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Key message The simulation of genotype by environment interaction using multiplicative models provides a
general framework to generate realistic multi-environment datasets and model plant breeding programmes.
Abstract This paper develops a general framework for simulating genotype by environment interaction (GEI)
using multiplicative models. Many stages of plant breeding are complicated by GEI, from the selection of potential
parents to the development of improved genotypes for release to growers. Despite its importance, however, current
plant breeding simulations do not adequately capture the complexity of GEI because they either use unrealistic
models to simulate it or they ignore it completely. The framework developed in this paper simulates the two
main components of GEI, that is non-crossover and crossover interaction, using the class of multiplicative models.
The framework is demonstrated using two working examples supported by R code. The first example embeds the
framework into a linear mixed model to generate MET datasets with low, moderate or high GEI, which are then
used to compare various statistical models widely used in plant breeding. The results show that the prediction
accuracy of all models increases as the level of GEI decreases or the number of sampled environments increases.
The second example integrates the framework into a breeding programme simulation to compare genomic and
phenotypic selection strategies over time. The results show that genomic selection outperforms phenotypic selection
by 1.4−1.8 times, depending on the level of GEI. These examples demonstrate how the new framework can be used
to generate realistic MET datasets and model plant breeding programmes that better reflect the complexity of
real-world settings, making it a valuable tool for breeders to optimize their breeding programmes. The framework
also has broader applications beyond plant breeding, including animal, aquaculture and tree breeding as well as
other analysis comparison settings.
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1 Introduction

Plant breeding is complicated by the fact that geno-
types respond differently to different environments, a
phenomenon known as genotype by environment inter-
action (GEI). Despite its importance, however, current
plant breeding simulations do not adequately capture
the complexity of GEI because they either use unre-
alistic models to simulate it or they ignore it com-
pletely. The framework developed in this paper simu-
lates GEI using multiplicative models. The framework
can be used to simulate realistic multi-environment trial
(MET) datasets and model plant breeding programmes
that better reflect the complexity of real-world settings.

Plant breeding has been historically shaped by GEI,
from the selection of potential parents to the develop-
ment of improved genotypes for release to growers. GEI
can be broadly categorised as either non-crossover or
crossover interaction, which reflect changes in the mag-
nitude (scale) of genotype response between environ-
ments or changes in genotype rank (Gail and Simon,
1985; Baker, 1988, Fig. 1). Crossover GEI is of par-
ticular importance to breeders because their selection
decisions are more complicated by changes in rank than
changes in scale (Baker, 1990; Eisemann et al., 1990).
Plant breeders gauge the magnitude and form of GEI
in their programmes by accumulating MET datasets,
which contain a sample of environments that gener-
ally span multiple years and locations (Smith et al.,
2021). An important consideration when constructing
a MET dataset is the extent to which it represents
the breeder’s target population of environments (TPE,
Comstock and Moll, 1963; Cooper et al., 1993). This is
referred to as the MET-TPE alignment (Cooper et al.,
2023).

Multiplicative models have gained popularity in plant
breeding because they are effective at capturing non-
crossover and crossover GEI. The most general model
for GEI is the unstructured model, which fits a separate
genetic variance for each environment and a separate
genetic covariance for each pair of environments. The
unstructured model captures the maximum amount of
GEI in the data, however, it becomes computationally
prohibitive and unnecessarily complicated as the num-
ber of sampled environments increases. These issues can
be overcome using reduced rank multiplicative models.
The appealing feature of multiplicative models is that
they capture a large proportion of GEI with a small
number of multiplicative terms, where each term is the
product of an environmental effect and a genotype ef-
fect (Mandel, 1971). Some traditional examples include
AMMI (Kempton, 1984; Gauch, 1988), GGE (Cornelius
et al., 1996; Yan et al., 2000) and factor analytic mod-
els (Piepho, 1997; Smith et al., 2001). These approaches
have been shown to provide an informative model for
GEI and a good fit to MET datasets in general (Gauch
et al., 2008; Kelly et al., 2007). The extensive theory
and advantages of multiplicative models provide a good

foundation for not only modelling GEI but also simu-
lating it.

Simulations are routinely used in plant breeding as
a fast and cost-effective way to compare different statis-
tical approaches. Several studies have generated MET
datasets for the purpose of addressing their research
objectives. For example, Hartung et al. (2023) take em-
pirical datasets and reproduce these datasets in simula-
tion to assess the efficiency of new statistical approaches
(also see Lisle, 2023). However, there is currently no re-
producible and scalable framework for simulating MET
datasets with different levels of GEI.

Simulations are also routinely used to compare dif-
ferent breeding strategies over time. Numerous simu-
lation packages have been developed to model plant
breeding programmes, including AlphaSimR (Gaynor
et al., 2021), ADAM-Plant (Liu et al., 2019), Chro-
maX (Younis et al., 2023), GPOPSIM2 (Li et al., 2021),
MOBPS (Pook et al., 2020) and QUGENE (Podlich
and Cooper, 1998). These packages provide a fast and
cost-effective approach for comparing different breeding
strategies, however, they all over-simplify GEI which
can result in optimistic projections and spurious com-
parisons. For example, AlphaSimR, ChromaX and GPOP-
SIM2 construct a single phenotype for each genotype
comprising a main effect, interaction effect and error.
The interaction effect is generally modelled through a
single multiplicative term, where the environmental ef-
fect is randomly sampled and consequently difficult to
control. It is important to note that most of these pack-
ages do have the functionality to simulate multiple envi-
ronments as multiple correlated traits, so they do have
the potential to implement a more realistic framework
for GEI. The examples above highlight the need for a
general and scalable framework for simulating GEI in
MET datasets and plant breeding programmes.

The aim of this paper is to develop a general frame-
work for simulating GEI using multiplicative models.
The framework can be used to simulate various plant
breeding settings, including different levels of non-crossover
and crossover GEI, different correlated genetic effects
and multiple TPE and/or traits. This paper develops
the theory of the framework and demonstrates its ap-
plication using two working examples supported by R
code. The first example simulates MET datasets with
different levels of GEI, which are then used to compare
various statistical models widely used in plant breed-
ing. The second example integrates the framework into
a breeding programme simulation to compare different
selection strategies over time. Lastly, the framework has
broader applications beyond plant breeding as well as
other analysis comparison settings.

2 Material and Methods

This section develops the framework for simulating GEI
using multiplicative models. The framework is initially
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developed for simulating the genetic effects, and then
embedded within a linear mixed model to generate phe-
notypes which also include appropriate non-genetic ef-
fects.

The methods consist of two parts:

1.Simulating genotype by environment effects; includ-
ing how to simulate a between-environment genetic
variance matrix with realistic structure and com-
plexity and how to tune this matrix using measures
of variance explained.

2.Simulating phenotypes; including how to simulate
a breeder’s TPE and sample a MET dataset and
how to obtain measures of accuracy that describe
the phenotypes.

Each part is detailed in the following.

2.1 Simulating genotype by environment effects

The framework simulates genetic effects which capture
GEI. Assume the genetic effects are simulated for v
genotypes in p environments, hereafter referred to as
the genotype by environment (GE) effects. Let the vp-
vector of GE effects be given by u = (u⊤

1
, . . . ,u⊤

p)
⊤,

where uj is the v-vector for the jth environment. The
GE effects are simulated as:

u ∼ N
(

0,Ge ⊗G
)

, (1)

where Ge is a p× p between-environment genetic vari-
ance matrix and G is a v × v genotype relationship
matrix. The matrix Ge is initially formulated accord-
ing to an unstructured model and then reformulated
according to a reduced rank multiplicative model. The
matrix G is completely general and may represent a
known/simulated pedigree or genomic relationship ma-
trix constructed through a breeding simulation package
(see Section 3.2). Both matrices are assumed to be pos-
itive (semi)-definite.

The unstructured model provides the most general
form for simulating Ge using all p(p−1)/2 parameters.
This generates a heterogeneous GEI pattern based on
a different genetic variance for each environment, σ2

gj ,
and a different genetic covariance for each pair of envi-
ronments, σgij . The unstructured model can be written
as a multiplicative model with all p terms:

u =
(

s1 ⊗ f1
)

+ . . .+
(

sp ⊗ fp
)

=
(

S⊗ Iv
)

f , (2)

where S = [s1 . . . sp] is a p×p matrix of environmental
effects (covariates) and f = (f⊤

1
, . . . , f⊤p )

⊤

is a vp-vector
of genotype effects (slopes). The covariates and slopes
are obtained from the eigendecomposition given by:

Ge = ULU⊤, (3)

where U = [u1 . . . up] is an orthogonal matrix of eigen-
vectors and L = ⊕p

r=1
lr is a diagonal matrix of eigen-

values sorted in decreasing order. The covariates are ob-
tained by setting S = U and the slopes are simulated as

f ∼ N(0, L⊗G). The proportion of variance explained
by the rth term can be calculated as lr/

∑p
r=1

lr, where
the denominator is equivalent to the sum of the diagonal
elements of Ge given by

∑p
j=1

σ2

gj . A large proportion
of variance in plant breeding data is typically explained
by the first few terms, which makes the full rank form
in Eq. 2 unnecessary as p increases.

The reduced rank form of Eq. 2 arises from taking
the first k eigenvectors in Eq. 3, which gives:

u =
(

Sk ⊗ Iv
)

fk, (4)

where Sk is a p × k matrix and fk is a vk-vector, with
fk ∼ N(0, Lk ⊗G). The genotype slopes can be simu-
lated independently or with a breeding simulation pack-
age by defining each term as a separate trait, with mean
vector set to 0 and variance matrix set to Lk. This for-
mulation requires just k traits (terms) to be simulated,
which makes the reduced rank model in Eq. 4 even more
appealing than the full rank model (see Section 3.2).

The GE effects are therefore simulated as:

u ∼ N
(

0,SkLkS
⊤

k ⊗G
)

, (5)

where Ge ≃ SkLkS
⊤

k is a reduced rank between-environment
genetic variance matrix. The framework requires Ge to
be previously known/simulated prior to obtaining the
environmental covariates and genotype slopes from the
eigendecomposition. It is possible to simulate the co-
variates and slopes directly (see Lisle, 2023), however,
this typically leads to an uncontrollable structure for
Ge and spurious correlations between environments.

Simulating between-environment genetic variance ma-

trix

An important feature of the framework is a reproducible
approach for simulating Ge with realistic structure and
complexity. This is achieved by explicitly simulating
heterogeneity of scale variance and lack of genetic cor-
relation through:

Ge = D1/2
e

CeD
1/2
e

, (6)

where De is a p × p diagonal genetic variance ma-
trix with diagonal elements given by σ2

gj and Ce is a
p× p reduced rank between-environment genetic corre-
lation matrix with off-diagonal elements given by ρij =

σgij/σgiσgj .

The genetic variances in De are simulated as σ2

gj ∼

Inv-Gamma(α, β), where α is the shape parameter and
β is the scale parameter. These parameters are set to
α = 5 and β = 5 for all examples in this paper (Fig. 2),
but note that other values can be used where required.
The inverse gamma distribution was chosen to ensure
that the genetic variances are positive and have a skewed
distribution, but other distributions can also be used.

Following Hardin et al. (2013), the between-environment
genetic correlation matrix is simulated as:

Ce = ρJp + ϵΛ⊤

Λ, (7)
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where ρ is the baseline genetic correlation, Jp is a p× p

matrix of ones, ϵ is the variability of the correlations
(magnitude of structured noise) around the baseline
and Λ = [λ1 . . . λp] is a (k − 1) × p matrix of sim-
ulated noise in which λj is the (k − 1)-vector for the
jth environment. The reduced rank form of Ce arises
from the fact that Jp has rank 1 and Λ has rank k− 1,
or more specifically that ρJp + ϵΛ⊤

Λ has rank k when
ρ, ϵ ̸= 0. Note that other base correlation functions can
be used instead of Jp where required (see Hardin et al.,
2013).

The baseline correlation is subject to the constraint
0 ≤ ρ < 1, which ensures Ce is positive (semi)-definite.
If the constraint is not imposed and −1 < ρ < 0, spu-
rious and negative definite matrices may be generated
that require bending. The noise is also subject to the
constraint ϵ = 1 − ρ, which ensures the rank of Ce

equals k when ρ > 0. If the constraint is not imposed
and ϵ < 1 − ρ, the rank of Ce will equal p. The first k
terms will still capture the majority of variation in Ge,
but now the remaining p− k terms will each capture a
small proportion of variance given by 1− ρ− ϵ.

An extension of Hardin et al. (2013) is used to sim-
ulate the genetic correlations based on a skewed distri-
bution. The columns of Λ are simulated as:

λj ∼

{

U(−1, 1 + γ) −1 ≤ γ ≤ 0

U(−1, 1− γ) 0 < γ ≤ 1,
(8)

where γ governs the amount of skewness. The λj are
then scaled to unit length, i.e. λ⊤

jλj = 1. When 0 < γ ≤

1, the between-environment genetic correlation matrix
in Eq. 7 is constructed as Ce = −(ρJp + ϵΛ⊤

Λ), which
ensures the correct matrix is obtained. Note that when
γ = 0, the baseline correlation ρ equals the mean corre-
lation between environments given by p̄ =

∑p
i<j 2ρij/p(p−

1), but not when γ ̸= 0.
Different structure for Ce can be generated by alter-

ing ρ, ϵ, γ and k. The examples in Supplementary Fig. 1
demonstrate that decreasing ρ decreases the mean cor-
relation, increasing ϵ increases the variability of the cor-
relations around the mean, altering γ changes the skew
of the distribution and increasing k increases the rank of
the noise. The practical implication is that by changing
k, the amount of structure in the noise can be changed
from high to low or even no structure.

The framework above was used to simulate the three
examples of Ce presented in Fig. 3 and summarised in
Table 1. The matrices were constructed with k = 7,
but with varying ρ, ϵ and γ. All matrices were then
multiplied with De in Fig. 2 to create three examples
of Ge using Eq. 6. These matrices form the basis of the
low, moderate and high GEI scenarios used throughout
the remainder of the paper.

Measures of variance explained

An important supplement to simulating Ge are mea-
sures of variance explained for the GE effects. The mea-

sures are used to quantify and tune the proportion of
(i) main effect and interaction variances, and (ii) non-
crossover and crossover variances simulated in Ge.

1. The proportion of genotype main effect variance
is:

vg =
σ2

g

σ2
g + σ2

ge

, (9)

where σ2

g is the main effect variance and σ2

ge is the
pooled interaction variance. The main effect variance
is obtained as σ2

g = s̄kLks̄
⊤

k, where s̄k = 1⊤

pSk/p is a k

row-vector of means for each environmental covariate.
The interaction variance is then obtained as the mean
diagonal element of S∗

kLkS
∗⊤

k , where S∗

k = Sk−s̄k⊗1p is
a p×k matrix of column centred environmental covari-
ates. The proportion of interaction variance is therefore
given by vge = 1− vg.

2. The proportion of non-crossover variance is:

vn =
σ2

n

σ2
g + σ2

ge

, (10)

where σ2

n is the non-crossover variance, which is ob-
tained as σ2

n = σ2

g+s̄kLkS
∗⊤

k S∗

kLks̄
⊤

k/pσ
2

g (see Appendix A).
The non-crossover variance captures all variation at-
tributed to perfect positive correlation with the geno-
type main effects (Tolhurst, 2023). The crossover vari-
ance then captures all remaining variation independent
of the main effects. The proportion of crossover variance
is therefore given by vc = 1− vn.

The measures of variance explained are demonstrated
for the three examples of Ge summarised in Table 1.
All examples have the same genetic variances given by
σ2

gj = 0.01 − 9.95, because they were all constructed
with De in Fig. 2. The examples were classified as low,
moderate or high GEI by tuning the proportions of non-
crossover and crossover variance.

2.2 Simulating phenotypes

The framework for simulating the GE effects can be
embedded within a linear mixed model to generate phe-
notypes which also capture appropriate non-genetic ef-
fects. The framework is summarised in Fig. 4, with ex-
ample R code provided in Appendix B. Let the n-vector
of phenotypes be given by y = (y⊤

1
, . . . ,y⊤

p)
⊤, where

yj is the nj-vector for the jth environment. The linear
mixed model used to simulate y is given by:

y = 1nµ+Xτ + Zu+ ε, (11)

where µ is the overall trait mean, τ is a p-vector of envi-
ronmental main effects with n×p design matrix X, u is
the vp-vector of GE effects with n×vp design matrix Z

and ε is the n-vector of plot errors. A randomised com-
plete block design is used for each environment in the
example R code, with r replicate blocks of all v geno-
types. Simulation of other experimental designs and ad-
ditional non-genetic effects is straightforward.
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The environmental main effects are simulated as:

τ ∼ N(0, σ2

eIp), (12)

where σ2

e is the main effect variance. This specification
will be demonstrated for the MET dataset simulation
in Section 3.1, and extended to a regression on environ-
mental covariates for the breeding programme simula-
tion in Section 3.2.

The GE effects are simulated using the framework
in Section 2.1, which can be summarised by four key
steps:

1.Construct a between-environment genetic variance
matrix as Ge = D

1/2
e CeD

1/2
e , tuned using the mea-

sures of variance explained.
2.Decompose the between-environment genetic vari-

ance matrix as Ge = ULU⊤, taking the first k terms
to obtain Uk and Lk.

3.Set the environmental covariates as Sk = Uk and
simulate the genotype slopes as fk ∼ N(0, Lk ⊗G),
either independently or with a simulation package.

4.Construct the GE effects as u =
(

Sk ⊗ Iv)fk.

The framework can be used to generate additive, dom-
inance and epistatic GE effects, by appropriately defin-
ing Ge and G for each.

Lastly, the plot errors are simulated as:

ε ∼ N(0, σ2

εR), (13)

where σ2

ε is the average error variance and R is a n ×

n block diagonal matrix comprising a separate two-
dimensional spatial model for each environment. Corre-
lated plot errors can be generated in R using FieldSimR
(Werner et al., 2023), but note that the example R code
considers independent errors for brevity.

Simulating a TPE and sampling a MET datset

An additional feature of the framework is the ability to
simulate a set of environments that represent a breeder’s
TPE. This process is summarised in Fig. 4 for the between-
environment genetic correlation matrix, Ce. Assume
the vector of GE effects, u, includes all p environments
in the TPE. A subset of pm environments is then sam-
pled from the TPE, which may represent a subset ob-
served in a particular year or multiple years in a MET
dataset. The MET dataset may be used to compare
various statistical approaches or constructed within a
breeding programme simulation to compare different se-
lection strategies. The number of environments in the
TPE is set to p = 1000 for all examples in this pa-
per as it produces a sufficiently large distribution for
demonstration purposes, but p can be altered as re-
quired. Further structure can be applied to Ce which
captures genotype by year and/or genotype by loca-
tion interaction, which may be particularly appealing
for simulating various TPE relevant to a breeding pro-
gramme. Multiple TPE and multiple phenotypic traits
are also considered in Appendix A.

Measures of accuracy

An important supplement to simulating the phenotypes
are measures of accuracy. The measures are used to
quantify the correlation between the (i) predicted main
effects in the MET dataset and the true main effects in
the TPE, (ii) true main effects in the MET dataset and
TPE, referred to as the MET-TPE alignment (Cooper
et al., 2023), and (iii) true and predicted GE effects in
the MET dataset. The measures below are the expected
values based on the true simulation parameters.

1. The expected main effect accuracy in the TPE is:

rg =

√

σ2
g

σ2
g + σ2

ge/pm + σ2
ε/pmr

, (14)

which is equal to the square root of the line-mean heri-
tability across environments (Cooper and DeLacy, 1994).

2. The expected MET-TPE alignment is:

rmt =

√

σ2
g

σ2
g + σ2

ge/pm
, (15)

which is obtained by setting σ2

ε = 0 in Eq. 14. This
measure will be used in Section 3.1 as the maximum
main effect accuracy in the TPE.

The fundamental relationship between Eqs. 14 and
15 is then given by:

rg = rm × rmt, (16)

where rm is the expected main effect accuracy in the
MET dataset, which is given by:

rm =

√

σ2
g + σ2

ge/pm

σ2
g + σ2

ge/pm + σ2
ε/pmr

, (17)

where σ2

g +σ2

ge/pm is the expected main effect variance
sampled in the MET dataset. The numerator arises
from an inflation of the true main effect variance in
Eq. 14 by σ2

ge/pm, which represents the sampling error
in the MET dataset. The practical implication is that
the expected accuracy observed in the MET dataset
will always be higher than in the TPE, i.e. rm ≥ rg.

3. The expected accuracy of the GE effects in the
MET dataset is:

rge =

√

σ2
g + σ2

ge

σ2
g + σ2

ge + σ2
ε/r

, (18)

which is equal to the square root of the line-mean her-
itability within environments.

The measures of accuracy are presented in Supple-
mentary Fig. 2a-c for different values of σ2

g , σ2

ge and
pm. These figures show that increasing the number of
environments sampled in the MET dataset will increase
the MET-TPE alignment and decrease the sampling er-
ror, to a point where the contribution of the interaction
variance becomes negligible.
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3 Results

The following sections showcase the application of the
new framework by simulating realistic MET datasets
and by integrating the framework into a breeding pro-
gramme simulation.

3.1 MET dataset simulation

This section simulates a small example MET dataset
using the framework developed in Section 2.1, which
can be reproduced with the R code in Appendix B. The
simulated MET dataset comprises 400 genotypes evalu-
ated in field trials across 10 environments (Table 2). All
trials are generated using a randomised complete block
design with 2 replicate blocks comprising 5 columns and
40 rows each. The environmental main effects are sam-
pled from a standard normal distribution. The GE ef-
fects are simulated based on a hypothetical trait with
overall mean of 4 and genetic variances sampled from
an inverse gamma distribution with shape parameter of
5 and scale parameter of 5. The plot errors are simu-
lated assuming independence between plots, based on
an overall plot-level heritability of 0.3. This produces
heterogeneous environment means, variances and heri-
tabilities.

The framework can also be used to simulate various
plant breeding settings, including:

śLow, moderate and high GEI
śMultiple TPE and multiple phenotypic traits (Sup-
plementary Fig. 3a-d)

śCorrelated additive, dominance and epistatic genetic
effects using AlphaSimR

śCorrelated plot errors using FieldSimR
śUnbalanced and incomplete experimental designs.

Further R code is provided in the GitHub repository
for some of these examples. The examples demonstrate
how the framework provides a flexible approach for sim-
ulating realistic MET datasets.

Model comparison

This section compares eight statistical models using
MET datasets built on the small example above. Three
hypothetical TPEs were simulated with low, moderate
and high GEI, each with 1,000 environments in total.
These scenarios correspond to the between-environment
genetic variance matrices presented in Fig. 3 and sum-
marised in Table 1. Four MET datasets were then con-
structed for each level of GEI by randomly sampling
5, 10, 20 or 50 environments from each TPE (Fig. 4).
This process was replicated 1,000 times, with eight sta-
tistical models fitted to each replicate. The models in-
cluded main effects only, compound symmetry, main ef-
fects plus diagonal, diagonal and factor analytic of order
one, two, three and four (see Tolhurst et al., 2022). The

aim of the analyses was to obtain accurate predictions
of the genotype main effects and GE effects. All models
were fitted using ASReml-R (Butler et al., 2017).

The true parameters for all 1,000 replicates are sum-
marised in Supplementary Fig. 4a-c. This figure com-
pares the true parameters in each TPE with those sam-
pled in the MET datasets. The parameters become more
aligned to the TPE as more environments are sampled.
This is the case for all levels of GEI, but note that fewer
environments are required to be well-aligned for the low
GEI scenario compared to the moderate and high GEI
scenarios.

Fig. 5 presents the prediction accuracy of the eight
statistical models fitted to simulated MET datasets with
different levels of GEI and different numbers of environ-
ments. This figure also includes the expected main ef-
fect accuracy in the MET dataset and TPE (dashed
black lines), and the expected MET-TPE alignment
(solid black line) from Section 2.2. There are five im-
portant results:

1.All prediction accuracies decrease as the level of
GEI increases. The largest differences occur between
models at high GEI.

2.All prediction accuracies increase as the number of
sampled environments increases. The largest differ-
ences occur between models at 5 environments for
the main effects and at 50 environments for the GE
effects, particularly for high GEI.

3.The main effect accuracies are higher in the MET
dataset than in the TPE. The smallest differences
occur between models at 50 environments, where
the sampled MET datasets become more aligned to
the TPE.

4.The main effect accuracies in the TPE are highest
for the factor analytic models of order three and
four. The differences between the remaining models
are negligible except the factor analytic model of
order one.

5.The prediction accuracies of the GE effects are also
the highest for the factor analytic models of order
three and four. The largest differences occur be-
tween models at high GEI and 50 environments.

The simulated MET-TPE alignments for all 1,000 repli-
cates are presented in Supplementary Fig. 5. This fig-
ure provides further insight into the extent and form
of the GEI simulated in the TPE and sampled in the
MET datasets. Not only does the alignment decrease
as the level of GEI increases or the number of sam-
pled environments decreases, but the variability around
the expected alignment also increases. As a result, well-
aligned MET datasets can be constructed with as few
as five environments, depending on the level of GEI.
This is an interesting result that is the topic of current
research.

Key summaries for the eight statistical models are
presented in Supplementary Fig. 6a-b. This figure in-
cludes measures of reliability and model fit averaged

https:\/\/github.com\/HighlanderLab\/jbancic_GEIsim.git
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across all 1,000 replicates. The factor analytic models
produce the most reliable estimates of the genetic vari-
ances and covariances in terms of root mean square er-
ror (RMSE). They also provide a superior fit to the
data in terms of AIC and the proportion of variance
explained, but have substantially longer running times.

3.2 Breeding programme simulation

This section integrates the framework developed in Sec-
tion 2.1 into a breeding programme simulation. The
three hypothetical TPE from Section 3.1 are again used
for demonstration. The simulation involves 20 years of
breeding for a hypothetical continuous trait, with 20
environments randomly sampled from the 1,000 envi-
ronments in each TPE every year (Fig. 4). There are
four stages of field evaluation, with an increasing num-
ber of environments and a decreasing number of geno-
types observed in each stage (Fig. 6). This produces a
subset of 400 environments from each TPE and a max-
imum of 20 environments observed in each stage, every
year.

The following workflow was developed to integrate
the framework into a simulation package:

1.Simulate and decompose a between-environment ge-
netic variance matrix representing a hypothetical
TPE. This produces the full set of reduced rank en-
vironmental covariates in each TPE, denoted Sk.

2.Simulate genotype slopes in a founder population,
denoted fk. This is achieved by defining each multi-
plicative term as a separate trait in the simulation
package. The traits (terms) are simulated with mean
vector set to 0 and variance matrix set to Lk.

3.Sample a subset of environments from the full set
of environments in the TPE. This produces a subset
of environmental covariates for the current breeding
year, denoted Ski

.
4.Construct GE effects and phenotypes. The true GE

effects are constructed by multiplying Ski
with the

current genotype slopes, denoted fki
. Phenotypes

are then constructed for the genotypes and envi-
ronments observed in each stage by adding error.

5.Select and advance superior genotypes based on the
predicted genotype main effects. The predictions are
obtained from analysing a MET dataset with a sam-
ple of environments that span multiple years and
locations.

6.Track genetic progress via genetic gain, genetic vari-
ance and prediction accuracy. These measures are
obtained based on the true GE effects in the MET
dataset or TPE, with the latter obtained by multi-
plying fki

from Step 4 with Sk from Step 1.

Steps 1 and 2 are performed at the beginning of every
simulation while Step 3 is performed once every year
and Steps 4-6 are performed in each stage, every year
for 20 years of breeding. Example R code for integrat-
ing the framework into AlphaSimR is available from the

GitHub repository, but note that the workflow above
can be integrated into many current simulation pack-
ages to efficiently simulate GEI at a very large scale.

An important component to integrating the frame-
work into a breeding programme simulation is the abil-
ity to track the genetic gain and genetic variance in
the MET dataset and TPE. This is achieved by ex-
tending the vector of environmental main effects, τ ,
to a regression on environmental covariates. The re-
gression for the TPE is given by τ = Skτ ski

, where
Sk is the p × k matrix of reduced rank environmental
covariates and τ ski

is a k-vector with elements given
by the mean response of genotypes to each covariate,
i.e. τ ski

= E(fki
). The genetic gain and genetic vari-

ance for the current breeding year are then calculated
as µgi = µ+ ūgi and σ2

gi = s̄kLki
s̄k, where ūgi = s̄kτ ski

is the average genotype main effect and Lki
= var(fki

).
The regression above can also be applied to the MET
dataset simulation to induce a mean-variance ratio.

Breeding programme comparison

This section compares phenotypic and genomic selec-
tion strategies using a breeding programme simulation
in AlphaSimR built on the workflow above. The key fea-
tures of the breeding programme are presented in Fig. 6
and detailed in the Supplementary Material. The breed-
ing programme was simulated with no, low, moderate
and high GEI, and then phenotypic or genomic selec-
tion was applied for 20 years of breeding. This produced
eight scenarios that were replicated 20 times. The MET
dataset for phenotypic selection comprises the subset of
sampled environments for each stage in the current year
only (ranging from one for headrow to 20 for elite yield
trial), and for genomic selection comprises all stages
and sampled environments from the last three years (60
in total). A compound symmetry model was fitted for
the genomic selection strategy as it produces sufficient
results for demonstration purposes, but ideally factor
analytic models should be considered. The aim of the
simulation was to track genetic gain, genetic variance
and the measures of accuracy in the headrow stage dur-
ing 20 years of breeding (Figs. 7-9). The scenario with-
out GEI will be used as a baseline for comparison (solid
black line).

There are three important results for the genetic
gain in Fig. 7:

1.The genetic gain decreases as the level of GEI in-
creases. The largest differences occur after 20 years,
where the genetic gain is 1.7− 7.5 times lower than
the baseline for phenotypic selection and 1.6 − 6.2

times lower for genomic selection.
2.The genetic gain from genomic selection is 1.4 −

1.7 times higher than phenotypic selection after 20
years. The largest difference occurs for high GEI.

3.There are negligible differences between the genetic
gain in the MET dataset and TPE for genomic se-

https://github.com/HighlanderLab/jbancic_GEIsim
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lection, but there are noticeable differences for phe-
notypic selection. The largest difference occurs for
high GEI with ∼ 0.4 units after 20 years.

There are three important results for the genetic vari-
ance in Fig. 8:

1.The loss in genetic variance decreases as the level
of GEI increases. The largest differences occur af-
ter 20 years, where the genetic variance is 1.3− 1.8
times higher than the baseline for phenotypic selec-
tion and 1.7−2.8 times higher for genomic selection.

2.The loss in genetic variance from genomic selection
is 1.8 − 2.8 times higher than phenotypic selection
after 20 years. The largest difference occurs in the
absence of GEI.

3.There are negligible differences between the genetic
variance in the MET dataset and TPE for genomic
selection, but there are substantial differences for
phenotypic selection. The largest difference occurs
for high GEI with ∼ 0.1 units after 20 years.

There are three important results for the measures of
accuracy in Fig. 9:

1.The main effect accuracy and MET-TPE alignment
decrease as the level of GEI increases.

2.The main effect accuracy and MET-TPE alignment
for genomic selection is 1.4− 3.6 times higher than
for phenotypic selection. The largest difference oc-
curs for high GEI.

3.The MET-TPE alignment for high GEI is much
lower and more variable for phenotypic selection
than genomic selection.

The genetic gain, genetic variance and measures of ac-
curacy for all stages of the breeding programme are
presented in Supplementary Figure 7a-c.

4 Discussion

Simulations are routinely used in plant breeding for
optimising various statistical approaches and breeding
strategies. Many of the current simulations, however, do
not adequately capture the complexity of GEI inherent
to real-world settings. The framework developed in this
paper simulates GE effects that capture the two main
components of GEI, that is non-crossover and crossover
interaction, using multiplicative models. The utility of
the framework was demonstrated for two working ex-
amples that compared different statistical models and
breeding strategies in the presence of low, moderate and
high GEI.

The framework for simulating GEI can be summarised
by four key steps:

1.Simulate a between-environment genetic variance ma-

trix, Ge, with heterogeneous genetic variances and
genetic correlations. Measures of variance explained
were developed to tune the amount of non-crossover
and crossover variance. This produces Ge with the
required structure and complexity.

2.Decompose Ge to obtain the eigenvectors and eigen-
values for the first k terms. This produces a reduced
rank set of vectors that capture the structure in Ge.

3.Obtain environmental covariates as the eigenvectors
and simulate genotype slopes based on the eigenval-
ues. This produces a reduced rank set of covariates
and slopes, which can be generated using a simula-
tion package.

4.Construct GE effects by multiplying the environ-
mental covariates with the genotype slopes. This
produces GE effects based on a reduced rank mul-
tiplicative model.

The framework can be embedded within a linear mixed
model for simulating MET datasets or it can be in-
tegrated into simulation packages for modelling plant
breeding programmes.

The framework features an approach for simulat-
ing heterogeneous genetic variances and genetic corre-
lations in Ge from Step 1. The genetic variances are
simulated from an inverse gamma distribution, which
generates positive variances with a skewed distribution.
The genetic correlations are then simulated following
Hardin et al. (2013), which generates a correlation ma-
trix by adding structured noise to a base correlation
function. The rank of the noise dictates its structure
while the base function dictates the underlying corre-
lation structure, which can have many different forms,
e.g. uniform, compound symmetry and autoregressive.
In this paper, the approach of Hardin et al. (2013) was
extended for simulating a between-environment genetic
correlation matrix, Ce, with genetic correlations based
on a controllable skewed distribution. This approach
can be used to reproduce known correlation distribu-
tions, which is particularly useful to compare differ-
ent statistical approaches and breeding strategies at a
much larger scale. The approach can also be used to
add structured noise to Ce obtained from an empirical
analysis. For example, noise can be added to environ-
mental covariates that are either known or latent, e.g.
estimated from factor analytic models (Tolhurst et al.,
2022). This provides a general approach for simulating
Ge that can be tailored to many plant breeding set-
tings.

Measures of variance explained were developed to
tune the parameters responsible for simulating differ-
ent structure in Ge. The measures quantify the mag-
nitude of main effect and interaction variance, which
are mostly controlled by the baseline correlation and
skew. The measures also quantify the magnitude of
non-crossover and crossover GEI, which reflect changes
in the scale and rank of genotype response between
environments. The non-crossover variance captures all
variation attributed to perfect positive correlation with
the genotype main effects (Tolhurst, 2023). The non-
crossover variance is also controlled by the baseline cor-
relation and skew as well as the shape and scale param-
eters of the inverse gamma distribution, which alter the
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heterogeneity of scale variance. The crossover variance
then includes all remaining variation independent of the
main effects. The crossover variance arises from a lack
of correlation between environments, which can also be
controlled by the parameters above, and to a lesser ex-
tent by the variability of correlations and the rank of
noise. In this paper, different levels of GEI were gener-
ated by adjusting the proportion of non-crossover and
crossover variance in Ge. The measures provide control
over the construction of Ge and align the new frame-
work with the historical partitioning of GEI into non-
crossover and crossover interaction.

MET dataset simulation

The framework for simulating GEI can be embedded
within a linear mixed model to generate realistic MET
datasets. This is achieved by combining the simulated
GE effects with appropriate non-genetic effects such as
environmental main effects and plot errors. A linear
mixed model was chosen because it provides a flexible
basis to build a wide range of MET datasets. Some typ-
ical features include correlated additive, dominance and
epistatic GE effects obtained from AlphaSimR (Gaynor
et al., 2021), correlated plot errors obtained from Field-
SimR (Werner et al., 2023) and unbalanced experimen-
tal designs, including incomplete block, p-rep and sparse
testing. This provides a general approach for simulat-
ing MET datasets that can be tailored to many research
objectives.

The framework was demonstrated for comparing eight
statistical models fitted to simulated MET datasets with
low, moderate or high GEI. There are three important
results:

1.Gains in accuracy can be achieved by sampling more
environments from the TPE in the MET dataset,
despite losses in accuracy due to increasing GEI.
This provides a framework to devise strategies for
optimising the construction of MET datasets.

2.Negligible differences between models are observed
for the genotype main effects in the TPE. This indi-
cates that simpler models such as compound sym-
metry can be used to obtain accurate predictions
of the main effects even for MET datasets with few
environments.

3.Substantial differences between models are observed
for the GE effects in the MET dataset. This indi-
cates that more complex models are required to ob-
tain accurate predictions of the GE effects, particu-
larly for high GEI.

Overall, the results indicate that the factor analytic
models of order 3 and 4 are superior, regardless of the
level of GEI and the number of environments in the
MET dataset. At least three factors were required in
all cases to capture the extent of crossover GEI in the
different MET datasets.

Breeding programme simulation

The framework for simulating GEI can be integrated
within a simulation package to compare different breed-
ing strategies. This is achieved by defining each multi-
plicative term as a separate trait, rather than defining
each environment as a separate trait (see, for exam-
ple, Liu et al., 2019). The practical implication is that
the genetic effects generated during breeding are the
genotype slopes, so they capture any changes in popu-
lation structure over time. There are two appealing fea-
tures of this approach. Firstly, the reduced rank model
only requires a small number of traits (terms) to be
simulated rather than a much larger number of envi-
ronments across all years of breeding, e.g., 400 traits
for all examples in this paper. Secondly, the environ-
mental covariates are constructed prior to simulation
so they capture the expected GEI patterns for all years
of breeding. The observed GEI patterns will differ from
the expected patterns, but these differences are a nat-
ural consequence of the changing population structure
over time.

The framework’s integration within a simulation pack-
age was demonstrated by comparing phenotypic and
genomic selection strategies in the presence of no, low,
moderate and high GEI. There are three important re-
sults:

1.More realistic projections of genetic gain can be
obtained for the GEI patterns observed in plant
breeding programmes. This provides a framework
for breeders to broadly gauge how much genetic gain
can be achieved in their TPE relative to what is ob-
served in the MET dataset.

2.Substantial differences in genetic variance between
the MET dataset and TPE are observed for pheno-
typic selection. This is because the MET dataset for
phenotypic selection includes just one environment
while the training population for genomic selection
includes 60 environments.

3.Substantial fluctuations in MET-TPE alignment are
observed when a single environment is sampled in
the MET dataset. This highlights the importance
of constructing MET datasets that include multiple
environments spanning multiple years, particularly
in the early stages of a breeding programme.

Overall, the framework for simulating GEI provides op-
portunities to explore many new research objectives
through simulation. One important application is the
selection for stability, which requires more complex mod-
els to be run in real time. In this paper, selection was
based on the genotype main effects only since the MET
datasets generated each year were too large to run fac-
tor analytic models, reflecting an ongoing challenge in
many real-world plant breeding programmes.
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Concluding remarks

Simulation continues to serve as a valuable tool for
breeders to optimize their breeding programmes. The
integration of GEI within simulation represents an im-
portant advancement for comparing different statistical
approaches and breeding strategies in real time. The
new framework can be readily implemented in any soft-
ware that provides the multi-trait functionality.
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Table 1: Summary of the simulated between-environment genetic variance matrices with low, moderate and high
GEI.

Input parameters Variance explained

GEI α β ρ ϵ γ k vg vge vn vc

Low 5 5 0.50 0.50 0.50 7 0.51 0.49 0.61 0.39
Moderate 5 5 0.20 0.80 0.50 7 0.30 0.70 0.36 0.64
High 5 5 0.00 1.00 0.35 7 0.08 0.92 0.09 0.91

Presented are the shape (α) and scale (β) parameters for simulating the
genetic variance matrix, De, and the baseline correlation (ρ), magni-
tude of noise (ϵ), skewness (γ) and rank of noise (k) for simulating the
between-environment genetic correlation matrix, Ce. Also presented are
the proportion of variance explained by the genotype main effect (vg)
and interaction (vge) variances as well as the non-crossover (vn) and
crossover (vc) variances.
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Table 2: Summary of the simulated MET dataset.

Design Trait

Env Genos Reps Plots Mean h2

j σ2

gj σ2

εj

E1 200 2 400 3.11 0.32 2.24 4.71
E2 200 2 400 3.73 0.33 4.60 9.46
E3 200 2 400 5.54 0.32 4.18 8.88
E4 200 2 400 4.04 0.22 3.22 11.40
E5 200 2 400 4.00 0.22 2.15 7.42
E6 200 2 400 5.66 0.30 2.80 6.44
E7 200 2 400 4.39 0.34 0.39 0.76
E8 200 2 400 2.55 0.39 1.59 2.50
E9 200 2 400 3.24 0.49 2.00 2.09
E10 200 2 400 3.70 0.32 5.57 11.97

Overall - - - 4.00 0.32 2.87 6.56

Presented are the number of genotypes, replicates and plots in
each environment. Also presented for a hypothetical continuous
trait are the mean, plot-level heritability (h2

j ), genetic variance
(σ2

gj ) and error variance (σ2

εj ).
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Fig. 1: The response of hypothetical genotypes G1 and G2 in environments E1 and E2 for a hypothetical continuous
trait. The figure demonstrates genotype response in terms of non-crossover and crossover GEI, which reflect changes
in scale and rank between environments.
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Fig. 3: Simulated between-environment genetic correlation matrices with low, moderate or high GEI. The dashed
line in the left panel represents the mean correlation (also labelled). The colour key in the right panel ranges from
1 (agreement in rankings) through 0 (disagreement in rankings) to −1 (reversal of rankings). All matrices are
hierarchically ordered based on separate dendrograms.
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sampling MET datasets from the simulated TPE.
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Fig. 5: Prediction accuracy of eight statistical models fitted to simulated MET datasets with low, moderate or
high GEI and 5, 10, 20 or 50 environments. The top two panels show the genotype main effect accuracy in the
MET dataset and TPE while the bottom panel shows the accuracy of the predicted GE effects in the MET
dataset. Note: The main effects in all factor analytic models were obtained as averages across latent covariates.
The factor analytic models of order 3 and 4 were fitted without the diagonal term for the 5 environment scenario.
The maximum main effect accuracy represents the MET-TPE alignment from Eq. 15. Main - main effects, Comp
- compound symmetry, MDiag - main effects plus diagonal, Diag - diagonal, FA - factor analytic.
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Fig. 6: Key features of the simulated plant breeding programme. Presented are the number of genotypes, environ-
ments and replicates as well as the average error variance (σ2

ε) and the action taken. DH - double haploid, FS -
full-sib, HDRW - headrow, PYT - preliminary yield trial, AYT - advanced yield trial, EYT - elite yield trial
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Fig. 7: Genetic gain in the simulated plant breeding programme with no, low, moderate or high GEI. Presented
is the genetic gain in the headrow stage for phenotypic and genomic selection strategies. The genetic gain reflects
the average genotype main effect in the MET dataset or TPE. Note: The MET dataset is constructed with one
environment for phenotypic selection or 60 environments (three years) for genomic selection.
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Fig. 8: Genetic variance in the simulated plant breeding programmes with no, low, moderate or high GEI. Presented
is the genetic variance in the headrow stage for phenotypic and genomic selection strategies. The genetic variance
reflects the variance of the genotype main effects in the MET dataset or TPE. Note: The MET dataset is constructed
with one environment for phenotypic selection or 60 environments (three years) for genomic selection.
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Fig. 9: Measures of accuracy in the simulated plant breeding programmes with no, low, moderate or high GEI.
Presented is the prediction accuracy in the headrow stage for phenotypic and genomic selection strategies. The top
two panels show the genotype main effect accuracy in the MET dataset and TPE while the bottom panel shows the
correlation between the true main effects in the MET dataset and TPE, referred to as the MET-TPE alignment.
Note: The MET dataset is constructed with one environment for phenotypic selection or 60 environments (three
years) for genomic selection.
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Appendix A Simulation features

This appendix demonstrates how the framework can
be used to simulate non-crossover and crossover GEI in
addition to multiple TPE and/or traits.

A.1 Simulating non-crossover and crossover GEI

An important feature of the new framework is the abil-
ity to simulate and tune the magnitude of non-crossover
and crossover GEI. In this paper, non-crossover and
crossover GEI are defined as the change in scale and
rank of genotype response between environments, re-
spectively. The non-crossover variance therefore cap-
tures all variation attributed to perfect positive correla-
tion with the genotype main effects while the crossover
variance captures all remaining variation independent
of the main effects (Tolhurst, 2023).

The reduced rank model in Eq. 4 does not have ex-
plicit main effects, which instead arise naturally from
the form of Ge simulated in Eq. 6. Main effects and
interaction effects can be obtained after simulation as:

ug =
(

s̄k ⊗ Iv
)

fk and uge =
(

S∗

k ⊗ Iv
)

fk, (19)

where s̄k = 1⊤

pSk/p is a k row-vector of means for each
environmental covariate and S∗

k = Sk− s̄k⊗1p is a p×k

matrix of column centred environmental covariates.
It then follows that:

[

ug

uge

]

∼ N

([

0

0

]

,

[

s̄kLks̄
⊤

k s̄kLkS
∗⊤

k

S∗

kLks̄
⊤

k S∗

kLkS
∗⊤

k

]

⊗G

)

, (20)

where σ2

g = s̄kLks̄
⊤

k is the main effect variance, which
is equivalent to the mean element of Ge given by:

σ2

g =

p
∑

j=1

σ2

gj/p
2 + 2

p
∑

i<j

σgij/p
2. (21)

The pooled interaction variance is then obtained as the
mean diagonal element of S∗

kLkS
∗⊤

k , which is equivalent
to the mean diagonal element of Ge − σ2

gJp given by:

σ2

ge =

p
∑

j=1

σ2

gj/p− σ2

g . (22)

Following Tolhurst (2023), generalised main effects and
adjusted interaction effects can also be obtained after
simulation as:

u∗

g
= 1p ⊗ ug + δge and u∗

ge
= uge − δge, (23)

where δge = S∗

kLks̄
⊤

k ⊗ug/σ
2

g is a vp-vector which cap-
tures variation in the interaction effects attributed to
perfect positive correlation with the main effects (also
see Waters et al., 2023). The generalised main effects
exclusively capture non-crossover GEI while the inter-
action effects adjusted for the generalised main effects
exclusively capture crossover GEI. The non-crossover
variance is therefore obtained as σ2

n = σ2

g+s̄kLkS
∗⊤

k S∗

kLks̄
⊤

k/pσ
2

g

while the crossover variance is obtained as σ2

c = σ2

ge −

s̄kLkS
∗⊤

k S∗

kLks̄
⊤

k/pσ
2

g . Note that constraints may be re-
quired to ensure that only variation attributed to non-
crossover GEI is transferred from the interaction effects
to the generalised main effects (see Tolhurst, 2023).

A.2 Simulating multiple TPE

Another important feature of the new framework is the
ability to simulate multiple TPE simultaneously. As-
sume pmi

environments are sampled in each TPE, such
that p =

∑s
i=1

pmi
is the total number of environments

sampled across all s TPE. The between-environment
genetic correlation matrix in Eq. 7 is now simulated as:

Ce = ρJp +⊕s
i=1

δiJpmi
+ ϵΛ⊤

Λ, (24)

where ρ is the baseline genetic correlation across all
TPE, δi is the deviation from the baseline for the ith

TPE and all other parameters are previously defined.
This specification constructs a separate baseline genetic
correlation for each TPE given by ρi = ρ+ δi, but the
same genetic correlation between TPE given by ρ. The
parameters are subject to similar constraints as before,
with ϵ ≤ 1 − pmax, 0 ≤ ρ < pmin and 0 ≤ ρi < 1

where pmax = max{pmi
} and pmin = min{pmi

}. The
between-environment genetic variance matrix is then
constructed using Eq. 6, but note that separate distri-
butions can be used for the genetic variances in each
TPE where required. The approach above is analogous
to simulating multiple phenotypic traits.
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Appendix B R code to simulate an example MET dataset

#> I n i t i a l parameters

set . seed (123) # do not change

p = 10 # Environments

b = 2 # Blocks

v = 200 # Genotypes

mu = 4 # Trai t mean

H2 = 0.3 # Plot− l e v e l h e r i t a b i l i t y

k = 7 # No. o f mu l t i p l i c a t i v e terms

#> Simulate environmenta l e f f e c t s

X = kronecker (diag (p ) , rep (1 , v ∗ b ) )
tau = rnorm(p , 0 , 1)

#> Simulate GE e f f e c t s

# 1. Simulate Ge

Ce = matrix (0 , p , p )
Ce [upper . t r i (Ce ,F ) ] = runif (p ∗ (p − 1)/2 , 0 . 4 , 1)
Ce = Ce + t (Ce ) ; diag (Ce) = 1
De = diag (1/rgamma(p , shape = 5 , ra t e = 5) )
Ge = sqrt (De) %∗% Ce %∗% sqrt (De)

# 2. Decompose Ge and take f i r s t k terms

U = svd (Ge)$u [ , 1 : k ]
L = diag (svd (Ge)$d [ 1 : k ] )

# 3. Obtain c o va r i a t e s and s l o p e s

S = U
s l op e s = scale (matrix (rnorm( k ∗ v ) , ncol = k ) )
s l o p e s = c (matrix ( s l ope s , ncol = k) %∗% sqrt (L) )

# 4. Construct GE e f f e c t s

Z = kronecker (diag ( v ∗ p ) , rep (1 , b ) )
u = kronecker (S , diag ( v ) ) %∗% s l o p e s

# Obtain genotype main e f f e c t s

ug = rowMeans (matrix (u , ncol = p ) )

#> Simulate p l o t e r ro r s

H2 = abs (rnorm(p , H2 , 0 . 1 ) )
H2 [H2 < 0 ] = 0 ; H2 [H2 > 1 ] = 1
R = diag (diag (De) / H2 − diag (De ) )
e = c (matrix (rnorm(p∗b∗v ) , ncol = p) %∗% sqrt (R) )

#> Create phenotypes

y = mu + X %∗% tau + Z %∗% u + e

# Construct MET da ta s e t

df .MET = data . frame (
env = factor ( rep ( 1 : p , each = v ∗ b ) ) ,
rep = factor ( 1 : b ) ,
id = factor ( rep ( 1 : v , each = b ) ) ,
y = y ,
u = rep (u , each = b ) ,
e = e
)
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# Order MET and randomise by t r i a l

df .MET = df .MET[ order (df .MET$env , df .MET$rep ) , ]
for ( i in 0 : ( p ∗ b − 1)){

df .MET[ i ∗v+1:v , ] = df .MET[ i ∗v+1:v , ] [ sample ( 1 : v , v ,F ) , ]
}

#> Run model

as r = asreml (y ~ 1 + env ,
random = ~ r r (env , 4 ) : id +

diag (env ) : id ,
r e s i d u a l = ~ dsum(~un i t s | env ) ,
na . action = na . method ( " inc lude " ) ,
data = df .MET)
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