Course roadmap

Day 1: Simulation of breeding programmes **BASICS**

Day 2: ... Quantitative genetics

Day 3: ... Estimation with linear mixed models

Day 4: ... Spatial variation & GxE interactions

Day 5: ... Ancestral recombination graphs

Day 5 agenda – Ancestral Recombination Graphs

- 09:00-10:30 Spatial modelling, ARG
- 10:30-11:00 Refreshments break
- 11:00-12:30 ARG
- 12:30-13:30 Lunch break
- 13:30-15:00 ARG / ARG Practicals
- 15:00-15:30 Refreshments break
- 15:30-17:00 ARG Practicals / Open-end

Spatial modelling improves genetic evaluation in smallholder breeding programs

Gregor Gorjanc, Chris Gaynor, Jon Bancic, Daniel Tolhurst

UNE, Armidale 2024-02-09

Learning objectives

Separating genetic and environmental effects is a critical component of any quantitative genetics model

- Showcase challenge and solution for modelling data from smallholder settings
- Aside: APY approximation

Modelling environmental effects

Naïve model

 $y = Xb + Za + e^*$ $a \sim N(0, A\sigma_a^2)$ $e^* \sim N(0, E\sigma_{e^*}^2)$

• Model contemporary group effect, say, herd, herd-season, ...

y = Xb + Za + Wh + e $a \sim N(0, A\sigma_a^2)$ $h \sim N(0, H\sigma_h^2)$ $e \sim N(0, E\sigma_e^2)$

- Extensive literature on "fixed" vs. "random" treatment due to data structure or views/opinions:
- unbalanced designs & bias
- ability to estimate effects

•

Challenge with small contemporary groups

https://doi.org/10.3168/jdsc.2021-0092 Short Communication Genetics

Genomic evaluations using data recorded on smallholder dairy farms in low- to middle-income countries

Owen Powell,¹* [©] Raphael Mrode,^{2,3} [©] R. Chris Gaynor,¹ Martin Johnsson,^{1,4} [©] Gregor Gorjanc,¹ [©] and John M. Hickey¹

Challenge with small contemporary groups

Environmental/Spatial modelling

• A solution?

- borrow information from neighbours (spatial model) and/or
- measure key environmental indicators (location covariates)

Selle et al. Genet Sel Evol (2020) 52:69 https://doi.org/10.1186/s12711-020-00588-w

RESEARCH ARTICLE

Spatial modelling improves genetic evaluation in smallholder breeding programs

Maria L. Selle^{1*}^o, Ingelin Steinsland¹, Owen Powell², John M. Hickey² and Gregor Gorjanc²

Simulation

- Smallholder breeding programme
- Connectedness scenarios

- Phenotype = Location + Herd + Genetics + Noise
 0.40
 0.25
 0.10
 0.25
- Location = sum of 10 spatially varying covariates (rainfall, temp, ...)
- Observe 5 covariates with noise and 2 as binary indicators

Spatial modelling

Phenotype = Location + Herd + Genetics + Noise

- Location
 - Spatial I ~ N(0, Matern(E, Kappa, Var_L))
 - Spatial + Covariates
- Herd h ~ N(0, IVar_H)
- Genetics
 - Pedigree-based $a \sim N(0, A_{ped}Var_A)$
 - Genome-based $\mathbf{a} \sim N(\mathbf{0}, \mathbf{A}_{mar} Var_A)$

SPDE approach (similar idea to APY)

Accuracy of evaluation & prediction (simulation)

Generation - 11 -- 12 GenomicModel - mar - ped

Accuracy of evaluation & prediction (simulation)

Generation - 11 -- 12 GenomicModel - mar - ped

Fig. 5 Posterior mean (**a**) and standard deviation (**b**) of the estimated spatial effect (in units of posterior spatial standard deviation) from model GHS fitted to the real data—the axis units are in km

Estimated variance components

Does it matter? Yes!

Fig. 6 The difference in estimated breeding values (in units of posterior genetic standard deviation) between models GH and GHS by the estimated spatial effect (in units of posterior spatial standard deviation) from model GHS fitted to the real data

Questions?!

APY approximation

- Number of genotyped individuals is growing rapidly!!!!
- Fitting genome-based models is becoming a challenge
 - Marker model scales with number of markers
 - Individual model scales with number of individuals
- Many solutions proposed to manage the scale
- APY (Algorithm for Proven and Young) is one of them
- Showcasing it due to connection to Day 3 and spatial models

Idea

• Pedigree-based model

 $Var(\boldsymbol{a}|\boldsymbol{T}) = \boldsymbol{T}\boldsymbol{D}\boldsymbol{T}^{T}\sigma_{a}^{2} = \boldsymbol{A}\sigma_{a}^{2}$

- if we use MME, we need inverse of A, sparse with pedigree data
- sparse because of pedigree structure (conditioning on parents, Mendelian sampling terms are independent of parents)
- Genome-based model

 $Var(\boldsymbol{a}|\boldsymbol{W}) = \boldsymbol{W}\boldsymbol{W}^T\boldsymbol{\sigma}_{\alpha}^2 = \boldsymbol{G}\boldsymbol{\sigma}_{\alpha}^2$

- if we use MME, we need inverse of **G**, dense with genomic data
- dense because genomic data informs what we share or don't share (no independence)

Idea

- With limited number of markers and large number of ind., we soon incur linear dependencies → we can explain genome of some ind. with genome of other ind.
 & what is not explained is independent
- APY
 - Pick some "core" individuals (=locations/knots in spatial community) & "non-core" individuals
 - Split G between these two
 - Inverse **G** can be made sparse

(Misztal, 2016)

How?

$$Var(\boldsymbol{a}|\boldsymbol{W}) = \boldsymbol{W}\boldsymbol{W}^{T}\sigma_{\alpha}^{2} = \boldsymbol{G}\sigma_{\alpha}^{2}$$
$$\boldsymbol{a}_{c} = \boldsymbol{W}_{c}\boldsymbol{\alpha} + \boldsymbol{r}_{c}$$
$$\boldsymbol{\alpha} \sim N(\boldsymbol{0}, \boldsymbol{I}\sigma_{\alpha}^{2})$$
$$\boldsymbol{r}_{c} \sim N(\boldsymbol{0}, \boldsymbol{I}m\sigma_{\alpha}^{2})$$
$$\boldsymbol{a}_{n} = \boldsymbol{W}_{n}\boldsymbol{\alpha} + \boldsymbol{r}_{n}$$
$$= f(\boldsymbol{a}_{c}) + \boldsymbol{r}_{n}$$

 $E(\boldsymbol{a}_{n}|\boldsymbol{a}_{c}) = E(\boldsymbol{a}_{n}) + Cov(\boldsymbol{a}_{n},\boldsymbol{a}_{c})Var(\boldsymbol{a}_{c})^{-1}(\boldsymbol{a}_{c} - E(\boldsymbol{a}_{c}))$ $Var(\boldsymbol{a}_{n}|\boldsymbol{a}_{c}) = Var(\boldsymbol{a}_{n}) - Cov(\boldsymbol{a}_{n},\boldsymbol{a}_{c})Var(\boldsymbol{a}_{c})^{-1}Cov(\boldsymbol{a}_{c},\boldsymbol{a}_{n})$

How?

$$E(\boldsymbol{a}_{n} | \boldsymbol{a}_{c}) = Cov(\boldsymbol{a}_{n}, \boldsymbol{a}_{c}) Var(\boldsymbol{a}_{c})^{-1}\boldsymbol{a}_{c}$$

$$= \boldsymbol{G}_{n,c} \boldsymbol{G}_{c,c}^{-1} \boldsymbol{a}_{c}$$

$$Var(\boldsymbol{a}_{n} | \boldsymbol{a}_{c}) = Var(\boldsymbol{a}_{n}) - Cov(\boldsymbol{a}_{n}, \boldsymbol{a}_{c}) Var(\boldsymbol{a}_{c})^{-1} Cov(\boldsymbol{a}_{c}, \boldsymbol{a}_{n})$$

$$= \boldsymbol{G}_{n,n} - \boldsymbol{G}_{n,c} \boldsymbol{G}_{c,c}^{-1} \boldsymbol{G}_{c,n}$$

(Misztal, 2016)

Core optimisation

Pocrnic *et al. Genetics Selection Evolution* (2022) 54:76 https://doi.org/10.1186/s12711-022-00767-x

Genetics Selection Evolution

Open Access

RESEARCH ARTICLE

Optimisation of the core subset for the APY approximation of genomic relationships

Ivan Pocrnic^{1*}, Finn Lindgren², Daniel Tolhurst¹, William O. Herring³ and Gregor Gorjanc¹

Core optimisation - algorithms

Algorithm 1 Core subset optimisation using conditional covariance matrix C

Require: n_c , k, and $C_0 = WW^{\top} \triangleright$ Core subset size, Vector for core animals, and Covariance matrix1: for i in 1 to n_c do \triangleright Loop over the core subset2: $k_i \leftarrow argmax(diag(C_{i-1}))$ \triangleright Find the i-th core animal3: $e \leftarrow 0$ \triangleright Update the "selector" vector4: $e_{k_i} \leftarrow 1$ \lor $C_{i-1} - C_{i-1}e_{k_i}(e_{k_i}^{\top}C_{i-1}e_{k_i})^{-1}e_{k_i}^{\top}C_{i-1}$ 5: $C_i \leftarrow C_{i-1} - C_{i-1}e_{k_i}(e_{k_i}^{\top}C_{i-1}e_{k_i})^{-1}e_{k_i}^{\top}C_{i-1}$ \triangleright Update the covariance matrix6: end for

Core optimisation - algorithms

Algorithm 1 Core subset optimisation using conditional covariance matrix C

Require: n_c , k, and $C_0 = WW^{\top} \triangleright$ Core subset size, Vector for core animals, and Covariance matrix1: for i in 1 to n_c do \triangleright Loop over the core subset2: $k_i \leftarrow argmax(diag(C_{i-1}))$ \triangleright Find the i-th core animal3: $e \leftarrow 0$ \triangleright Update the "selector" vector4: $e_{k_i} \leftarrow 1$ \triangleright $C_{i-1} - C_{i-1}e_{k_i}(e_{k_i}^{\top}C_{i-1}e_{k_i})^{-1}e_{k_i}^{\top}C_{i-1}$ \triangleright Update the covariance matrix5: $C_i \leftarrow C_{i-1} - C_{i-1}e_{k_i}(e_{k_i}^{\top}C_{i-1}e_{k_i})^{-1}e_{k_i}^{\top}C_{i-1}$ \triangleright Update the covariance matrix6: end for \bullet

Algorithm 2 Core subset optimisation using conditional SNP genotype matrix ${f W}$

Require: n_c , \mathbf{k} , and $\mathbf{W}_0 = \mathbf{W} \triangleright$ Core subset size, Vector for core animals, and SNP genotype matrix 1: for i in 1 to n_c do \triangleright Loop over the core subset 2: $k_i \leftarrow argmax(diag(\mathbf{W}_{i-1}\mathbf{W}_{i-1}^{\top})) \qquad \triangleright$ Find the i-th core animal 3: $\mathbf{w}_{k_i} \leftarrow \mathbf{W}_{i-1}[k_i,] \qquad \triangleright$ Conditional SNP genotypes of the animal i4: $\mathbf{W}_i \leftarrow \mathbf{W}_{i-1} - \mathbf{W}_{i-1}\mathbf{w}_{k_i}^{\top}\mathbf{w}_{k_i}/(\mathbf{w}_{k_i}\mathbf{w}_{k_i}^{\top}) \qquad \triangleright$ Update the SNP genotype matrix 5: end for

Core optimisation – UMAP visualisation

Core optimisation – UMAP visualisation

Impact on accuracy of prediction

Learning objectives

Separating genetic and environmental effects is a critical component of any quantitative genetics model

- Showcase challenge and solution for modelling data from smallholder settings
- Aside: APY approximation

Questions?!

Spatial modelling improves genetic evaluation in smallholder breeding programs

Gregor Gorjanc, Chris Gaynor, Jon Bancic, Daniel Tolhurst

UNE, Armidale 2024-02-09

