5. Introduction to non-
parameftric curve fitting:
Loess, kernel regression,

reproducing kernel methods,
neural networks

Distinctive aspects of non-parametric
fitting

Objectives: investigate patterns free of strictures
imposed by parametric models

Can produce surprising results

Regression coefficients appear but (typically) do
not have an obvious interpretation

Often have very good predictive performance in
cross-validation

Tuning methods similar to those for parametric
methods




Example: thin-plate splines

N
f(xi):ﬂ0+ﬂlxil+ﬂ2xi2+zaj[(xil_le +(Xi2_xj2 ]log[(xn—xj] +(Xi2_xj2 ]
=1

Risk of heart attack after 19 years as a function of cholesterol level and blood pressure.
Left: logistic regression model. Right: thin plate spline fit. Wahba (2007)

LOESS REGRESSION:

Non-parametric exploration

of inbreeding depression for

yield and somatic cell count
in Jersey cattle




AN OVERVIEW OF LOWESS
REGRESSION

1) DATA POINTS (x;,yi); i = 1,2,....n

2) SPANNING PARAMETER f; 0 < f < 1
k = fn; k = LARGEST INTEGER < fn

3) FOR EACH X, FIND k POINTS x; “CLOSEST" TO X,
N(xo)= NEIGHBORHOOD OF k POINTS

4) COMPUTE A(X()) = maXXiCN(XO)|XO — X||

5) TO EACH (xi,Vi); Xi © N(xo) ASSIGN WEIGHT
o o —xil 1°1°
S = {1‘[ el }

6) FIT BY WEIGHTED LEAST-SQUARES

k
Z Wi(X0)(Yi — Bo — Bixi — Bax?)’

i=1

RETURN §(Xo) = B, — ByXi — BoX2

7) REPEAT FOR EACH OF THE x




ROBUST LOWESS

*STANDARD LOWESS NOT ROBUST

= BASED ON LEAST-SQUARES WEIGHTS

*BI-SQUARE LOWESS

=>RE-WEIGHT POINTS ACCORDING TO RESIDUAL
=>IF RESIDUAL LARGE, WEIGHT IS DECREASED

1) FIT DATA USING STANDARD LOESS

2) CALCULATE LOESS RESIDUALS y; - ¥;
3) COMPUTE q% = medianly; — ¥;|
4) CALCULATE BI-SQUARE ROBUST WEIGHTS
2
SEEH)

5) REPEAT LOESS WITH WEIGHTS r;w;i(xo)

6) REPEAT 2-5 UNTIL LOESS CURVE "CONVERGES”




Example

* Birth rate in US population
(U. S. Department of Health, Education and
Welfare)

* n=96

births per 1000 US population

during 1940-47

Top > Ordinary Least Squares with 1st, 2nd & 3rd degree polynomial
Bottom > LOWESS fit with f = .2, f=.4 & f=.6
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GALTON’S BEND
(Wachsmuth et al. 2003, Am. Stat.)

DIAGRAM gaSED ox TABLE 1.
(all famale huights ave multiplied by 104)

MID-PARENTS ADULT CHILDREN
e their Heights , and Devistaans from 68tinches

o g - e L. . . B . N . .

Figure 1. Galton's fitted regression model.
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Figure 2. SYSTAT piot of Gafton's Data with loess fit.

The dark curve in the center of the plot is a loess smoother

(Cleveland and Devlin 1988). The smoother suggests that the

relation between parent and child stature is not linear. There

is a bend in the curve somewhere around the average height

of approximately 68 inches for parents and children. A two-

stage piecewise linear regression (Hinkley 1971) identifies a

breakpoint at around 70 and finds it highly significant (p <

.0001).

9 Apossibility is that
I Galton ignored
, concealed heterogeneity




Does the bend disappear by disaggregation of the sample?

Analysis of data from Pearson and Lee (1903)
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Figure 3. Pearson’s data.

BEND
STILL
THERE!

Wachsmuth et al. (2003) write:

In their search for universal hereditary laws, Galton and
Pearson were driven by the linear model and the normal distri-
bution because the associated parameters had scientific meaning
for them that went beyond mere description.




INBREEDING DEPRESSION

- Examine relationships of yield (milk,

protein, fat) and somatic cell score (SCS)
with inbreeding coefficient (F) using field
data from US Jerseys

 Use REML, BLUP and "local regression”

method (LOESS) for this purpose

% Inbreeding

LEVEL OF INBREEDING IN HOLSTEINS, USA

Recent Years Based on Calf Registrations

1860 1870 1880 1990 2000 2010

Birth Year




* Relationship between mean value of a
quantitative trait and inbreeding
coefficient (F) expected to be linear
under dominance

* Not so if epistatic interactions
between dominance effects exist

(Crow & Kimura, 1970)

ONE-LOCUS MODEL

GENOTYPE (X) | AjA, A A, ALA,
FREQUENCY p3(1 —F)+piF | 2pip2(1 —F) | p3(1 —F) + poF
PHENOTYPE  u-A 1+D f+A

E(X) = p+A(p2 —p1) +2pip2D - 2p, p.DF
=a+ fF
=a-P(1-F-1)
= (a + p) — P(%Heterozygosity )

ADDITIVE MODEL WITH F (or H) AS COVARIATE=»CONTRADICTORY




TWO (UNLINKED) LOCT:
NO EPISTASIS

Joint frequencies are product of marginal frequencies

GENOTYPE | & AlA AlA; AA;

O FREQUENCY | p2(1-F)+piF | 2pip2(1 - F) | p3(1 —F) + p2F
BB, rP(1-F)+rF | u—A-B u+Da-B | u+A-B

B B> 2riry(1 - F) u—A+Ds u+Dp+Dg | u+A+Ds
B.B» rf1-F)+rnF|u—A+B u+Da+B | u+A+B

E(X)

u+AP2—p1)+B(ra—ry)

+ 2p1 pzDA +2rir,Ds

— 2(p| pzDA + 1 rQDB)F

a/

+p'F

TWO (UNLINKED) LOCT:
EPISTASIS

GENOTYPE [ AA AA A

O FREQUENCY | p?(1-F)+pF | 2pip2(1-F) | p3(1-F)+p.oF
BB, rA-F)+rF| u-A-B+ u+Dp-B-L u+A-B-l
BB, 2rir,(1-F) u—A+Dg—K | u+Dp+Dg+J| u+A+Dg+K
B,B,» r%(l—F)+r2F u—A+B-l u+Dpa+B+L | u+A+B+l

*ALLELES AT A and B LOCI SAME SUBSCRIPT>ADD |
(ADDITIVE X ADDITIVE)

*HOMOZYGOUS AT A HETEROZYGOUS AT B3*SUBSTRACT AND ADD K

HOMOZYGOUS AT B HETEROZYGOUS AT A=»SUBSTRACT AND ADD L
(ADDITIVE X DOMINANCE)

*HETEROZYGOUS AT A AND B=»ADD J
(DOMINANCE X DOMINANCE)

1,J,K,L: parameters (4 d. freedom)
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Mean value under dominance x
dominance epistasis

E(X) =U +A(p2 = pl) + B(rz —I ) +2p1p2DA +2r1r,Dg

+1(P1 —pP2)(r1 —r2) +2Lp1p2(ri —r2) + 2Krira2(p1 — p2)

+4Jp1p2r1r2

—2[p1p2DA + rlrgDB + Lplpg(n — rz) + Krlrz(pl — pz) +4Jp1p2r1r2]F

+ (4Jp| Par rz)F2

=o' +B'F+yF?

Dominance, additive x dominance, and dominance x dominance intervene
in linear regression

Epistasis without dominance does not enter into mean-F relationship

o . . . . .
Dominance x dominance intervenes in second-order regression

DATA

* First lactation records (herds) on 59,778
(1,142) Jersey cows

* 6 generations of known pedigree

* First calving between 1995 and 2000
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Distribution of F

* F calculated from all known pedigree
information

* F ranged between O and 34%

- Median F = 6.25%

Histogram of F values
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Procedures

- Fit linear models without F as covariate

* Compute EBLUP residuals from these
models

* Fit nonparameftric regression to EBLUP
residuals in order to obtain nonparametric
lines describing relationship between
performance and inbreeding level

Linear Models

Model

Yijk = somatic cell score (SCS), milk, protein, or fat yield;
HYS,; = fixed effect of herd-year-season (/= 1,2,...,12276 for DS2; 11158 for DS4 or
6406 for DS6, with seasons classes January-April, May-August, September-December);
AGEJ- = fixed effect of age at calving class; j=1.2,...,6
(< 617, 617- 716, 717-816, 817-916, 917-1016, or >1016 days of age);
B, = fixed regression coefficient of performance on days in milk;
Dijk = days in milk for animal & in herd-year-season /and age of calving class j;
D =263
ay = random additive genetic effect of animal 4, and

8jjk = random residual.

13



Linear Model Assumptions

Genetic and residual effects assumed mutually

independent, with e ~ N(0,15%)and a ~ N(,Ac%)where A is the
additive relationship matrix (1 + F in the k™ diagonal
position, F is the inbreeding coefficient of animal )

Nonparametric regression

 Fit LOESS regression to BLUP residuals
with F as covariate

* Vary spanning parameter & degree of local
polynomial

» Plot fitted values of residuals against F

14



LOESS

(Fitting done by locally weighted least
squares)

: Eij is LOESS fit using only residuals in the
neighborhood of F;, i=1,2,..n

(i=1,2,...n animals; j=1,..,4 traits)

- Size of neighborhood determined by f -4
q = number of points in neighborhood "
n = total number of points

"Robust” LOESS

Weights assigned fo &;,:

[t+1] _ [t] [t]
= Wi = Wy - O,
t=1,2,3,4
F.—F
max(F - F,)
Eij ~ Eij 212
6-med /1
med = median of all (&, _éijk)

I) Wik =[1—( YT 1=1.2,..4

IT) M =[1-(

15



Cowswithat least 6 generatiors of known pedigree f =1

o
=1

0a
/

residual : : g —

77 —  MOIK
FAT

PROTEIN
§C8

T T T T T T T
Q 5 10 15 20 25

2" degree local polynomial

“Robust” original (black) with bootstrap (light blue) LOESS curves of
yields for US Jerseys with at least 6 generations of known pedigree,

based on medians of EBLUP residuals (y-axis = €, /&)
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Conclusions

 LOESS analysis suggested local relationships.

- Effects of inbreeding seem nil, until for F values
up to ~7%

+ Effects of inbreeding not accounted well by
additive models

+ Results may be confounded by effects of selection
that are unaccounted for

Kernel Regression
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yi = g(x;) +ei; i =1,2,...,n

where:

yi is the measurement taken on individual i

Xjisap x 1 vector of observed SNP genotypes

g(.) is some unknown function relating genotypes to phenotypes.
Set g(Xi)=E(y; | Xi)= conditional expectation function

ei ~ (0,02) is a random residual

- Conditional expectation function

(. rxy)
g = [ 2E1) g,

[y p(x.)dy
p(x)

- Non-parametric estimator of density of x

fﬁ(X) - }7117? ZK( X’;X
i=1

“Focal point”

“Kernel”, possibly a probability density function with
some bandwidth parameter h




We would like:

~ n =
J P ax = 30 [ R(HE)ax =1
v = -0

Implying =2 J. #K(%)dx — ||

- Similarly, can form non-parametric estimator of joint density

P = e BRCEIRCE)
i=1

- Recall

g(x) =1y pa.y) dy

p(x) -~
J' y p(x,y)dy «——— ESTIMATE NUMERATOR
N p(x) " «——____ ESTIMATE DENOMINATOR
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Estimate numerator

j_\'ﬁ(x~_1')6l\' — I_‘. ;.?h‘lp-'-1 éK( }‘;';J' )K( Xih— X )d\
n

- s Sl (2 e (25,

i=1

=~ so that dy = idz and

Letz =2

% J-‘K( j.-,—]:,i‘ )dr - % j(r,- + hz)K(z)hd:=
- '[(1-,- + h2)K(z)d=
- j_\';’K(:)(i: + I zK(z)dz

=; j-K(:)n’: + hE(z).

K(.) can be constructed such that:

[K(z)dz = 1 and E(z) = [zK(z)dz = 0

Then: + j)' K( "":' )(ﬁ =

- Estimator of numerator is

)

n

~ X,—X

[y px.y)dy = =L 3 vk (2
i=1

20



- Forming non-parametric estimator of conditional expectation

. C [spes
E(y | x)=gkx) = Ty

n

n
e LK)
. = Nadaraya-Watson estimator
X P (weighted average)
;-\:ik( Ihx ) /’
=5 = Z wi(X)v; |
Q== i=1 ’ i
Ek( h ) \HG_ / wi(x) = —"K( h )
ZK< s,;x )

=1
T

g(x) =

by

=)

o)
]

Relationship between
Income and age
(Chu and Marron, 1991)

log(Income)
13 14 15

12

14.0

13.5

h=9 local features
Disappear (dashes)

log(Income!
9(income)

12.5

h=1 lots of variation
(dots)

®)
Fia. 1. Scatier plot and smooths for earning power data. Kernel
ie N(0,1)%; window widths are represented by curves af the bor
tom: solid curves h = 3; dotted curve h = 1, dashed curve h = 9
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Bandwidth can be gauged by, e.g., cross-validation

n
> D]’

CV(h) = =

I

~ Create a grid of h values

~ For each value compute the CV mean squared error
(above is leave-one-out, but this may not be best)

~Use the h value which minimizes CV(.)
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