymbol{\alpha}) \boldsymbol{W}^{T}
\end{aligned}
$$

- Estimator/Predictor:

$$
\begin{aligned}
& E\left(a_{1} \mid y\right)=\widehat{a}_{1}=W \widehat{\alpha} \\
& \operatorname{Var}\left(a_{1} \mid y\right)=\boldsymbol{W} \operatorname{Var}(\alpha \mid y) \boldsymbol{W}^{T}
\end{aligned}
$$

Questions?!

Multiple linear regression (multiple markers)

- Estimating the association between phenotypic value and marker 1-5 genotypes (as allele dosage)

$$
\begin{aligned}
& \left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right)=\left(\begin{array}{l}
7.2 \\
3.5 \\
5.7 \\
6.3
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)(\mu)+\left(\begin{array}{lllll}
2 & 2 & 2 & 0 & 1 \\
0 & 2 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 2
\end{array}\right)\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\alpha_{4} \\
\alpha_{5}
\end{array}\right)+\left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3} \\
e_{4}
\end{array}\right) \\
& y=\boldsymbol{X} \boldsymbol{b}+\boldsymbol{W} \boldsymbol{\alpha}+\boldsymbol{e} \\
& \boldsymbol{e} \sim N\left(\mathbf{0}, \boldsymbol{E} \sigma_{e}^{2}\right)
\end{aligned}
$$

Multiple linear regression (multiple markers)

- Estimating the association between phenotypic value and marker 1-5 genotypes (as allele dosage)

$$
\left.\begin{array}{l}
\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right)=\left(\begin{array}{l}
7.2 \\
3.5 \\
5.7 \\
6.3
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)(\mu)+\left(\begin{array}{lllll}
2 & 2 & 2 & 0 & 1 \\
0 & 2 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 2
\end{array}\right)\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\alpha_{4} \\
\alpha_{5}
\end{array}\right)+\left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3} \\
e_{4}
\end{array}\right) \\
\begin{array}{l}
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{b}+\boldsymbol{W} \alpha+\boldsymbol{e} \\
\boldsymbol{e} \sim N\left(\mathbf{0}, \boldsymbol{E} \sigma_{e}^{2}\right) \\
\boldsymbol{\alpha} \sim N\left(\mathbf{0}, \boldsymbol{I} \sigma_{\alpha}^{2}\right)
\end{array}\left(\begin{array}{cc}
\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{E}^{-1} \boldsymbol{X} & \boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{E}^{-1} \boldsymbol{W} \\
\boldsymbol{W}^{\boldsymbol{T}} \boldsymbol{E}^{-1} \boldsymbol{X} & \boldsymbol{W}^{\boldsymbol{T}} \boldsymbol{E}^{-1} \boldsymbol{W}+\boldsymbol{I} \boldsymbol{I}_{\sigma_{e}^{2}}^{2}
\end{array}\right)(\widehat{\boldsymbol{b}} \\
\widehat{\boldsymbol{\alpha}}
\end{array}\right)=\binom{\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{E}^{-1} y}{\boldsymbol{W}^{\boldsymbol{T}} \boldsymbol{E}^{-1} y},
$$

Role of the prior for marker effects $\quad \alpha \sim N\left(\mathbf{0}, I \sigma_{\alpha}^{2}\right)$

Breeding values over all markers

- Model: $\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3} \\ a_{4}\end{array}\right)=\left(\begin{array}{lllll}2 & 2 & 2 & 0 & 1 \\ 0 & 2 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 2\end{array}\right)\left(\begin{array}{l}\alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \\ \alpha_{4} \\ \alpha_{5}\end{array}\right)=a=\boldsymbol{W} \boldsymbol{\alpha}$

$$
\begin{aligned}
& E(\alpha)=E(\boldsymbol{W} \alpha)=\boldsymbol{W} E(\alpha)=\mathbf{0} \\
& \operatorname{Var}(\alpha)=\operatorname{Var}(\boldsymbol{W} \alpha)=\boldsymbol{W} \operatorname{Var}(\alpha) \boldsymbol{W}^{T}=\boldsymbol{W} \boldsymbol{W}^{T} \sigma_{\alpha}^{2}
\end{aligned}
$$

Breeding values over all markers

- Model: $\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3} \\ a_{4}\end{array}\right)=\left(\begin{array}{lllll}2 & 2 & 2 & 0 & 1 \\ 0 & 2 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 2\end{array}\right)\left(\begin{array}{l}\alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \\ \alpha_{4} \\ \alpha_{5}\end{array}\right)=a=\boldsymbol{W} \boldsymbol{\alpha}$

$$
\begin{aligned}
& E(\alpha)=E(\boldsymbol{W} \alpha)=\boldsymbol{W} E(\alpha)=\mathbf{0} \\
& \operatorname{Var}(a)=\operatorname{Var}(\boldsymbol{W} \boldsymbol{\alpha})=\boldsymbol{W} \operatorname{Var}(\alpha) \boldsymbol{W}^{T}=\boldsymbol{W} \boldsymbol{W}^{T} \sigma_{\alpha}^{2}
\end{aligned}
$$

- Estimator/Predictor:

$$
\begin{aligned}
& E\left(a_{1} \mid y\right)=\widehat{a}_{1}=W \widehat{\alpha} \\
& \operatorname{Var}\left(a_{1} \mid y\right)=W \operatorname{Var}(\alpha \mid y) W^{T}
\end{aligned}
$$

Questions?!

Prediction of genomic prediction accuracy ("global")

- Effective no. of chr. segments

$$
M_{e}=2 N_{e} L C / \ln \left(N_{e} L\right)
$$

- Prop. of genetic variance captured by markers

$$
q^{2}=M /\left(M+M_{e}\right)
$$

- Reliability of GEBV $R^{2}=T /(1+T), T=n q^{2} h^{2} / M_{e}$
- Reliability of EBV $R^{2}=(T /(1+T)) q^{2}$

Inputs

- M no. of genome-wide markers
- N_{e} effective population size
- L average size of chromosomes in Morgans
- C no. of chromosomes
- h^{2} heritability of training phenotypes
- n no. of training individuals

Maize example (train and predict in family)

- M no. of genome-wide markers = 200
- $\underline{N}_{\underline{e}}$ effective population size $=1$
- L average size of chromosomes = 2
- C no. of chromosomes $=10$
- h^{2} heritability of phenotype included into training $=0.25$
- \underline{n} no. of training individuals $=100$
- Effective no. of chr. segments

$$
M_{e}=2 N_{e} L C / \ln \left(N_{e} L\right)=2 \times 1 \times 2 \times 10 / \ln (1 \times 2)=58
$$

- Prop. of genetic variance captured by markers

$$
q^{2}=M /\left(M+M_{e}\right)=200 /(200+58)=0.76
$$

- Reliability of GEBV

$$
\begin{aligned}
& \mathrm{R}^{2} \approx \mathrm{~T} /(1+\mathrm{T}), \mathrm{T}=\mathrm{nq}^{2} \mathrm{~h}^{2} / \mathrm{M}_{\mathrm{e}} \\
& \mathrm{~T}=100 \times 0.76 \times 0.25 / 58=0.34, \mathrm{R}^{2} \approx 0.25, r \approx 0.5
\end{aligned}
$$

- Reliability of EBV

$$
R^{2} \approx(T /(1+T)) q^{2}=0.19, r \approx 0.44
$$

Maize example (predict from other families)

- M no. of genome-wide markers $=10,000$
- \underline{N}_{e} effective population size $=50$
- L average size of chromosomes $=2$
- C no. of chromosomes $=10$
- h^{2} heritability of phenotype included into training $=0.25$
- n no. of training individuals $=2000$
- Effective no. of chr. segments

$$
M_{e}=2 N_{e} L C / \ln \left(N_{e} L\right)=2 \times 50 \times 2 \times 10 / \ln (50 \times 2)=434
$$

- Prop. of genetic variance captured by markers

$$
\mathrm{q}^{2}=\mathrm{M} /\left(\mathrm{M}+\mathrm{M}_{\mathrm{e}}\right)=10000 /(10000+434)=0.96
$$

- Reliability of GEBV

$$
\begin{aligned}
& R^{2} \approx T /(1+\mathrm{T}), \mathrm{T}=\mathrm{nq}^{2} \mathrm{~h}^{2} / \mathrm{M}_{\mathrm{e}} \\
& \mathrm{~T}=2000 \times 0.96 \times 0.25 / 434=1.1, \mathrm{R}^{2} \approx 0.53, \mathrm{r} \approx 0.72
\end{aligned}
$$

- Reliability of EBV

$$
R^{2} \approx(T /(1+T)) q^{2}=0.50, r \approx 0.71
$$

Dairy bulls example

- M no. of genome-wide markers $=50,000$
- $\underline{N}_{\mathrm{e}}$ effective population size $=50$
- L average size of chromosomes = 1
- C no. of chromosomes $=30$
- h^{2} heritability of phenotype included into training $=0.80$
- n no. of training individuals $=1000$
- Effective no. of chr. segments

$$
M_{e}=2 N_{e} L C / \ln \left(N_{e} L\right)=2 \times 50 \times 1 \times 30 / \ln (50 \times 1)=767
$$

- Prop. of genetic variance captured by markers

$$
q^{2}=M /\left(M+M_{e}\right)=50,000 /(50,000+767)=0.98
$$

- Reliability of GEBV

$$
\begin{aligned}
& R^{2} \approx T /(1+T), T=n q^{2} h^{2} / M_{e} \\
& T=1000 \times 0.98 \times 0.80 / 767=1.02, R^{2} \approx 0.50, r \approx 0.71
\end{aligned}
$$

- Reliability of EBV

$$
R^{2} \approx(T /(1+T)) q^{2}=0.50, r \approx 0.70
$$

Dairy cows example

- M no. of genome-wide markers $=50,000$
- $\underline{N}_{\mathrm{e}}$ effective population size $=50$
- L average size of chromosomes = 1
- C no. of chromosomes $=30$
- h^{2} heritability of phenotype included into training $=0.30$
- n no. of training individuals = ??? How many to get $R^{2} E B V$ of 0.50 ???
- Effective no. of chr. segments

$$
M_{e}=2 N_{e} L C / \ln \left(N_{e} L\right)=2 \times 50 \times 1 \times 30 / \ln (50 \times 1)=767
$$

- Prop. of genetic variance captured by markers

$$
q^{2}=M /\left(M+M_{e}\right)=50000 /(50000+767)=0.98
$$

- Reliability of GEBV

$$
\begin{aligned}
& R^{2} \approx T /(1+T), T=n q^{2} h^{2} / M_{e} \\
& T=? ? ? \times 0.98 \times 0.30 / 767=? ? ?, R^{2} \approx ? ? ?, r \approx ? ? ?
\end{aligned}
$$

- Reliability of EBV

$$
R^{2} \approx(T /(1+\mathrm{T})) \mathrm{q}^{2}=? ? ?, r \approx ? ? ?
$$

Dairy cows example

~10,000 ***good*** markers works quite well

Box $3 \mid$ Whole-genome marker-enabled prediction: an example application

de Los Campos et al. (2010)

Information for an individual - pedigree vs. genomics

Questions?!

Marker \& individual genome-based models

- Marker genome-based model (SNP-BLUP)

$$
\begin{aligned}
& y=\boldsymbol{X} \boldsymbol{b}+\boldsymbol{W} \alpha+\boldsymbol{e} \\
& \boldsymbol{e} \sim N\left(\mathbf{0}, \boldsymbol{E} \sigma_{e}^{2}\right) \\
& \alpha \sim N\left(\mathbf{0}, \boldsymbol{I} \sigma_{\alpha}^{2}\right)
\end{aligned}
$$

- Individual genome-based model (G-BLUP)

$$
\begin{aligned}
& y=\boldsymbol{X} \boldsymbol{b}+\boldsymbol{Z} \boldsymbol{W} \alpha+\boldsymbol{e} \quad \mathbf{Z} \text { so we can include } \\
& y=\boldsymbol{X} \boldsymbol{b}+\boldsymbol{Z} a+\boldsymbol{e} \quad \text { non-phenotyped individuals } \\
& \boldsymbol{e} \sim N\left(\mathbf{0}, \boldsymbol{E} \sigma_{e}^{2}\right) \\
& a \sim N\left(\mathbf{0}, ? \sigma_{\alpha}^{2}\right)
\end{aligned}
$$

Marker \& individual genome-based models

- Marker genome-based model (SNP-BLUP)

$$
\begin{aligned}
& y=\boldsymbol{X} \boldsymbol{b}+\boldsymbol{W} \alpha+\boldsymbol{e} \\
& \boldsymbol{e} \sim N\left(\mathbf{0}, \boldsymbol{E} \sigma_{e}^{2}\right) \\
& \alpha \sim N\left(\mathbf{0}, \boldsymbol{I} \sigma_{\alpha}^{2}\right)
\end{aligned}
$$

- Individual genome-based model (G-BLUP)

$$
\begin{array}{lr}
y=\boldsymbol{X} \boldsymbol{b}+\boldsymbol{Z} \boldsymbol{W} \alpha+\boldsymbol{e} & \mathbf{Z} \text { so we can include } \\
y=\boldsymbol{X} \boldsymbol{b}+\boldsymbol{Z} a+\boldsymbol{e} & \text { non-phenotyped individuals } \\
\boldsymbol{e} \sim N\left(\mathbf{0}, \boldsymbol{E} \sigma_{e}^{2}\right) & \operatorname{Var}(a)
\end{array}=\operatorname{Var}(\boldsymbol{W} \alpha) .
$$

Marker \& individual genome-based models

- Marker genome-based model (SNP-BLUP)

$$
\begin{array}{lcc}
y=\boldsymbol{X} \boldsymbol{b}+\boldsymbol{W} \alpha+\boldsymbol{e} & \left(\begin{array}{cc}
\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{E}^{-1} \boldsymbol{X} & \boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{E}^{-1} \boldsymbol{W} \\
\boldsymbol{e} \sim N\left(\mathbf{0}, \boldsymbol{E} \sigma_{e}^{2}\right) & \left(\begin{array}{l}
\boldsymbol{T} \\
\boldsymbol{W}^{\boldsymbol{1}} \boldsymbol{E}^{-1} \boldsymbol{X} \\
\boldsymbol{W}^{\boldsymbol{T}} \boldsymbol{E}^{-1} \boldsymbol{W}+\boldsymbol{I} \frac{\boldsymbol{\sigma}_{e}^{2}}{\sigma_{\alpha}^{2}}
\end{array}\right)\binom{\widehat{\boldsymbol{b}}}{\widehat{\alpha}}=\binom{\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{E}^{-1} y}{\boldsymbol{W}^{\boldsymbol{T}} \boldsymbol{E}^{-1} y} \\
\left.\operatorname{Var}(\alpha \mid y)=\operatorname{diag}\left(\boldsymbol{C}^{-1}\right)_{\alpha} \sigma_{e}^{2}\right)
\end{array}\right.
\end{array}
$$

- Individual genome-based model (G-BLUP)

$$
\begin{array}{lc}
y=\boldsymbol{X} \boldsymbol{b}+\boldsymbol{Z} \boldsymbol{W} \boldsymbol{\alpha}+\boldsymbol{e} & \mathrm{Z} \text { so we can include } \\
y=\boldsymbol{X} \boldsymbol{b}+\boldsymbol{Z} a+\boldsymbol{e} & \text { non-phenotyped individuals } \\
\boldsymbol{e} \sim N\left(\mathbf{0}, \boldsymbol{E} \sigma_{e}^{2}\right) & \left(\begin{array}{cc}
\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{E}^{-1} \boldsymbol{X} & \boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{E}^{-1} \boldsymbol{Z} \\
\boldsymbol{\boldsymbol { Z } ^ { T }} \boldsymbol{E}^{-1} \boldsymbol{X} & \boldsymbol{Z}^{T} \boldsymbol{E}^{-1} \boldsymbol{Z}+\boldsymbol{W} \boldsymbol{W}^{T^{-1}} \frac{\sigma_{e}^{2}}{\sigma_{\alpha}^{2}}
\end{array}\right)\binom{\widehat{\boldsymbol{b}}}{\widehat{a}}=\binom{\boldsymbol{X}^{T} \boldsymbol{E}^{-1} y}{\boldsymbol{Z}^{T} \boldsymbol{E}^{-1} y} \\
& \operatorname{Var}\left(\mathbf{0}(\boldsymbol{0}, \boldsymbol{W})=\operatorname{diag}\left(\boldsymbol{C}^{T} \sigma_{\alpha}^{2}\right)_{\alpha}^{2} \sigma_{e}^{2}\right.
\end{array}
$$

Genomic covariance-like coefficient matrices

- Genotype matrix W is nInd x nLoc
- Between individuals

$$
\begin{aligned}
& \operatorname{Var}(\alpha)=\operatorname{Var}(\boldsymbol{W} \boldsymbol{\alpha}) \\
&=\boldsymbol{W} \operatorname{Var}(\alpha) \boldsymbol{W}^{T} \longrightarrow \boldsymbol{W} \boldsymbol{W}^{T} \begin{array}{c}
\text { Covariance-like coefficients } \\
\text { between individuals } \\
(\text { nInd } \times \text { nInd })
\end{array} \\
&=\boldsymbol{W} \boldsymbol{W}^{T} \sigma_{\alpha}^{2} \\
& \text { similar to NRM matrix }
\end{aligned}
$$

- Between loci
- sum-of-squares $\boldsymbol{W}^{T} \boldsymbol{W}$

Covariance-like coefficients
between loci
(nLoc x nLoc)
similar to LD matrix

- covariance $\operatorname{Cov}(\boldsymbol{W})=\boldsymbol{C}=(\boldsymbol{W}-E(\boldsymbol{W}))^{T}(\boldsymbol{W}-E(\boldsymbol{W})) /(n-1)$
- correlation $\operatorname{Cor}(\boldsymbol{W})=\operatorname{diag}(\boldsymbol{C})^{-\frac{1}{2}} \boldsymbol{C} \operatorname{diag}(\boldsymbol{C})^{-\frac{1}{2}}$

Genomic covariance-like coefficient matrices

Between Ioci

Between individuals

Genomic covariance-like coefficient matrices

- Genotype matrix W is nlnd x nLoc
- Between individuals
- sum-of-squares $\boldsymbol{W} \boldsymbol{W}^{T}$

Covariance-like coefficients
between individuals
(nInd x nInd)
similar to NRM matrix

- covariance $\operatorname{Cov}\left(\boldsymbol{W}^{T}\right)=\boldsymbol{C}=(\boldsymbol{W}-E(\boldsymbol{W}))(\boldsymbol{W}-E(\boldsymbol{W}))^{T} /(n-1)$
- correlation $\operatorname{Cor}\left(\boldsymbol{W}^{T}\right)=\operatorname{diag}(\boldsymbol{C})^{-\frac{1}{2}} \boldsymbol{C} \operatorname{diag}(\boldsymbol{C})^{-\frac{1}{2}}$

I want the genome-based NRM (following the pedigree-based NRM)!?

Genome-based NRM

- Maybe we don't need it! $\operatorname{Var}(a)=\operatorname{Var}(\boldsymbol{W} \boldsymbol{\alpha})$

$$
\begin{aligned}
& =\boldsymbol{W} \operatorname{Var}(\alpha) \boldsymbol{W}^{T} \\
& =\boldsymbol{W} \boldsymbol{W}^{T} \sigma_{\alpha}^{2}
\end{aligned}
$$

Genome-based NRM

- Maybe we don't need it! $\operatorname{Var}(a)=\operatorname{Var}(\boldsymbol{W} \alpha)$

$$
\begin{aligned}
& =\boldsymbol{W} \operatorname{Var}(\alpha) \boldsymbol{W}^{T} \\
& =\boldsymbol{W} \boldsymbol{W}^{T} \sigma_{\alpha}^{2}
\end{aligned}
$$

- Many proposed versions:
$-[-1,0,1]$ centering $(\boldsymbol{W}-1)(\boldsymbol{W}-1)^{T}$
- diagonals = the number of homozygous loci for individuals
- off-diagonals $=$ the number of alleles shared between individuals

Genome-based NRM

- Maybe we don't need it! $\operatorname{Var}(a)=\operatorname{Var}(\boldsymbol{W} \alpha)$

$$
\begin{aligned}
& =\boldsymbol{W} \operatorname{Var}(\alpha) \boldsymbol{W}^{T} \\
& =\boldsymbol{W} \boldsymbol{W}^{T} \sigma_{\alpha}^{2}
\end{aligned}
$$

- Many proposed versions:
$-[-1,0,1]$ centering $(\boldsymbol{W}-1)(\boldsymbol{W}-1)^{T}$
- diagonals = the number of homozygous loci for individuals
- off-diagonals = the number of alleles shared between individuals
- VanRaden 1 (to match pedigree NRM)

$$
\begin{aligned}
& \boldsymbol{G}=(\boldsymbol{W}-E(\boldsymbol{W}))(\boldsymbol{W}-E(\boldsymbol{W}))^{T} / \sum \operatorname{diag}(\operatorname{Cov}(\boldsymbol{W})) \\
& E\left(\boldsymbol{W}_{i}\right)=2 p_{i} \\
& \operatorname{Var}\left(\boldsymbol{W}_{i}\right)=2 p_{i} q_{i}\left(1+F_{i}\right)
\end{aligned}
$$

- Many other versions!!!

Genome-based NRM

- Whatever the choice, there is useful information in G!
- Take a trio of diploid individuals and use $[-1,0,1]$ coding in w

$$
\begin{aligned}
& \boldsymbol{w}_{f(i)}=\boldsymbol{w}_{f(i), 1}+\boldsymbol{w}_{f(i), 2} \\
& \boldsymbol{w}_{m(i)}=\boldsymbol{w}_{m(i), 1}+\boldsymbol{w}_{m(i), 2} \\
& \boldsymbol{w}_{i}=\boldsymbol{w}_{i, 1}+\boldsymbol{w}_{i, 2}
\end{aligned}
$$

- Realised shared number of alleles between individuals

$$
\left(\begin{array}{ccc}
\boldsymbol{w}_{f(i)} \boldsymbol{w}_{f(i)}^{T} & & \text { sym. } \\
\boldsymbol{w}_{m(i)} \boldsymbol{w}_{f(i)}^{T} & \boldsymbol{w}_{m(i)} \boldsymbol{w}_{m(i)}^{T} & \\
\boldsymbol{w}_{i} \boldsymbol{w}_{f(i)}^{T} & \boldsymbol{w}_{i} \boldsymbol{w}_{m(i)}^{T} & \boldsymbol{w}_{i} \boldsymbol{w}_{i}^{T}
\end{array}\right)
$$

Genome-based NRM - What do these terms mean?

$$
\left(\begin{array}{ccc}
\boldsymbol{w}_{f(i)} \boldsymbol{w}_{f(i)}^{T} & & \text { sym. } \\
\boldsymbol{w}_{m(i)} \boldsymbol{w}_{f(i)}^{T} & \boldsymbol{w}_{m(i)} \boldsymbol{w}_{m(i)}^{T} & \\
\boldsymbol{w}_{i} \boldsymbol{w}_{f(i)}^{T} & \boldsymbol{w}_{i} \boldsymbol{w}_{m(i)}^{T} & \boldsymbol{w}_{i} \boldsymbol{w}_{i}^{T}
\end{array}\right)
$$

- Diagonal: prior variances indicating how much individual breeding values could deviate from population mean

$$
a_{i} \sim N\left(0, \boldsymbol{w}_{i} \boldsymbol{w}_{i}^{T} \sigma_{\alpha}^{2}\right)
$$

Genome-based NRM - What do these terms mean?

$$
\left(\begin{array}{ccc}
\boldsymbol{w}_{f(i)} \boldsymbol{w}_{f(i)}^{T} & & \text { sym. } \\
\boldsymbol{w}_{m(i)} \boldsymbol{w}_{f(i)}^{T} & \boldsymbol{w}_{m(i)} \boldsymbol{w}_{m(i)}^{T} & \\
\boldsymbol{w}_{i} \boldsymbol{w}_{f(i)}^{T} & \boldsymbol{w}_{i} \boldsymbol{w}_{m(i)}^{T} & \boldsymbol{w}_{i} \boldsymbol{w}_{i}^{T}
\end{array}\right)
$$

- Off-diagonal: prior co-variances indicating how much individual breeding values could correlate compared to the "average pair"

Genome-based NRM - gametic relationships

- If genotypes are phased we can build gametic relationships

$$
\begin{aligned}
& \boldsymbol{w}_{f(i)}=\boldsymbol{w}_{f(i), 1}+\boldsymbol{w}_{f(i), 2} \\
& \boldsymbol{w}_{m(i)}=\boldsymbol{w}_{m(i), 1}+\boldsymbol{w}_{m(i), 2} \\
& \boldsymbol{w}_{i}=\boldsymbol{w}_{i, 1}+\boldsymbol{w}_{i, 2}
\end{aligned}
$$

$$
\left(\begin{array}{cccccc}
\boldsymbol{w}_{f(i), 1} \boldsymbol{w}_{f(i), 1}^{T} & & & & \text { sym. } \\
\boldsymbol{w}_{f(i), 2} \boldsymbol{w}_{f(i), 1}^{T} & \boldsymbol{w}_{f(i), 2} \boldsymbol{w}_{f(i), 2}^{T} & & & & \\
\boldsymbol{w}_{m(i), 1}^{T} \boldsymbol{w}_{f(i), 1}^{T} & \boldsymbol{w}_{m(i), 1}^{T} \boldsymbol{w}_{f(i), 2}^{T} & \boldsymbol{w}_{m(i), 1} \boldsymbol{w}_{m(i), 1}^{T} & & & \\
\boldsymbol{w}_{m(i), 2} \boldsymbol{w}_{f(i), 1}^{T} & \boldsymbol{w}_{m(i), 2} \boldsymbol{w}_{f(i), 2}^{T} & \boldsymbol{w}_{m(i), 2} \boldsymbol{w}_{m(i), 1}^{T} & \boldsymbol{w}_{m(i), 2} \boldsymbol{w}_{m(i), 2}^{T} & & \\
\boldsymbol{w}_{i, 1} \boldsymbol{w}_{f(i), 1}^{T} & \boldsymbol{w}_{i, 1} \boldsymbol{w}_{f(i), 2}^{T} & \boldsymbol{w}_{i, 1} \boldsymbol{w}_{m(i), 1}^{T} & \boldsymbol{w}_{i, 1} \boldsymbol{w}_{m(i), 2}^{T} & \boldsymbol{w}_{i, 1} \boldsymbol{w}_{i, 1}^{T} & \\
\boldsymbol{w}_{i, 2} \boldsymbol{w}_{f(i), 1}^{T} & \boldsymbol{w}_{i, 2} \boldsymbol{w}_{f(i), 2}^{T} & \boldsymbol{w}_{i, 2} \boldsymbol{w}_{m(i), 1}^{T} & \boldsymbol{w}_{i, 2} \boldsymbol{w}_{m(i), 2}^{T} & \boldsymbol{w}_{i, 2} \boldsymbol{w}_{i, 1}^{T} & \boldsymbol{w}_{i, 2} \boldsymbol{w}_{i, 2}^{T}
\end{array}\right)
$$

\rightarrow How much gametes/genomes could deviate or correlate

Genome-based NRM - between \& within family

$$
\begin{aligned}
& \boldsymbol{w}_{f(i)}=\boldsymbol{w}_{f(i), 1}+\boldsymbol{w}_{f(i), 2} \\
& \boldsymbol{w}_{m(i)}=\boldsymbol{w}_{m(i), 1}+\boldsymbol{w}_{m(i), 2} \\
& \boldsymbol{w}_{i}=\boldsymbol{w}_{i, 1}+\boldsymbol{w}_{i, 2}
\end{aligned}
$$

- Expected genotype (=parent average) \& deviation (=Mendelian sampling)

$$
E\left(\boldsymbol{w}_{i}\right)=E\left(\frac{1}{2} \boldsymbol{w}_{f(i)}+\frac{1}{2} \boldsymbol{w}_{m(i)}+\boldsymbol{w}_{i}^{r}\right)=\frac{1}{2} \boldsymbol{w}_{f(i)}+\frac{1}{2} \boldsymbol{w}_{m(i)}
$$

\rightarrow How many alt. alleles do we expect from parents (vs. mean)

$$
\boldsymbol{w}_{i}^{r}=\boldsymbol{w}_{i}-\left(\frac{1}{2} \boldsymbol{w}_{f(i)}+\frac{1}{2} \boldsymbol{w}_{m(i)}\right)
$$

\rightarrow How many more or less alt. alleles did individual get

Genome-based NRM - between \& within family

- Expected genotype (=parent average) \& deviation (=Mendelian sampling) per genome

$$
\begin{aligned}
& E\left(\boldsymbol{w}_{i, 1}\right)=E\left(\frac{1}{2} \boldsymbol{w}_{f(i), 1}+\frac{1}{2} \boldsymbol{w}_{f(i), 2}+\boldsymbol{w}_{i, 1}^{r}\right)=\frac{1}{2} \boldsymbol{w}_{f(i), 1}+\frac{1}{2} \boldsymbol{w}_{f(i), 2} \\
& \boldsymbol{w}_{i, 1}^{r}=\boldsymbol{w}_{i, 1}-\left(\frac{1}{2} \boldsymbol{w}_{f(i), 1}+\frac{1}{2} \boldsymbol{w}_{f(i), 2}\right)
\end{aligned}
$$

\rightarrow from father

$$
\begin{aligned}
& E\left(\boldsymbol{w}_{i, 2}\right)=E\left(\frac{1}{2} \boldsymbol{w}_{m(i), 1}+\frac{1}{2} \boldsymbol{w}_{m(i), 2}+\boldsymbol{w}_{i, 1}^{r}\right)=\frac{1}{2} \boldsymbol{w}_{m(i), 1}+\frac{1}{2} \boldsymbol{w}_{m(i), 2} \\
& \boldsymbol{w}_{i, 2}^{r}=\boldsymbol{w}_{i, 2}-\left(\frac{1}{2} \boldsymbol{w}_{m(i), 1}+\frac{1}{2} \boldsymbol{w}_{m(i), 2}\right) \\
\rightarrow & \text { from mother }
\end{aligned}
$$

Genome-based NRM variants \& interpretation

- Centering shifts reference population

$$
\begin{aligned}
y & =\boldsymbol{X} \boldsymbol{b}+\boldsymbol{W} \alpha+\boldsymbol{e} \\
& =\boldsymbol{X} \boldsymbol{b}+\boldsymbol{W} \alpha-E(\boldsymbol{W}) \alpha+E(\boldsymbol{W}) \alpha+\boldsymbol{e} \\
& =\boldsymbol{X} \boldsymbol{b}+(\boldsymbol{W}-E(\boldsymbol{W})) \alpha+E(\boldsymbol{W}) \alpha+\boldsymbol{e} \\
& =\boldsymbol{X} \boldsymbol{b}+(\boldsymbol{W}-E(\boldsymbol{W})) \alpha+c+\boldsymbol{e} \\
& =(\boldsymbol{X} \boldsymbol{b}+c)+(\boldsymbol{W}-E(\boldsymbol{W})) \alpha+\boldsymbol{e} \\
& =\boldsymbol{X} \boldsymbol{b}^{c}+\boldsymbol{W}^{c} \boldsymbol{\alpha}+\boldsymbol{e}
\end{aligned}
$$

Genome-based NRM variants \& interpretation

- Scaling changes variance meaning

$$
\begin{aligned}
\operatorname{Var}(a) & =\operatorname{Var}(\boldsymbol{W} \boldsymbol{\alpha}) \\
& =\boldsymbol{W} \boldsymbol{W}^{T} \sigma_{\alpha}^{2} \\
& =\boldsymbol{W} \boldsymbol{W}^{T} \sigma_{\alpha}^{2} \boldsymbol{k}_{\bar{k}}^{1} \\
& =\frac{\boldsymbol{W} \boldsymbol{W}^{T}}{\boldsymbol{k}} \sigma_{\alpha}^{2} k \\
& =\boldsymbol{G} \sigma_{a}^{2 *} \\
k & =\sum 2 p_{i} q_{i} \\
\sigma_{a}^{2 *} & =\sigma_{\alpha}^{2} \sum 2 p_{i} q_{i}
\end{aligned}
$$

- Depending on k we can get very different estimates of $\sigma_{a}^{2 *}$ (genomic variance)
- Many pedigree and genomic variance comparisons may be dubious?

Flexible (temporal and genomic) analysis of genetic variation geneticssociety

ARTICLE OPEN
(h) Check for updates

Temporal and genomic analysis of additive genetic variance in breeding programmes
Letícia A. de C. Lara (D) ${ }^{1 凶}$, Ivan Pocrnic (D) ${ }^{1}$, Thiago de P. Oliveira (D) ${ }^{1}$, R. Chris Gaynor (D) ${ }^{1}$ and Gregor Gorjanc (D) ${ }^{1}$

Temporal analysis of genetic variation

Genomic analysis of genetic variation

Genomic analysis of genetic variation

Topics not covered

- "Bayesian models" - different assumptions about marker effects \& commonly approached with methods used in Bayesian statistics (MCMC/VB)
- Single-step GBLUP (ssGBLUP and variants) - combining all phenotype, pedigree, and genomic data
- "APY"/SVD/... - approximations for large-scale
- Non-additive genetic or other effects (note that α captures a bit of dominance, epistasis, GxE, ...)

Limitations with current genome-based models?

- Markers vs. QTL
- Admixed populations, multiple populations, ...
- Whole-genome sequence data

Learning objectives

- Understand limitations of estimates from the pedigree-based model \rightarrow why we would need genome-based model
- Understand how to combine phenotype information from all relatives connected via genomic data
- Practice inference of breeding values with the genomebased model
- simple cases using R matrix algebra
- using other packages

Questions?!

Genome-based genetic evaluation

Gregor Gorjanc, Chris Gaynor, Jon Bancic, Daniel Tolhurst

UNE, Armidale
2024-02-07

