

Biotechnology and Biological Sciences Research Council

Day 4 Spatial variation and genotype by environment interaction Linear mixed models

Daniel Tolhurst, Jon Bancic, Chris Gaynor, Gregor Gorjanc

Lecture overview

1. Design of plant breeding field trials

- Fundamental concepts of experimental design
- Classical and model-based designs

2. Linear mixed models for plants \leftarrow

- Complex residual variance structures
- Spatial variation

Linear mixed models for plant breeding field trials

Outline

- Background
- Formulating a linear mixed model
- Spatial variation
 - Global and local trend
 - Random error
 - Extraneous variation

Randomised complete block (RCB) design

$$y_{ij} = \mu + g_i + b_j + e_{ij}$$

phenotype mean genotype block residual

Block 1

- Simple to construct
- Balanced, complete and resolvable
- Genotypes and blocks are orthogonal
- But, assumes blocks are homogeneous

G1	G4	G5	G12
G14	G11	G10	G16
G6	G8	G7	G2
G10	G16	G3	G15
G2	G5	G9	G8
G3	G13	G1	G6
G12	G15	G11	G4
G9	G7	G14	G13

Block 2

Scalar notation

$$y_{ij} = \mu + g_i + b_j + e_{ij}$$

phenotype mean genotype block residual

- y_{ij} is the phenotype of genotype *i* in block *j* (*n* in total)
- μ is the overall mean
- g_i is the effect of genotype i ($i = 1, ..., n_g$)
- b_j is the effect of block j ($j = 1, ..., n_b$)
- e_{ij} is the plot residual of genotype *i* in block *j* (*n* in total)

Scalar \rightarrow vector notation

- y_{ij} is the phenotype of genotype *i* in block *j* (*n* in total)
- μ is the overall mean
- g_i is the effect of genotype i ($i = 1, ..., n_g$)
- b_j is the effect of block j ($j = 1, ..., n_b$)
- e_{ij} is the plot residual of genotype *i* in block *j* (*n* in total)

Vector notation

$$\mathbf{y} = \mathbf{1}_n \boldsymbol{\mu} + \mathbf{Z}\mathbf{g} + \mathbf{W}\mathbf{b} + \mathbf{e}$$

phenotype mean genotype block residual

- y is the *n*-vector of phenotypes (ordered as plots within blocks)
- μ is the overall mean, $\mathbf{1}_n$ is a *n*-vector of ones
- **g** is the n_g -vector of genotype effects, with $n \times n_g$ design matrix **Z** which links plots to genotypes
- **b** is the n_b -vector of block effects, with $n \times n_b$ design matrix **W** which links plots to blocks
- e is the *n*-vector of residuals

Linear mixed models (LMMs)

- Ordinary linear models comprise fixed effects + random error
- Linear mixed models comprise fixed + random effects + random error
 - Analysis of incomplete/unbalanced block designs with recovery of interblock information (Patterson & Thompson, 1971)
 - LMM with fixed genotype effects and random (incomplete) blocks
 - First application of residual/restricted maximum likelihood (REML)
 - Equivalent to ANOVA estimates when blocks are equal size (Nelder, 1968)

Fixed or random effects

- The choice of fitting effects as fixed or random is important
 - Fixed effects
 - Contribute to E(y)
 - Best linear unbiased estimates (BLUEs)
 - Random effects
 - Contribute to Var(y)
 - Realisations of random variables
 - Best linear unbiased predictions (BLUPs); shrinkage to mean according to amount of information

Shrinkage

BLUP = BLUE x shrinkage Same number of replicates

- = same information
- = same shrinkage
- Different number of replicates
 - = different information
 - = different shrinkage
- Spatial variability in the field
 - = different information
 - = different shrinkage

Shrinkage

• BLUP = BLUE x shrinkage

- Same number of replicates
 - = same information
 - = same shrinkage
- Different number of replicates
 = different information
 = different shrinkage
- Spatial variability in the field
 - = different information
 - = different shrinkage

Shrinkage

• BLUP = BLUE x shrinkage

- Same number of replicates
 - = same information
 - = same shrinkage
- Different number of replicates
 - = different information
 - = different shrinkage
- Spatial variability in the field
 - = different information
 - = different shrinkage

Model assumptions

Assume the genotype and block effects are fitted as random

$$E(\mathbf{y}) = \mathbf{1}_n \mu$$
 and $Var(\mathbf{y}) = \sigma_g^2 \mathbf{Z} \mathbf{Z}' + \sigma_b^2 \mathbf{W} \mathbf{W}' + \sigma_e^2 \mathbf{I}_n$

$$\begin{bmatrix} \mathbf{g} \\ \mathbf{b} \\ \mathbf{e} \end{bmatrix} \sim \mathbf{N} \left(\begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \sigma_g^2 \mathbf{I}_{n_g} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \sigma_b^2 \mathbf{I}_{n_b} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \sigma_e^2 \mathbf{I}_n \end{bmatrix} \right)$$

 $-\sigma_g^2$ is a genetic variance, \mathbf{I}_{n_g} is a $n_g \times n_g$ identity matrix $-\sigma_b^2$ is a block variance, \mathbf{I}_{n_b} is a $n_b \times n_b$ identity matrix $-\sigma_e^2$ is a residual variance, \mathbf{I}_n is a $n \times n$ identity matrix

Updating model assumptions

Complex genetic and residual variance structures:

$$E(\mathbf{y}) = \mathbf{1}_n \mu$$
 and $Var(\mathbf{y}) = \sigma_g^2 \mathbf{Z} \mathbf{G} \mathbf{Z}' + \sigma_b^2 \mathbf{W} \mathbf{W}' + \mathbf{R}$

$$\begin{bmatrix} \mathbf{g} \\ \mathbf{b} \\ \mathbf{e} \end{bmatrix} \sim \mathbf{N} \left(\begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \sigma_g^2 \mathbf{G} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \sigma_b^2 \mathbf{I}_{n_b} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{R} \end{bmatrix} \right)$$

- $-\sigma_g^2$ is the genetic variance, **G** is a $n_g \times n_g$ genotype relationship matrix
- $-\sigma_b^2$ is the block variance, \mathbf{I}_{n_b} is a $n_b \times n_b$ identity matrix
- **R** is a $n \times n$ residual variance matrix

Mixed model equations (MMEs)

 Estimates of fixed effects (BLUEs) and predictions of random effects (BLUPs) obtained from the mixed model equations

$$\begin{bmatrix} \mathbf{1}'_{n}\mathbf{R}^{-1}\mathbf{1}_{n} & \mathbf{1}'_{n}\mathbf{R}^{-1}\mathbf{Z} & \mathbf{1}'_{n}\mathbf{R}^{-1}\mathbf{W} \\ \mathbf{Z}'\mathbf{R}^{-1}\mathbf{1}_{n} & \mathbf{Z}'\mathbf{R}^{-1}\mathbf{Z} + \mathbf{G}^{-1}/\sigma_{g}^{2} & \mathbf{Z}'\mathbf{R}^{-1}\mathbf{W} \\ \mathbf{W}'\mathbf{R}^{-1}\mathbf{1}_{n} & \mathbf{W}'\mathbf{R}^{-1}\mathbf{Z} & \mathbf{W}'\mathbf{R}^{-1}\mathbf{W} + \mathbf{I}_{n_{b}}/\sigma_{b}^{2} \end{bmatrix} \begin{bmatrix} \hat{\mu} \\ \tilde{\mathbf{g}} \\ \tilde{\mathbf{b}} \end{bmatrix} = \begin{bmatrix} \mathbf{1}'_{n}\mathbf{R}^{-1}\mathbf{y} \\ \mathbf{Z}'\mathbf{R}^{-1}\mathbf{y} \\ \mathbf{W}'\mathbf{R}^{-1}\mathbf{y} \end{bmatrix}$$
$$\begin{bmatrix} \hat{\mu} \\ \tilde{\mathbf{g}} \\ \tilde{\mathbf{b}} \end{bmatrix} = \begin{bmatrix} \left(\mathbf{1}'_{n}\mathbf{H}^{-1}\mathbf{1}_{n} \right)^{-1}\mathbf{1}'_{n}\mathbf{H}^{-1}\mathbf{y} \\ \sigma_{g}^{2}\mathbf{G}\mathbf{Z}'\mathbf{H}^{-1}(\mathbf{y}-\mathbf{1}_{n}\hat{\mu}) \\ \sigma_{b}^{2}\mathbf{W}'\mathbf{H}^{-1}(\mathbf{y}-\mathbf{1}_{n}\hat{\mu}) \end{bmatrix} \qquad \mathbf{H} = \mathbf{Var}(\mathbf{y}) = \sigma_{g}^{2}\mathbf{Z}\mathbf{G}\mathbf{Z}' + \sigma_{b}^{2}\mathbf{W}\mathbf{W}' + \mathbf{R}$$

Henderson (1950)

Residual variance structure (R)

• Variance component model:

$$\mathbf{R} = \sigma_e^2 \mathbf{I}_n$$

- Assumes plots within a field are **independent**
 - Rarely sensible because plots are known to have some level of correlation
 - Spatial variation is ubiquitous in field trials

Residual variance structure (R)

• Covariance model:

$$\mathbf{R} = \sigma_e^2 \, \boldsymbol{\Sigma}_{\mathbf{c}}(\rho_c) \otimes \boldsymbol{\Sigma}_{\mathbf{r}}(\rho_r)$$

- $-\sigma_e^2$ is the residual variance
- $-\Sigma_{c}$ is a $n_{c} \times n_{c}$ matrix with column autocorrelation parameter ρ_{c}
- $-\Sigma_r$ is a $n_r \times n_r$ matrix with row autocorrelation parameter ρ_r
- Assumes plots within a field are **correlated**
 - Two-dimensional stochastic variance matrix
 - Plots closer together are more correlated than those further apart

Spatial variation

Some concepts

- Spatial variation arises from heterogeneity across the trial area
- Global and local trend (smooth spatial trend)
 - Large and small scale changes in fertility/soil composition
- Random error (noise)
 - Measurement error, or variability in the plots themselves
- Extraneous variation (systematic variation)
 - Induced during the conduct of the trial

Global and local trend (smooth spatial trend)

• Large and small scale changes in fertility/soil composition

Global and local trend (smooth spatial trend)

Large and small scale changes in fertility/soil composition

Random error (noise)

Measurement error, or variability in the plots themselves

Extraneous variation

• Induced during the conduct of the trial

Extraneous variation

- Induced during the conduct of the trial
 - Typically aligned with the field columns and row

Total spatial variation

 Some combination of global and local trend, random error and extraneous variation

Spatial models

Some popular approaches

- Separable autoregressive process (Cullis & Gleeson, 1991)
 - Stochastic variance matrix
- Tensor product penalised splines (Rodríguez-Álvarez et al., 2018)
 - Smoothing function in two dimensions
- Nearest neighbour adjustments (Papadakis, 1937)
 - Adjust phenotypes based on neighbouring plots

Accounting for trend and noise

• Autoregressive covariance model + random error:

$$\mathbf{R} = \sigma_s^2 \, \boldsymbol{\Sigma}_{\mathbf{c}}(\rho_c) \otimes \boldsymbol{\Sigma}_{\mathbf{r}}(\rho_r) + \sigma_r^2 \mathbf{I}_r$$

trend

noise

- $-\sigma_s^2$ is the autoregressive scaling component
- $-\Sigma_{c}$ is a $n_{c} \times n_{c}$ matrix with column autocorrelation ρ_{c}
- $-\Sigma_r$ is a $n_r \times n_r$ matrix with row autocorrelation ρ_r
- $-\sigma_r^2$ is the random error variance

• Autoregressive covariance model + random error:

$$\mathbf{R} = \sigma_s^2 \, \boldsymbol{\Sigma}_{\mathbf{c}}(\rho_c) \otimes \boldsymbol{\Sigma}_{\mathbf{r}}(\rho_r) + \sigma_r^2 \mathbf{I}_n$$

trend

noise

Assumes the phenotypes are ordered as rows in cols

$$\begin{bmatrix} y_{1;1} \\ \vdots \\ y_{n_b;n_g} \end{bmatrix} \rightarrow \begin{bmatrix} y_{1;1} \\ \vdots \\ y_{n_c;n_r} \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} e_{1;1} \\ \vdots \\ e_{n_b;n_g} \end{bmatrix} \rightarrow \begin{bmatrix} e_{1;1} \\ \vdots \\ e_{n_c;n_r} \end{bmatrix}$$

• Autoregressive covariance model + random error:

$$\mathbf{R} = \sigma_s^2 \, \boldsymbol{\Sigma}_{\mathbf{c}}(\rho_c) \otimes \boldsymbol{\Sigma}_{\mathbf{r}}(\rho_r) + \sigma_r^2 \mathbf{I}_n$$

trend

noise

 Assumes exponential decay according to a first order process in the column and row directions (AR1x AR1)

$$\mathbf{R} = \sigma_s^2 \begin{bmatrix} \mathbf{1} & \rho_c & \rho_c^2 & \cdots & \rho_c^{n_c-1} \\ \rho_c & \mathbf{1} & \rho_c & \rho_c^2 & \vdots \\ \rho_c^2 & \rho_c & \mathbf{1} & \rho_c & \rho_c^2 \\ \vdots & \rho_c^2 & \rho_c & \mathbf{1} & \rho_c & \rho_c^2 \\ \vdots & \rho_r^2 & \rho_r & \mathbf{1} & \rho_r & \rho_r^2 \\ \vdots & \rho_r^2 & \rho_r & \mathbf{1} & \rho_r \\ \rho_r^{n_r-1} & \cdots & \rho_r^2 & \rho_r & \mathbf{1} \end{bmatrix}} \\ \approx \begin{bmatrix} \mathbf{1} & \rho_r & \rho_r^2 & \cdots & \rho_r^{n_r-1} \\ \rho_r & \mathbf{1} & \rho_r & \rho_r^2 \\ \vdots & \rho_r^2 & \rho_r & \mathbf{1} & \rho_r \\ \rho_r^{n_r-1} & \cdots & \rho_r^2 & \rho_r & \mathbf{1} \end{bmatrix}} + \sigma_r^2 \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix}}$$

• Autoregressive covariance model + random error:

$$\mathbf{R} = \sigma_s^2 \, \boldsymbol{\Sigma}_{\mathbf{c}}(\rho_c) \otimes \boldsymbol{\Sigma}_{\mathbf{r}}(\rho_r) + \sigma_r^2 \mathbf{I}_r$$

trend

Theoretical variogram:

$$\rho_c = 0.3, \ \rho_r = 0.4, \ \sigma_s^2 = 0.5$$
 $\rho_c = 0.3, \ \rho_r = 0.3$

3, $\rho_r = 0.8$, $\sigma_s^2 = 0.5$ $\rho_c =$

noise

$$\rho_c = 0.3, \ \rho_r = 0.9, \ \sigma_s^2 = 0.5$$

• Autoregressive covariance model + random error:

$$\mathbf{R} = \sigma_s^2 \, \boldsymbol{\Sigma}_{\mathbf{c}}(\rho_c) \otimes \boldsymbol{\Sigma}_{\mathbf{r}}(\rho_r) + \sigma_r^2 \mathbf{I}_n$$

noise

• Theoretical variogram (semi-variances):

$$v = \sigma_s^2 (1 - \rho_c^{|c_{i-j}|} \rho_r^{|r_{i-j}|})$$

 $-|c_{i-j}|$ is the absolute column displacement between plots *i* and *j* $(|c_{i-j}| = 0,1,...,n_c - 1)$, e.g. $|c_{i-j}| = 0$ for plots in the same column

 $-|r_{i-j}|$ is the absolute row displacement between plots *i* and *j* $(|r_{i-j}| = 0, 1, ..., n_r - 1)$, e.g. $|r_{i-j}| = 1$ for plots in adjacent rows

• Autoregressive covariance model + random error:

$$\mathbf{R} = \sigma_s^2 \, \boldsymbol{\Sigma}_{\mathbf{c}}(\rho_c) \otimes \boldsymbol{\Sigma}_{\mathbf{r}}(\rho_r) + \sigma_r^2 \mathbf{I}_r$$

trend

noise

 Random error term captures any remaining error variation not captured by the autoregressive covariance model

$$\mathbf{R} = \sigma_s^2 \begin{bmatrix} 1 & \rho_c & \rho_c^2 & \cdots & \rho_c^{n_c-1} \\ \rho_c & 1 & \rho_c & \rho_c^2 & \vdots \\ \rho_c^2 & \rho_c & 1 & \rho_c & \rho_c^2 \\ \vdots & \rho_c^2 & \rho_c & 1 & \rho_c & \rho_c^2 \\ \rho_r^{n_c-1} & \cdots & \rho_c^2 & \rho_c & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & \rho_r & \rho_r^2 & \cdots & \rho_r^{n_r-1} \\ \rho_r & 1 & \rho_r & \rho_r^2 & \vdots \\ \rho_r^2 & \rho_r & 1 & \rho_r & \rho_r^2 \\ \vdots & \rho_r^2 & \rho_r & 1 & \rho_r \\ \rho_r^{n_r-1} & \cdots & \rho_r^2 & \rho_r & 1 \end{bmatrix} + \sigma_r^2 \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & 0 & \vdots \\ 0 & 0 & 1 & 0 & 0 \\ \vdots & 0 & 0 & 1 & 0 \\ 0 & \cdots & 0 & 0 & 1 \end{bmatrix}$$

• Autoregressive covariance model + random error:

$$\mathbf{R} = \sigma_s^2 \, \boldsymbol{\Sigma}_{\mathbf{c}}(\rho_c) \otimes \boldsymbol{\Sigma}_{\mathbf{r}}(\rho_r) + \sigma_r^2 \mathbf{I}_r$$

Theoretical variogram:

 $\sigma_s^2/(\sigma_s^2 + \sigma_r^2) = 0.3$

 $\sigma_s^2/(\sigma_s^2+\sigma_r^2)=0.6$

trend

 $\sigma_s^2/(\sigma_s^2+\sigma_r^2)=1$

noise

Accounting for extraneous variation

- Typically diagnosed by observing a sample variogram, which captures the average semi-variance between plots
- Accounted for by fitting additional fixed and random effects

Lecture overview

1. Design of plant breeding field trials

- Fundamental concepts of experimental design
- Classical and model-based designs

2. Linear mixed models for plants \leftarrow

- Complex residual variance structures \checkmark
- Spatial variation \checkmark