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ABSTRACT4

This paper presents a general framework for simulating plot data in multi-environment field trials5
with one or more traits. The framework is embedded within the R package FieldSimR, whose core6
function generates plot errors that capture global field trend, local plot variation, and extraneous7
variation at a user-defined ratio. FieldSimR’s capacity to simulate realistic plot data makes it a8
flexible and powerful tool for a wide range of improvement processes in plant breeding, such as9
the optimization of experimental designs and statistical analyses of multi-environment field trials.10
Therefore, FieldSimR provides crucial functionality that is currently missing in other software for11
simulating plant breeding programmes. The paper includes an example simulation of a field trial12
to evaluate a set of 100 maize hybrids for two traits across three environments. To demonstrate13
FieldSimR’s value as an optimisation tool, the simulated data set is then used to compare eight14
spatial models for their capacity to accurately predict the maize hybrids’ genetic values and to15
reliably estimate the variance parameters of interest.16

Keywords: Simulation, Spatial variation, Plot error, Multi-environment field trials17

1 INTRODUCTION

This paper presents a general framework for simulating plot data in multi-environment field trials with one18
or more traits. The framework is embedded within the R package FieldSimR, whose core function generates19
plot errors that capture global field trend, local plot variation, and extraneous variation. FieldSimR’s capacity20
to simulate realistic plot data makes it well-suited to a wide range of improvement processes in plant21
breeding, such as the optimization of experimental designs and statistical analyses of multi-environment22
field trials. It is also well-suited to a range of education purposes, such as teaching the principals of spatial23
modelling and analysing multi-environment trial data.24
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Plant breeding programmes continuously evaluate, select and release improved genotypes in order to25
meet the complex and dynamic requirements of different customer groups, including farmers, processors26
and end-users (Covarrubias-Pazaran et al., 2022). The resources required to compare different improvement27
strategies in the field, however, can quickly exceed the practical possibilities of a plant breeding programme.28
Often, multiple factors must be evaluated simultaneously over several years or even decades to identify an29
optimised breeding strategy. This requires a pragmatic approach to identify profitable long-term strategies30
in plant breeding programmes.31

Simulation is a fast and cost-efficient tool for comparing different breeding strategies over time (Gaynor32
et al., 2021). Interestingly, this is not a new concept. Simulations have been utilised by plant and animal33
breeders for almost a century, beginning with the application of the Breeder’s equation (Lush, 1937), a form34
of deterministic simulation to predict genetic gain based on selection intensity, selection accuracy, genetic35
variance, and generation interval. However, only recently, with the availability of modern computers36
and flexible software have breeders and researchers been granted access to more powerful stochastic37
simulation for optimising entire breeding programmes across multiple generations. Currently available38
software includes QU-GENE (Podlich and Cooper, 1998), ADAM-plant (Liu et al., 2019), and ChromaX39
(Younis et al., 2023), as well as the R packages Selection Tools (Frisch, 2023), and AlphaSimR (Gaynor40
et al., 2021). These software applications can be used, for example, to compare different crossing and41
selection strategies over time. They lack, however, the functionality to simulate realistic plot data in42
multi-environment field trials. This capacity is necessary to evaluate the impact of different experimental43
designs, multi-environment testing strategies, and statistical analyses on the performance of a breeding44
programme.45

The motivation to simulate realistic plot data has stemmed from the importance of spatial variation in46
plant breeding field trials (see, for example, Wilkinson et al., 1983; Besag and Kempton, 1986; Cullis and47
Gleeson, 1991; Rodrı́guez-Álvarez et al., 2018; Piepho et al., 2022). Spatial variation occurs naturally in48
field trials laid out as a two-dimensional lattice of plots (Gogel et al., 2023), and can account for more than49
50% of the total phenotypic variation. Spatial variation can be broadly categorised as either global trend,50
local variation or extraneous variation (Gilmour et al., 1997). Global trend occurs on a large scale across51
the field, such as large scale moisture and fertility gradients (Green et al., 1985). Local variation occurs on52
a small scale between neighbouring plots. It may reflect small scale changes in soil composition (trend) or53
random error (noise), such as measurement error and within-plot variability (Besag, 1977). Conversely,54
extraneous variation is predominately induced during the conduct of the trial, and as a result is often55
aligned with the columns and rows. It may reflect management practices, such as serpentine harvesting and56
spraying, multi-plot seeders that sow multiple plots simultaneously, or inaccurate trimming resulting in57
unequal plot lengths (Stefanova et al., 2009). The complexity and importance of spatial variation dictate58
the need for a framework to simulate plot errors that capture the main components of spatial variation.59

FieldSimR is an R package for simulating plot errors in multi-environment field trials that comprise global60
and local trend, random error, and extraneous variation. It also provides compatibility with AlphaSimR61
to simulate plot phenotypes. This makes FieldSimR a powerful tool for a wide range of improvement62
processes, such as:63

• Comparing spatial modelling approaches, e.g., separable autoregressive processes, tensor product64
penalised splines, and nearest neighbour adjustments.65

• Comparing experimental designs for single- and multi-environment studies, e.g., fully-replicated66
designs, p-rep designs and sparse testing designs.67

Frontiers 2



Werner et al. FieldSimR: An R package for simulating plot data in field trials

• Comparing approaches for analysing multi-environment trial data, e.g., random regressions and factor68
analytic models.69

The paper is arranged as follows. The Methods section presents the theoretical framework for simulating plot70
errors, which are constructed by combining spatial error, random error, and extraneous error components at71
a user-defined ratio. The Results and Discussion section introduces an example simulation of a field trial to72
evaluate a set of 100 maize hybrids for two traits across three environments. To demonstrate FieldSimR’s73
value as an optimisation tool, the simulated data set is then used to compare eight spatial models for74
their capacity to accurately predict the maize hybrids’ genetic values and reliably estimate the variance75
parameters of interest.76

2 METHODS

This section presents the framework in FieldSimR for simulating plot errors in multi-environment field77
trials. FieldSimR generates plot errors by combining spatial error, random error and extraneous error78
components at a user-defined ratio. The simulation framework is initially developed for a single trait and79
then generalised for multiple traits.80

2.1 Framework for simulating sinlge-trait plot errors in multi-environment field trials81

Assume a single-trait multi-environment trial (MET) dataset comprises p environments with n plots82
in total, where n =

∑p
j=1 nj and nj is the number of plots in environment j. Also assume that each83

environment is laid out as a two-dimensional lattice of plots such that nj = cj × rj , where cj and rj are the84

number of columns and rows, respectively. The n-vector of plot errors is then given by ε =
(
ε⊤1, . . . , ε

⊤
p

)⊤,85
where εj is the nj-vector of plot errors for environment j (ordered as rows within columns). The vector86
εj comprises the main components of spatial variation, i.e. global and local trend, random error, and87
extraneous variation.88

FieldSimR constructs the vector of plot errors as the sum of three terms:89

εj = sj + rj + ej , (1)

where sj is a vector of errors that capture spatial trend, rj is a vector of random errors, and ej is a vector90
of errors that capture extraneous variation. The errors in sj and ej are hereafter referred to as the spatial91
and extraneous errors, respectively. All terms are simulated as mutually independent with zero means and92
variance components given by σ2sj , σ2rj , and σ2ej , respectively. The total plot error variance is then given by93

σ2εj = σ2sj + σ2rj + σ2ej .94

2.1.1 Spatial error95

The errors in sj capture both global and local trend, such as large scale fertility gradients (Green et al.,96
1985) and small scale changes in soil composition (Gilmour et al., 1997). The vector sj is generated in97
FieldSimR using either bivariate interpolation (Akima, 1978) or a separable autoregressive process (Box98
and Jenkins, 1970).99

Bivariate interpolation is implemented through the interp function in the R package interp (Gebhardt100
et al., 2023), which applies piece-wise linear interpolation across the two-dimensional lattice of plots. An101
example field array with spatial trend generated using bivariate interpolation is presented in Figure 1. The102
field array comprises cj = 10 columns and rj = 20 rows for nj = 200 plots in total. The field spans103
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80 m long in the column direction and 40 m wide in the row direction, with rectangular plots 8 m long104
by 2 m wide (Figure 1a). There are two square blocks aligned in the column direction (“side-by-side”),105
with 100 plots in each block. Four interpolation (knot) points are placed outside the four corners of the106
field, which prevents continuity issues that occur at the interpolation boundary. The z-values at these107
points were sampled from a standard normal distribution, with z = 2.56, 1.08, 0.43, and −2.56 for this108
example (clockwise from top left). The continuous array between the knot points is then interpolated,109
which produces a smooth continuous surface across the lattice of plots (Figure 1b). A single error value110
is assigned to each plot by averaging over the continuous surface within each plot (Figure 1c). The error111
values are then scaled to the defined spatial error variance for each environment, σ2sj . This produces the112
vector of spatial errors, sj .113

The complexity of spatial trend can be controlled in FieldSimR by setting the number of additional knot114
points sampled inside the field array. By altering the complexity, users can explicitly change the ratio115
of global to local trend. The example in Figure 1 has no additional knot points besides those at the four116
corners, so the simulated spatial error predominately captures global trend with minimal or no local trend.117
Three additional examples are presented in Figure 2, which have 5, 10, and 50 knot points, respectively.118
The knot points are sampled from a continuous uniform distribution defined by all points in the continuous119
array. This means that more than one knot point can be sampled for each plot. The position of the knot120
points and corresponding z-values are presented in Supplementary Figure S1, which displays the smooth121
continuous surface for the examples in Figure 2.122

The examples demonstrate FieldSimR’s capacity to generate global and local trend, as well as within-plot123
variability. Increasing the complexity will generate more local trend relative to global trend, up to a point124
where the errors capture minimal or no trend (i.e., only noise). At this point, numerous knot points may125
be sampled for each plot which may further increase the amount of within-plot variability. By default,126
FieldSimR sets the number of knot points to half the maximum of the number of columns and rows. For127
example, the default complexity for a field trial with 20 columns and 10 rows is given by max(20,10)/2128
= 10 knot points (see, for example, Figure 2b). This generally provides a good ratio of global to local129
trend, but users are encouraged to alter the complexity as required.130

Trellis plots for the three examples are presented in Supplementary Figure S2. These plots also131
demonstrate that various ratios of global to local trend can be generated by altering the complexity. For132
example, the first plot demonstrates a gradual decrease in spatial error as the row number increases, which133
is a classical sign of global trend in field trials. In contrast, the last plot demonstrates more small-scale134
fluctuations between neighbouring columns and rows, which is a sign of local trend. It is important to note135
that bivariate interpolation is a smoothing function, rather than a stochastic process, so the errors are not136
simulated as random variables.137

The separable autoregressive process simulates spatial errors as random variables based on a stochastic138
variance matrix. Separable autoregressive processes explicitly model spatial dependence (correlation)139
between neighbouring plots, rather than a smooth continuous surface across the field. In this case,140
FieldSimR simulates the vector of spatial errors as:141

sj ∼ N
(
0, σ2sjSj

)
, (2)

where σ2sj is the spatial error variance and Sj is the stochastic variance matrix, which is constructed as:142

Sj = Σcj

(
ρcj

)
⊗Σrj

(
ρrj

)
, (3)
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where ρcj is the column autocorrelation parameter with cj × cj correlation matrix Σcj and ρrj is the row143
autocorrelation parameter with rj × rj correlation matrix Σrj . FieldSimR has the capacity to generate144
errors based on a separable first order autoregressive process (AR1). Note that, in contrast to bivariate145
interpolation, the autoregressive process is not based on plot dimensions, since they are implicitly modelled146
through ρcj and ρrj (see Gilmour et al., 1997). This approach allows users to implement estimates of ρcj147
and ρrj previously obtained from empirical analyses of field trial data.148

The ratio of global to local trend can be controlled by altering the column and row autocorrelation149
parameters. Decreasing the autocorrelation parameters will effectively increase the complexity of the150
spatial trend, in the sense that more local trend will be generated relative to global trend, up to a point151
where the errors capture minimal or no trend (i.e., only noise). This occurs when the autocorrelation152
parameters are set to zero. Three examples are presented in Supplementary Figure S3, which show spatial153
trend generated using a separable first order autoregressive process with (a) ρc = 0.7 and ρr = 0.9, (b)154
ρc = 0.5 and ρr = 0.7, and (c) ρc = 0.3 and ρr = 0.5. The theoretical and sample variograms for these155
examples are presented in Supplementary Figure S4. These examples demonstrate the stochastic nature of156
the spatial errors generated based on autoregressive processes.157

The methods above for generating global and local trend will be well-suited to most applications.158
However, some users may want to explicitly set the amount of global and local trend without fine-tuning159
the complexity or the autocorrelation parameters. In this case, users may simulate trend as the sum of160
two components, i.e., global trend (with no to low complexity) and local trend (with moderate to high161
complexity or low to moderate autocorrelations). This is left to the discretion of the user.162

2.1.2 Random error163

The errors in rj capture local variation that is not trend, such as measurement error and intrinsic variability164
within the plots (Besag, 1977; Wilkinson et al., 1983). FieldSimR simulates the vector of random errors as:165

rj ∼ N
(
0, σ2rjInj

)
, (4)

where σ2rj is the random error variance and Inj is an identity matrix of order nj .166

2.1.3 Extraneous error167

The errors in ej capture extraneous variation predominately induced during the conduct of the trial, such168
as serpentine harvesting or spraying and unequal plot dimensions (Gilmour et al., 1997; Stefanova et al.,169
2009). This type of variation is assumed to be aligned exclusively with the columns and rows of the trial.170
FieldSimR constructs the vector of extraneous errors as the sum of two terms:171

ej = Zcjecj + Zrjerj (5)

where ecj is the vector of column errors with nj × cj design matrix Zcj and erj is the vector of row errors172
with nj × rj design matrix Zrj . The design matrices are given by Zcj = Icj ⊗ 1rj and Zrj = 1cj ⊗ Irj .173
The column and row errors are simulated as:174

ecj ∼ N
(
0, σ2ecj

Icj
)

and erj ∼ N
(
0, σ2erj

Irj
)
, (6)
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where σ2ecj
is the column error variance with identity matrix Icj and σ2erj

is the row error variance with175

identity matrix Irj . The column and row error variances are set based on whether column and/or row errors176
are simulated, such that σ2ej = σ2ecj

+ σ2erj
.177

FieldSimR has the capacity to generate extraneous errors based on zig-zag or random ordering across178
neighbouring columns and rows. The zig-zag ordering is achieved by alternating positive and negative179
values between neighbouring columns and rows. The two examples in Figure 3 demonstrate the two types180
of extraneous variation. The first example demonstrates a zig-zag pattern, with the extraneous errors in181
odd row numbers being consistently higher than those in even row numbers (mean of +0.37 compared182
to -0.37). This type of non-stationarity is a classical sign of extraneous variation attributed to systematic183
management practices, such as serpentine harvesting and spraying. The second example demonstrates a184
more stochastic pattern in which the errors may be attributed to random processes, such as inaccurate plot185
trimming resulting in unequal plot dimensions. Interested users may also manipulate the above functionality186
to simulate intraplot competition, typically observed as a negative correlation between neighbouring rows187
(Durban et al., 2001; Stringer et al., 2011).188

2.1.4 Total error189

FieldSimR constructs the total plot errors in Equation 1 by combining the spatial errors with the random190
and extraneous errors according to a user-defined ratio. The desired ratio is applied by setting the proportions191
of spatial error and extraneous error, with the remaining proportion assigned to random error. By default,192
FieldSimR sets the proportion of spatial error to 0.5 and extraneous error to 0, resulting in a random error193
proportion of 0.5.194

2.2 Extension to multiple traits195

FieldSimR has the capacity to simulate correlated plot errors across multiple traits. The correlation matrix196
between traits can be set for the spatial, random and extraneous errors, respectively. By default, FieldSimR197
fits a separable correlation structure between traits and environments (Bančič et al., 2023), but note that198
different error variances can be set for different environment-within-trait combinations. It is also important199
to note that when bivariate interpolation is used, the correlation matrix for the spatial error is applied to the200
z-values at the knot points, not the spatial errors themselves. This is because the spatial errors generated by201
bivariate interpolation do not have an assumed covariance structure.202

3 RESULTS AND DISCUSSION

FieldSimR is an R package for simulating plot errors that comprise global and local trend, random error, and203
extraneous variation. This functionality makes FieldSimR a powerful tool for a wide range of improvement204
processes, such as the comparison of different spatial modelling approaches. This section demonstrates205
the simulation and analysis of a field trial which evaluates 100 maize hybrids for two traits across three206
environments. In the first part, FieldSimR is used to simulate multi-environment plot errors, genetic values207
and phenotypes for the 100 maize hybrids. In the second part, eight spatial models are compared for their208
ability to accurately predict the true genetic values of the simulated hybrids and to reliably estimate the209
true variance parameters of interest.210
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3.1 Simulation example211

Consider a scenario in which 100 maize hybrids are evaluated for grain yield (t/ha) and plant height (cm)212
in a field trial across three environments. The simulation of the maize phenotypes with FieldSimR involves213
three steps:214

1. Simulation of plot errors.215

2. Simulation of genetic values.216

3. Simulation of phenotypes by combining the plot errors with the genetic values.217

3.1.1 Simulation of plot errors218

Plot errors for grain yield and plant height were simulated assuming independence between traits and219
environments. Environments 1 and 2 comprised two blocks each, while environment 3 comprised three220
blocks. The blocks were aligned in the column direction (“side-by-side”) and comprised 5 columns and 20221
rows for 100 plots in each block. The plots were 8 m long in the column direction by 2 m wide in the row222
direction.223

To obtain target heritabilities of H2 = 0.3 for grain yield and H2 = 0.5 for plant height in all three224
environments, the total error variances for the two traits were defined relative to their genetic variances as225
described in the Supplementary Script S10. The simulated plot errors comprised spatial error, random error,226
and extraneous error terms. The spatial error was simulated using bivariate interpolation with complexity227
set to 10 and proportion of spatial error variance set to 0.4 in all three environments. The extraneous228
error was simulated using zig-zag ordering across neighbouring rows. The proportion of extraneous error229
variance was set to 0.2 in all three environments. This resulted in a proportion of random error variance230
given by 1 - (0.4 + 0.2) = 0.4.231

e r r o r d f <− f i e l d t r i a l e r r o r ( n e n v s = 3 ,
n t r a i t s = 2 ,
n b l o c k s = c ( 2 , 2 , 3 ) ,
n c o l s = c ( 1 0 , 1 0 , 1 5 ) ,
n rows = 20 ,
b l o c k d i r = ” c o l ” ,
va r R = c ( 0 . 2 0 , 0 . 2 8 , 0 . 1 4 , 1 5 . 1 , 8 . 5 , 1 1 . 7 ) ,
s p a t i a l m o d e l = ” B i v a r i a t e ” ,
c o m p l e x i t y = 10 ,
p l o t l e n g t h = 8 ,
p l o t w i d t h = 2 ,
p r o p s p a t i a l = 0 . 4 ,
p r o p e x t = 0 . 2 ,
e x t d i r = ” row ” ,
e x t o r d = ” z ig −zag ” ,
r e t u r n e f f e c t s = TRUE)

232

The simulated spatial errors, extraneous errors, random errors, and the total plot errors stored in233
error df are presented in Figure 4.234
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3.1.2 Simulation of genetic values235

Genetic values for grain yield and plant height across three environments were simulated based on236
an unstructured model for genotype-by-environment (GxE) interaction. The simulation was done in237
AlphaSimR (Gaynor et al., 2021), using FieldSimR’s wrapper functions unstr asr input() and238
unstr asr output(). The R code can be found in Supplementary Script S10. The simulated genetic239
values can be directly accessed through the package’s example data frame df gv unstr, which was used240
to simulate phenotypes, as described below. The simulated genetic values for trait 1 in environment 1 are241
presented in Figure 4.242

In addition to the unstructured model, FieldSimR provides wrapper functions for simulating genetic243
values based on a compound symmetry model for GxE interaction. Alternatively, users can provide their244
own set of genetic values, e.g. through simulation or previously obtained from empirical analyses.245

3.1.3 Simulation of phenotypes246

Phenotypes for grain yield and plant height were simulated by combining the simulated plot errors247
with the genetic values stored in FieldSimR’s example data frame df gv unstr. The genotypes were248
randomly allocated to plots according to a randomised complete block design (RCBD).249

p h e n o d f <− make pheno types ( g v d f = d f g v u n s t r ,
e r r o r d f = e r r o r d f $ p l o t d f ,
r andomise = TRUE)

250

The phenotypes are presented together with the plot errors and genetic values in Figure 4. Note that251
FieldSimR does not provide functionality to generate experimental designs other than an RCBD. Users are252
encouraged to generate alternative experimental designs externally, e.g. with R packages such as agricolae253
(de Mendiburu, 2023), odw (Butler, 2021), and DiGGer (Coombes, 2020).254

3.2 Comparison of spatial models255

The comparison of spatial models is demonstrated using the simulated grain yield data in environment 1.256
A sequential approach was adopted for model fitting following Gilmour et al. (1997), with global trend257
and extraneous variation diagnosed using the sample variogram and accounted for using fixed and random258
model terms. This resulted in eight different spatial models, including a baseline model, three models with259
a separable first order autoregressive (AR1) process, two models with a tensor product penalized spline260
(TPS), and two models implementing nearest neighbour (NN) adjustments (Table 1). All models were fitted261
using ASReml-R (Butler et al., 2018) or SpATS (Rodrı́guez-Álvarez et al., 2018), and are summarised in262
Table 1.263

The spatial models were evaluated in three ways (Table 2):264

1. The prediction accuracy was calculated using Pearson’s correlation coefficient (r) between the265
simulated true genetic values and the predicted values.266

2. The model fit was assessed using the residual maximum likelihood ratio test (REMLRT) and the267
Akaike information criterion (AIC).268

3. The reliability was calculated as the bias between the simulated true genetic variance parameter and269
the estimated parameter.270
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Note that the expected prediction accuracy for the data set is 0.68, based on the simulation parameters.271
Also note that the REMLRT is based on the positive variance parameter approach of Stram and Lee (1994)272
and the AIC is based on the full log-likelihood approach of Verbyla (2019), which can compare models273
with different fixed effects. Typical experimental design and data checks were performed prior to model274
fitting (Supplementary Figure S5).275

3.2.1 Baseline model276

The analyses commenced by fitting a baseline linear mixed model, which included random genotype and277
block effects and an independent (ID) error model (Table 1). This model reflects a classical complete block278
analysis that assumes independent genotypes, blocks and residuals. The estimated genetic variance was279
σ̂2g = 0.02, which was substantially lower than the true value of 0.09 (bias = 0.07; Tables 2 and 3). The280
accuracy of the baseline model was also lower than the expected accuracy (r = 0.65 compared to 0.68;281
Table 2).282

3.2.2 Separable first order autoregressive processes283

The sequence of models 1-3 comprises three variants of a model that implemented a random genotype284
effect, block effects and a separable first order autoregressive (AR1) process (Table 1). The separable AR1285
process represents a random process which assumes correlated residuals in two dimensions, i.e., in column286
and row direction (Martin, 1990; Cullis and Gleeson, 1991).287

Model 1 did not include the ID error model. The estimated genetic variance was 0.07, which provided288
a much better estimate of the true value than the baseline model (bias = 0.02; Tables 2 and 3). Model 1289
also provided a significantly better fit than the baseline model in terms of LRT (p < 0.0001) and AIC290
(-94.4 compared to -66.7), and a substantially higher prediction accuracy (0.72), as shown in Table 2. The291
estimated column and row autocorrelations were ρ̂c = 0.51 and ρ̂r = 0.23 (Table 3).292

Model 2 reintroduced the ID term, which acted as an uncorrelated random error component (Besag,293
1977). It provided a significantly better fit than Model 1, and was also more accurate (Table 2). The294
estimated column and row autocorrelations were ρ̂c = 0.95 and ρ̂r = 0.87, which were substantially295
higher than in Model 1 (Table 3). This indicates that the AR1 process captured (highly correlated) spatial296
trend, while the ID term captured the remaining random error. The sample variogram in Figure 5a shows a297
zig-zag pattern between neighbouring rows, with consistently higher semivariances for odd displacements298
compared to even displacements (also see Supplementary Figure S6). The sill of the variogram shows that299
the semivariances do not fall within the sample quantiles (Figure 5c). This is a classical sign of extraneous300
variation attributed to systematic practices, which matches the extraneous error simulated in this dataset.301

Model 3 fitted a fixed and random row term to model this extraneous variation, following Gilmour et al.302
(1997). The fixed term was coded as 1 for odd row numbers and 2 for even row numbers (Stefanova et al.,303
2009). The significance of the fixed term was assessed using a Wald F-test with denominator degrees of304
freedom (p < 0.001; Kenward and Rogers, 1997). The estimated variances in Model 3 were σ̂2s = 0.09,305
σ̂2r = 0.08, and σ̂2er = 0.05, which closely matched the true values (Table 3). The estimated column306
autocorrelation decreased to ρ̂c = 0.68 compared to Model 2. Model 3 provided a significantly better fit307
than Model 2, and was also more accurate (Table 2). The sample variogram in Figure 5b no longer shows a308
zig-zag pattern. Instead, a discontinuity is shown at 0 displacement, reflecting the random error variance,309
followed by a gradual incline in the column direction. This type of non-stationarity is a sign of global310
trend in the column direction, which matches the spatial error simulated in this dataset. However, the sill311
of the variogram shows that the semivariances fall within the sample quantiles (Figure 5d). The observed312
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non-stationarity is, therefore, an artefact of the correlated AR1 process, rather than global trend requiring313
further remediation.314

3.2.3 Tensor product penalised splines315

The sequence of models 4-5 used a tensor product penalised spline (TPS), fitted using the SpATS package316
in R (Rodrı́guez-Álvarez et al., 2018). A cubic B-spline basis was used with 6 knots in the column direction317
and 12 knots in the row direction, following Velazco et al. (2017). The TPS included fixed column, row,318
and interaction terms as well as five random spline components.319

Model 4 was more accurate and showed a better fit than the baseline model (Table 2), but was less320
accurate than any of three models implementing the separable AR1 process. Like for Model 2, the sample321
variogram shows a zig-zag patterns (Supplementary Figure S7), indicating that a better model fit could be322
obtained by including random row terms.323

Model 5 is an extension of Model 4 to include random column and row terms. This model is equivalent324
to the SpATS approch of Rodrı́guez-Álvarez et al. (2018). Model 5 was more accurate and provided a325
significantly better fit than Model 4 (Table 2). It was, however, less accurate than the best model using326
the separable AR1 process (Model 3), despite having five more model parameters (Table 1). The sample327
variogram of Model 5 no longer shows a zig-zag pattern (Supplementary Figure S8).328

3.2.4 Nearest neighbour adjustments329

The sequence of models 6-7 implemented nearest neighbour (NN) adjustments to the phenotypes330
(Papadakis, 1937; Bartlett, 1978). The adjustments were obtained by averaging over neighbouring plots331
using the mvngGrAd package in R (Technow, 2015). The grids used for Models 6 and 7 are shown in332
Supplementary Figure S9. Both models were fitted in ASReml-R, with model terms equivalent to the333
baseline model (Table 1). Model 6 was more accurate than Model 7, but both models were less accurate334
than Model 3 (Table 2) and proved insufficient to effectively capture local trend. The estimated variances335
ranged from σ2g = 0.06 to 0.08 and σ2r = 0.14 to 0.17 (Table 3). Note that the model fit criteria in Table 2336
cannot compare models with different (adjusted) phenotypes, so that the final model was selected based on337
the ratio of genetic to total phenotypic variance.338

4 CONCLUDING REMARKS

FieldSimR’s capacity to simulate realistic plot errors that capture global field trend, local plot variation,339
and extraneous variation makes it a flexible and powerful tool for various improvement processes in plant340
breeding. In contrast to real-world experimental data, FieldSimR enables the efficient and comprehensive341
assessment of trial designs and analysis models on a large scale, across an extensive array of scenarios.342
Furthermore, it allows for an unbiased comparison of designs and models for their capacity to generate343
accurate predictions of genetic values and to reliably estimate variance parameters of interest, as the true344
values are defined by the user and, therefore, are known.345

FieldSimR has been extensively deployed as part of the Excellence in Breeding (EiB) initiative to provide346
guidance on the improvement of field trial design and analysis strategies across numerous CGIAR breeding347
programmes.348
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Table 1. Linear mixed models fitted to the simulated maize breeding dataset, Part 1: Summary of model
terms.

Fixed Random Residual
Model Terms Col Row Col:Row Hybrid Block Col Row Spline AR1 ID

baseline ID ✓ ✓ ✓
1 AR1 ✓ ✓ ✓
2 AR1 + ID ✓ ✓ ✓ ✓
3 AR1 + ID + Frow + Rrow ✓ ✓ ✓ ✓ ✓ ✓
4 TPS + ID ✓ ✓ ✓ ✓ ✓ ✓ ✓
5 TPS + ID + Rcol + Rrow ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
6 NN0 + ID ✓ ✓ ✓
7 NN1 + ID ✓ ✓ ✓

Presented for each model are the fixed, random, and residual terms. All models also include an overall mean.
Model 5 is equivalent to the SpATS approach of Rodrıguez-Alvarez et al. (2018). The grids used in the
NN adjustments are presented in Supplementary Figure 8. Note: AR1 - separable first order autoregressive
process; ID - independent error term; TPS - tensor product penalised spline; NN - nearest neighbour
adjustment.

Table 2. Linear mixed models fitted to the simulated maize breeding dataset, Part 2: Model selection
criteria.

Model Fixed Vars -2 loglik REMLRT AIC avsed Accuracy Bias
baseline 1 3 -70.4 -66.7 0.274 0.65 0.07

1 1 5 -99.1 < 0.0001 -94.4 0.260 0.72 0.02
2 1 6 -113.7 < 0.0001 -103.7 0.249 0.74 0.02
3 2 7 -133.4 -126.6 0.247 0.76 0.02
4 4 8 -110.8 -93.8 0.226 0.69 0.05
5 4 10 -135.7 <0.0001 -116.7 0.245 0.72 0.02
6 1 3 -103.8 -102.0 0.279 0.71 0.01
7 1 3 -94.2 -94.7 0.270 0.70 0.03

Presented for each model are the number of fixed effects and variance parameters,
residual deviance, REMLRT, AIC, average standard error of difference (avsed),
accuracy and the bias. The selected models are distinguished with bold font. Note:
The REMLRT is applied sequentially and cannot compare models with different fixed
effects. Models 6 and 7 are not comparable because the phenotypes have been adjusted.
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Figure 1. Demonstration of how FieldSimR generates spatial errors using bivariate interpolation: (a) the
two-dimensional lattice of plots is constructed with four interpolation (knot) points placed outside the
four corners, (b) the continuous array between the knot points is interpolated using bivariate interpolation,
which produces a smooth continuous surface, (c) a single error value is assigned to each plot by averaging
over the continuous surface within each plot.
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Figure 2. Examples of spatial errors generated using bivariate interpolation with (a) 5, (b) 10, and (c) 50
knot points. These options are set using complexity = 5, 10, and 50. The coordinates of the knot
points are presented in Supplementary Figure 2.
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Figure 3. Examples of extraneous errors generated using (a) zig-zag or (b) random ordering.
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Figure 4. Demonstration of how FieldSimR generates phenotypes: (a) the plot errors are constructed by
combining the spatial errors with the random and extraneous errors at a user-defined ratio, (b) the phenotypes
are generated by combining the plot errors with the true genetic values obtained from AlphaSimR. A
randomised complete block design is used to allocate genotypes to plots.

Frontiers 18



Werner et al. FieldSimR: An R package for simulating plot data in field trials

Figure 5. Sample variograms for the AR1 based models fitted to the simulated plot data in Figure 4:
(a) Model 2: AR1+ID and (b) Model 3: AR1+ID+Frow+Rrow. The corresponding variogram sills are
presented in (c) for Model 2 and (d) for Model 3. Note: Only semi-variances based on more than 30 pairs
are shown. AR1 - separable first order autoregressive process; ID - independent error term, Frow - fixed
row term; Rrow - random row term.
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