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Lecture overview

1. Multi-environment plant breeding field trials ß
– Genotype by environment (GxE) interaction
– Linear mixed models for MET data

2. A framework for simulating GxE interaction
– MET-TPE concepts
– Applications to comparing statistical approaches and different 

breeding strategies over time.





Outline

• Background
• Genotype by environment (GxE) interaction
• Linear mixed models for GxE

– Main effects only
– Diagonal model
– Compound symmetry model
– Unstructured model
– Factor analytic model



Background

• Genotype by environment (GxE) interaction 
complicates plant and animal breeder’s selection 
decisions
– The relative response of individuals (genotypes) changes when 

placed in different environments

– Some genotypes may tolerate harsh environments, while others 
do not

– Can reflect substantial re-rankings between environments



GxE interaction

• Often viewed using the 
genetic correlations 
between environments
– Cor. of 1 = perfect agreement

in rankings between 
environments

– Cor. of 0 = dissimilarity in 
rankings between environments

– Cor. of -1 = complete reversal
in rankings between 
environments
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Toy example

• Consider two wheat varieties, 
G1 & G2, grown in two 
environments, E1 & E2

• The crops are harvested and 
measured for grain yield 
(tonnes/hectare)

• The response of the two 
varieties changes between the 
two environments, but is this just 
GxE?
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Toy example

• Environmental main effects 
– !E1 ≠ !E2, E2 yields more on 

average
• Genotype main effects

– !G1 ≠ !G2, G1 yields more on 
average

• GxE interaction effects
– Relative response of G1 and G2 

changes (lines are not parallel)
– G2 yields more in E1 but G1 yields 

more in E2
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Toy example

Environmental main effects as #E1 ≠ #E2
– E2 yields more on average

Genotype main effects as #G1 ≠ #G2

– G1 yields more on average
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GxE interaction effects as the 
relative response of G1 and G2 
changes (lines are not parallel)

– G2 yields more in E1 but G1 
yields more in E2
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Non-crossover and crossover GxE
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Crossover GxE interaction 
effects as the relative response of 
G1 and G2 changes (lines are not 
parallel)

– G2 yields more in E1 but G1 
yields more in E2
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So how can we handle GxE?

• GxE has been historically handled in one of three ways:
1. Ignore GxE by selecting the most favourable genotypes on 

average 

2. Reduce GxE by grouping similar environments together and 
selecting within each group

3. Leverage GxE by selecting the most favourable individuals in 
terms of average performance and stability (adaptability) ß

• May also consider some combination of 2 and 3

Eisemann et al. (1990)



Ignore G×E interaction

• Select the most favourable 
genotypes on average 
across all environments

• Selection for increasing 
overall genetic gain, but…

• Ignores important crossover 
GxE (re-rankings)

• Potential to release poorly 
adapted genotypes to 
growers!
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Reduce G×E interaction

• Group similar environments 
together

• Select the most favourable 
genotypes on average 
within each group

• Selection for increasing 
genetic gain within groups, 
but…

• Assumes you can explain 
the different groupings, 
and they are repeatable Environment
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Leverage G×E interaction

• Select the most favourable 
genotypes for average 
performance and stability

• Selection for increasing 
overall genetic gain, and
releasing well adapted 
genotypes to growers!
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Multi-environment trial (MET) dataset

• Gauge GxE by accumulating and analysing multi-
environment trial (MET) data

Env 1 Env 2 Env 3

Plant genotypes
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Multi-environment trial (MET) dataset

• Gauge GxE by accumulating and analysing multi-
environment trial (MET) data

Multiple years



Multi-environment trial (MET) dataset

• Gauge GxE by accumulating and analysing multi-
environment trial (MET) data
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Multi-environment trial (MET) dataset

• Gauge GxE by accumulating and analysing multi-
environment trial (MET) data

multiple year-location combinations





Randomised complete block (RCB) design

𝑦!" = 𝜇 + 𝑔! + 𝑏" + 𝑒!"

• Simple to construct
• Balanced, complete

and resolvable
• Genotypes and blocks 

are orthogonal
• But, assumes blocks 

are homogeneous

genotypephenotype block residualmean

G1 G4 G5 G12

G14 G11 G10 G16

G6 G8 G7 G2

G10 G16 G3 G15

G2 G5 G9 G8

G3 G13 G1 G6

G12 G15 G11 G4

G9 G7 G14 G13

Block 1 Block 2



Extension to multiple environments

𝑦!"# = 𝜇 + 𝜏# + 𝑔𝑒!# + 𝑏"# + 𝑒!"#

• 𝑦!"# is the phenotype of genotype 𝑖 in block 𝑗 in environment 𝑚 (𝑛
in total across all envs)

• 𝜇 is the overall mean
• 𝜏# is the effect of environment 𝑚 (𝑚 = 1,… , 𝑛$)
• 𝑔𝑒!# is the effect of genotype 𝑖 in environment 𝑚 (𝑖 = 1,… , 𝑛%)

• 𝑏"# is the effect of block 𝑗 in environment 𝑚 (𝑗 = 1,… , 𝑛&)

• 𝑒!"# is the plot residual of genotype 𝑖 in block 𝑗 in environment 𝑚
(𝑛 in total)

genotype 
in env.

phenotype block
in env.

residualmean env.



Vector notation

𝐲 = 𝟏'𝜇 + 𝐗𝝉 + 𝐙𝐠𝐞 +𝐖𝐛 + 𝐞

• 𝐲 is the 𝑛-vector of phenotypes (ordered as plots in blocks in envs)
• 𝜇 is the overall mean, 𝟏! is a 𝑛-vector of ones
• 𝝉 is the 𝑛"-vector of environmental main effects with 𝑛×𝑛" design matrix 
𝐗 which links plots to environments 

• 𝐠𝐞 is the 𝑛#×𝑛"-vector of genotype effects in environments, with 
𝑛×(𝑛#×𝑛") design matrix 𝐙 which links plots to genotypes in envs.

• 𝐛 is the 𝑛$×𝑛"-vector of block effects, with 𝑛×(𝑛$×𝑛") design matrix 𝐖
which links plots to blocks in environments 

• 𝐞 is the 𝑛-vector of residuals

genotype 
in env.

phenotype block
in env.

residualmean env.



Model assumptions

Complex genetic and residual variance structures:

E 𝒚 = 𝟏$𝜇 + 𝐗𝝉 and     Var 𝒚 = 𝐙(𝐆𝐞⊗𝐆)𝐙( +𝐖𝐁𝐖% + 𝐑

𝐠𝐞
𝐛
𝐞

~ 𝐍
𝟎
𝟎
𝟎
,
𝐆𝐞⊗𝐆 𝟎 𝟎
𝟎 𝐁 𝟎
𝟎 𝟎 𝐑

– 𝐆𝐞⊗𝐆 is a (𝑛%×𝑛$)×(𝑛%×𝑛$) variance matrix with 𝑛$×𝑛$
between-environment genetic variance matrix, 𝐆𝐞, and 𝑛%×
𝑛% genotype relationship matrix, 𝐆

– 𝐁 is a diagonal block variance matrix
– 𝐑 is a 𝑛×𝑛 residual variance matrix



Models for the block effects

Var 𝐛 = 𝐁 =⊕#&'
$% 𝐁# =

𝐁' … 𝟎
⋮ ⋱ ⋮
𝟎 … 𝐁$%

𝐁# = 𝜎(&
) 𝐈$'

• 𝜎&!
) is the block variance for environment 𝑚

• 𝐈*" is an identity matrix of order 𝑛&



Models for the residuals

Var 𝐞 = 𝐑 =⊕#&'
$% 𝐑# =

𝐑' … 𝟎
⋮ ⋱ ⋮
𝟎 … 𝐑$%

𝐑# = 𝜎*&
) 𝚺𝐜&(𝜌,&) ⊗ 𝚺𝐫& 𝜌.& + 𝜎.&

) 𝐈$

• 𝜎+!
) is the autoregressive scaling component for environment 𝑚

• 𝚺𝐜!is a 𝑛-×𝑛- matrix with column autocorrelation 𝜌-! for env. 𝑚

• 𝚺𝒓!is a 𝑛/×𝑛/ matrix with row autocorrelation 𝜌/! for env. 𝑚

• 𝜎/!
) is the random error variance component for env. 𝑚



Models for the genotype by environment effects

Var 𝐠𝐞 = 𝐆𝐞⊗𝐆 =
𝐆𝐞';'𝐆 … 𝐆𝐞';$%𝐆
⋮ ⋱ ⋮

𝐆𝐞$%;'𝐆 … 𝐆𝐞$%;$%𝐆

• 𝐆𝐞 is the 𝑛"×𝑛" between-environment genetic variance matrix
• 𝐆 is the 𝑛#×𝑛# genotype relationship matrix



0. Main effects only model

𝐆𝐞 =
𝜎%) … 𝜎%)

⋮ ⋱ ⋮
𝜎%) … 𝜎%)

and    𝐆𝐞⊗𝐆 =
𝜎%)𝐆 … 𝜎%)𝐆
⋮ ⋱ ⋮

𝜎%)𝐆 … 𝜎%)𝐆

𝑔𝑒!# = 𝑔! i.e. 𝐠𝐞 = (𝟏$% ⊗𝐠)

• Var 𝐠 = 𝜎%)𝐈*#, where 𝜎%) is the genotype main effect variance 
component 

• Assumes genotype effects are the same across environments!
– Does not model GxE interaction (ignores GxE)



1. Diagonal model

𝐆𝐞 =
𝜎#""
$ … 0
⋮ ⋱ ⋮
0 … 𝜎#"#$

$
and      𝐆𝐞⊗𝐆 =

𝜎#""
$ 𝐆 … 𝟎
⋮ ⋱ ⋮
𝟎 … 𝜎#"#$

$ 𝐆

𝑔𝑒!# i.e. 𝐠𝐞 = (𝐠𝐞'% , 𝐠𝐞)% , … , 𝐠𝐞$%
% )′

• Var 𝐠𝐞# = 𝜎%$!
) 𝐈*#, where 𝜎%$!

) is the genetic variance for env. 𝑚

• Assumes genotype effects across environments are independent
– Does not leverage GxE interaction



2. Compound symmetry model

𝐆𝐞 =
𝜎&' + 𝜎&(' … 𝜎&'

⋮ ⋱ ⋮
𝜎&' … 𝜎&' + 𝜎&('

and  𝐆𝐞 ⊗𝐆 =
(𝜎&' + 𝜎&(' )𝐆 … 𝜎&'𝐆

⋮ ⋱ ⋮
𝜎&'𝐆 … (𝜎&' + 𝜎&(' )𝐆

𝑔𝑒!# = 𝑔! + 𝑔×𝑒!# i.e. 𝐠𝐞 = (𝟏$% ⊗𝐠) + 𝐠×𝐞

• Var 𝐠 = 𝜎%)𝐈*#, where 𝜎%) is the genotype main effect variance

• Var 𝐠𝐞 = 𝜎%$) 𝐈*#×*$, where 𝜎%$) is the GxE interaction variance



2. Compound symmetry model

𝐆𝐞 =
𝜎&' + 𝜎&(' … 𝜎&'

⋮ ⋱ ⋮
𝜎&' … 𝜎&' + 𝜎&('

and  𝐆𝐞 ⊗𝐆 =
(𝜎&' + 𝜎&(' )𝐆 … 𝜎&'𝐆

⋮ ⋱ ⋮
𝜎&'𝐆 … (𝜎&' + 𝜎&(' )𝐆

𝑔𝑒!# = 𝑔! + 𝑔×𝑒!# i.e. 𝐠𝐞 = (𝟏$% ⊗𝐠) + 𝐠×𝐞

• Assumes genotype effects across environments are 
correlated
– But, not sensible, assumes same variance within environments and 

same covariance between pairs of environments



3. Unstructured model

𝐆𝐞 =
𝜎%$ … 𝜎%&$
⋮ ⋱ ⋮

𝜎%&$ … 𝜎&$
$

and     𝐆𝐞⊗𝐆 =
𝜎%$𝐆 … 𝜎%&$𝐆
⋮ ⋱ ⋮

𝜎%&$𝐆 … 𝜎&$
$ 𝐆

𝐠𝐞 = (𝐠𝐞'% , 𝐠𝐞)% , … , 𝐠𝐞$%
% )′

• 𝜎#) is the genetic variance for environment 𝑚
• 𝜎"# is the genetic covariance between environments 𝑗 and 𝑚



3. Unstructured model

𝐆𝐞 =
𝜎%$ … 𝜎%&$
⋮ ⋱ ⋮

𝜎%&$ … 𝜎&$
$

and     𝐆𝐞⊗𝐆 =
𝜎%$𝐆 … 𝜎%&$𝐆
⋮ ⋱ ⋮

𝜎%&$𝐆 … 𝜎&$
$ 𝐆

𝐠𝐞 = (𝐠𝐞'% , 𝐠𝐞)% , … , 𝐠𝐞$%
% )′

• Fully parameterised model with 𝑛1(𝑛1 − 1)/2 parameters
– Becomes computationally prohibitive for large number of envs.
– Captures noise and cannot be directly used to identify repeatable 

GxE Interaction



4. Factor analytic model

𝐆𝐞 = 𝚲𝚲( +𝚿 =
𝜆11) +⋯+ 𝜆/1) + 𝜓1 … 𝜆11𝜆1*$ +⋯+ 𝜆/1𝜆/*$

⋮ ⋱ ⋮
𝜆11𝜆1*$ +⋯+ 𝜆/1𝜆/*$ … 𝜆1*$

) +⋯+ 𝜆/*$
) + 𝜓*$

𝑔𝑒!# = 𝜆'#𝑓'! +⋯+ 𝜆2#𝑓2! + 𝛿!# i.e. 𝐠𝐞 = 𝚲⊗ 𝐈2 𝐟 + 𝛅

• 𝜆!" is the latent covariate (loading) for environment 𝑚 and factor 𝑟
(𝑟 = 1,… , 𝑘), typically 𝑘 is small

• 𝑓!# is the slope (score) for genotype 𝑖 and factor 𝑟, var(𝑓!#) = 1𝑔##
• 𝛿#" is the lack-of-fit of genotype 𝑖 in env. 𝑚, var(𝛿#") = 𝜓1𝑔##

Smith et al. (2001)

factor 1 factor 𝑘 lack-of-fit



4. Factor analytic model

𝐆𝐞 = 𝚲𝚲( +𝚿 =
𝜆11) +⋯+ 𝜆/1) + 𝜓1 … 𝜆11𝜆1*$ +⋯+ 𝜆/1𝜆/*$

⋮ ⋱ ⋮
𝜆11𝜆1*$ +⋯+ 𝜆/1𝜆/*$ … 𝜆1*$

) +⋯+ 𝜆/*$
) + 𝜓*$

𝑔𝑒!# = 𝜆'#𝑓'! +⋯+ 𝜆2#𝑓2! + 𝛿!# i.e. 𝐠𝐞 = 𝚲⊗ 𝐈2 𝐟 + 𝛅

• Reduced rank model with 𝒏𝒆(𝒌 + 𝟏) − 𝒌(𝒌 − 𝟏)/𝟐
parameters, which is much smaller than 𝒏𝒆(𝒏𝒆 − 𝟏)/𝟐
– Captures GxE with a small number of factors
– Can be used to capture repeatable GxE interaction Smith et al. (2001)

factor 1 lack-of-fitfactor 𝑘



Making selections
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• Overall performance for 
genotype 𝑖:

OP! = ̅𝜆'𝑓'!

�̅�1 is the mean loading for factor 1

• Stability for genotype 𝑖:

RMSD! = ∑ 𝜆.#𝑓.! )/𝑛1

Root mean square of the deviations
around the regression for factor 1 Smith & Cullis (2018)

𝑟 = 2

𝑘



Making selections

G2

G1

Ideal genotype for
broad adaptation

G3

• G3 is broadly adapted because 
it is high performing on average 
and stable

• G1 is likely to be specifically 
adapted because it is high 
performing on average but 
unstable

• Summaries for a very large 
number of genotypes and 
environments

• Can be included within a 
selection index
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Making selections
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Small example – environments
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Small example – observed GxE interaction
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Small example – factor analytic regression plot

Environmental loadings
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Small example – making selections
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Small example – making selections
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Lecture overview

1. Multi-environment plant breeding field trials ß
– Genotype by environment (GxE) interaction ✓
– Linear mixed models for MET data ✓

2. A framework for simulating GxE interaction
– MET-TPE concepts
– Applications to comparing statistical approaches and different 

breeding strategies over time


