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1. EVOLUTION OF STATISTICAL METHODS IN QUANTITATIVE GENETICS
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Visual appraisal (still widely used) [Biblical times...]
Fisher's 1918, Path analysis, “Animal Breeding Plans” [1918-1945]
ANOVA (Method 1), least-squares, selection index [1936-1943]
Methods 2+3, MINQUE, MIVQUE [1953-1973]
Mixed models, BLUP, animal model, multi-traits [1948-1990]
VCE, ASREML, DMU [1971- 2009]
Threshold models, Survival, MCMC, QTLs [1982-20081

Balding et al. (2007) “Handbook
of Statistical Genetics”. Wiley

Chapter 20
D. Gianola

“Inferences from Mixed Models in
Quantitative Genetics”




2. Challenges from complexity
and use of phenomic data

Gene structure

Transcription Transcription
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Some genes do not have introns
Some genes are located within introns of other genes

Khatib (2011)




How many genes do we have-?

Organism Genome size  # of genes DNA/gene
Haemophilus influenzae 1.8 Mb ~1,700 ~1Kb
Escherichia coli 4.6 Mb ~4,300 ~1Kb

Baker’s Yeast

(Saccharomyces cerevisiae) 12.1 Mb ~6,000 ~2Kb
e Aworm
(Caenorhabditis elegans) 97 Mb ~18,000 ~5.4 Kb
e Fruit fly

(Drosophila melanogaster) 185 Mb ~14,000 ~13 Kb
¢ Human (Homo sapiens) 3,000 Mb ~25,000 ~ 86 Kb

A flowering plant

(Arabidopsis thaliana) 100 Mb ~25,000 ~4Kb

Khatib (2011) IMb = 1,000, 000 bp

The Phenomic data
(phenotypes+genomic)

1)Massive phenotypic data exist
2)Massive genomic data increasingly available

Example: SNPs (also gene expression)
1107 SNPs dbSNP 124 (Nat. Center Biotechnology)
[1Perlegen: 1.58 million SNPs

[JAnimals:
-Wong et al. (2004) -- chicken genetic variation map with 2.8 million SNPs
-Hayes et al. (2004) -- 2500 SNPs in salmon genome
-Poultry breeding companies-- Thousands of SNPs on sires/dams
-USA (2008) -- >50,000 SNPs in over 3000 Holstein sires

-All over developed world - chips with 800,000 SNPs
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All you wanted to know about SNPs
but were afraid to ask...

SNP= DNA sequence variation occurring when a single nucleotide - A, T, C, or G
in the genome differs between members of a species (or between paired chromosomes)

ABOVE: two sequenced DNA fragments
AAGCCTA to AAGCTTA, contain a difference in a single nucleotide.

we say that there are two alleles : Cand T 13

Copy number (CNV ) of copy number
polymorphisms (CNP): other source of
information about genetic variation

+ Individuals vary in number of copies of genomic regions

« Disease genes located in CNV regions
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Fluorescent
map,-genes in

SEQUENCES FOR THOUSANDS OF
ANIMALS (WITHIN SPECIES) COMING SOON

A human T

dog

mouse

rat

COW

opossum

X. laevis (RaxG4)

X, laevis (AY250711)
X. tropicalis (XtRaxG)

TACACACGTAGATTAGCCCCTAACRATGA-CCCCCGGCTGATTGCTTG

TACACATGTAGATTAGCTCCTAACAATGG-CCCCCAGCTGACTGCTTG
TACACATGTAGATTAGCTCCTAACARTGG- CCCCCAGCTGACTGCTTG
TACACATGTAGATTAGCCCCTAACARATGG-CCCCCGECTGATTGCTTG
TACACATGTAGATTAGACCCTCACAATGA- CCCCCGGCTGATTGCTTT
CGAACATGTAGATTATCTACTAACAATGEGCCCCTGGCTGAGAGCALT
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Meuwissen, Hayes and Goddard (2001)
“Genomic selection”
Better terms:

“Genome-enabled selection” S e
“Genome-assisted selection”
T — = a 1
y=HlL+ @(g~<

ANIMAL BREEDING:
USE ALL SNP MARKERS IN MODELS
FOR GENOMIC-ASSISTED EVALUATION

Effect of chromosomal segment,
allelic, haplotype

QUESTION: BYE-BYE QTLS, PEDIGREES, GENES?. .

" St dad &, POTATO GENOME
"‘%‘ﬁ%,iq (Nature 2011)

* Final assembly 727
° Mb

9%&\}%\‘\\%%# €§> //Z%: . I(\Sflebnc:me size 844

* %—T—'ﬂﬁ%” * 1 SNP every 40 bp

L * 1 indel every 394 bp
G dmgpeptiog (average 12.8 bp)
e g R * 24,051 genes cluster
i with at least one of

s 11 genomes




Essentials of genome-enabled
prediction and selection

Fit (train) some regression model (typically Bayesian) to
a data set with markers and phenotypes

Estimate marker effects

Predict marked genetic value or phenotype in a new
sample (testing or validation sample) for which only DNA
information is available

Once phenotype (or something related to phenotype) is
observed, asses quality of prediction. For example,
calculate predictive correlation or mean squared error of
prediction (choice of metric?)

Objective: gain reliability and if new sample is of
juveniles, reduce generation interval. Dispense with
progeny testing? Reduce frequency of phenotyping?

19

CROSS-VALIDATION

Data available (genomic, phenotypic)
Data generated according to unknown process
Split into training (fitting)- testing (predictand) sets

Fitting process essentially describes current data
(model is typically wrong)

Use training process to make statement about yet-
to-be observed data (testing set)

Prediction error (conditional and unconditional):
point estimate

Distribution of prediction errors (conditional or

unconditional): interval estimate "

10



BREEDERS: FUNDAMENTAL THEOREM OF NATURAL SELECTION=>» additive effects

Schaeffer (2006):

A potential drawback ol genome-wide selection
may be the existence ol interactions or epistatic
effects between QTL. II epistatic eflects are large,
then the accuracy of GEBV may never reach 0.75. A
statistical model could be written to account lor
interactions, but this would likely be very difficult to
compute.

YES, IT WOULD BE DIFFICULT!
SEE NEXT...
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COULD WE WRITE A MODEL FOR SOMETHING LIKE THIS?
A SYSTEMS BIOLOGY MAP OF THE BRAIN
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Dealing with epistatic interactions

and non-linearities
gene X gene
gene X gene X gene
gene X gene X gene X gene

(Alice in Wonderland)

23

Fixed effects models
(unravelling “physiological epistasis” a
la Cheverud?)

* Lots of “main effects”

» Splendid non-orthogonality

» Lots of 2-factor interactions

 Lots of 3-factor interactions

* Lots of non-estimability

» Lots of uninterpretable high-order interactions

e Run out of “degrees of freedom”

‘ Epistatic networks will probably involve a few genes of large effect

z




Example of epistatic network

Old fashioned, Ford-T car Modern Swedish car

AB=> at 0.05
AC=> Significant at 0.01
AD

BC

BD=>» Significant at 0.01
CD=> Significant at 0.001

Yawn. nobody will publish...

Say one knows genes A, B, C, D. Do ANOVA:

OO w>

Publish in Nature and claim  ,5
new paradigm for epistasis

RANDOM EFFECTS MODELS
FOR ASSESSING EPISTASIS REST ON:
Cockerham (1954) and Kempthorne (1954)

--Orthogonal partition of genetic variance into additive, dominanc
additive x additive, etc. ONLY if

UNo selection

UNo inbreeding

UNo assortative mating
UNo mutation

UNo migration
ULinkage equilibrium

Just consider ALL
Linkage disequilibrium ASSUMPTIONS
VIOLATED! 26
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CLOSE ENCOUNTERS OF THE PREHISTORIC KIND

Homo
sapiens EEANEE SN N

GENOMICS AND NO! THE ADDITIVE
COMPLEX BIOLOGY GENETIC MODEL

Neanderthal
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A prevailing view, and for good reasons
(Hill et al., 2008; Crow, 2010; Hill, 2010)

» Fisher’'s theorem of natural selection
» |nteractions are second-order effects;
likely tiny and hard to detect

 Epistasis probably arises with genes of
large effects, unlikely to be observed in
outbred populations

 Epistatic systems generate additive

variance and “release” it, so why worry?

28
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A much less popular view
(Gianola and a few others)

* If everything behaves as additive, can
additive models allow us to learn about
“genetic architecture”?

* In areas where phenotypic prediction is
crucial (medicine, precision mating) can
the exploitation of interaction have added
value?

* Is so, should we consider enriching our
battery of statistical tricks?
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A VIEW OF LINEAR MODELS
(as employed in g. genetics)
Mathematically, can be viewed as a “local” approximation of a complex process

" (a) , ) s " (a)
(x =a)y + (x=a)y ...+

(x=a)'+ ...

fx)= fla)+ [ (a)(x - a) +

2! 3! n!
Linear approximation
- /
\/
Quadratic approximation
— _
Y
n'" order approximation FELDMAN and LEWONTIN §5975)

CHEVALET (1994)

15



How good are linear and quadratic approximations? A Taylor series provides a
local approximation only...

y = g(x)+e g(x) = sin(X) + cos(x)

1. Sin and cosine function y 14 3. Quadratic approximation

i

2. Linear approximation

+ 1 1 ]
T 1
1 3 4 5
X
4. Approximations
-0.8 are good at x=0...
-1.0
-1.2
-1.4 L

Structuralism? Systems analysis?

Levi-Strauss
(1908-2009)

Lacan
(1901-1981)

Foucault
(1926-1984)

Althusser
(1918-1990)

16



| Will “systems biology” help?

<
 von Bertalanffy (1968) wrote:

Allgemeine Systemtheorie

“There exist models, principles, and laws that apply to generalized systems or their subclasses,
irrespective of their particular kind, the nature of their component elements, and the relation

or ‘'forces' between them.
It seems legitimate to ask for a theory, not of systems of a more or less special kind, but of
universal principles applying to systems in general.

In this way we postulate a new discipline called General System Theory. Its subject matter is the
formulation and derivation of those principles which are valid for 'systems' in general.

Concepts like those of organization, wholeness, directiveness, teleology, and differentiation are

alien to conventional physics. However, they pop up everywhere in the biological, behavioural
and social sciences, and are, in fact, indispensable for dealing with living organisms or social groups

Thus, a basic problem posed to modern science is a general theory of organization.

General system theory is, in principle, capable of giving exact definitions for such concepts and,
in suitable cases, of putting them to quantitative analysis...

Systems analysis is not new in the
animal sciences...

MODELING BEEF PRODUCTION SYSTEMS'
G. E. Joandet® and T. C. Carcwright
Texas A&M University, College Station

JOURNAL OF ANIMAL SCIENCE, Vol. 41, No. 4, 1975

THE USE OF SYSTEMS ANALYSIS IN ANIMAL SCIENCE WITH
EMPHASIS ON ANIMAL BREEDING'

T. C. Cartwright?

Texas A&M University, College Station 77843
JOURNAL OF ANIMAL SCIENCE, Vol, 49, No. 3 (1979)

Where is the beef? N




WHAT CAN WE EXPECT FROM SYSTEM ANALYSIS?

SYSTEMS ANALYSIS IN ACTION: PENTAGON “SYSTEMS” VIEW OF
THE WAR IN AFGHANISTAN

QUTSIDE SUPPORT i

e . TO INSURGENT

GENERAL McCHRYSTAL.:
“By the time we understand this slide, the war will be over” |, ..7e

g&:ﬁlgﬁgg (and he was sacked by Obama after The Rolling Stones) | ;

e T QAPAGITY | L SEEUETS S R LA IR
el Tl B W\~ s NAXT  SUPPORT AL -

SUPPORT GOVERNANCE "=~ = [ SESAN | N) =) o

=

What is machine learning?
Is, such as rules and patterns, fro
easoning, pattern recognition, and_t|

a. Cosely related to data
retical computer science.

Automatically produce
mining, statistics, induct

Machine

Universal
learning

Pattern :
. approximators
recognition

ross-validatiol Kernel
designs methods

Random forest i
Sampling
methods

algorithms

Bayesian
networks

Ensemble lon-parametric)
Methods: il

) prediction
boosting

Support vector Ensemble
pport’ Methods:
machines i

bagging




Distinctive aspects of non-parametric
fitting

* Investigate patterns free of strictures imposed by
parametric models

* Regression coefficients appear but (typically) do not
have an obvious interpretation

» Often: very good predictive performance in cross-
validation

e Tuning methods and algorithms (maximization,
MCMC) similar to those of parametric methods

» Often produce surprising results
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PENALIZED and BAYESIAN METHODS
for functional inference play a role

* The idea of “penalty is ad-hoc
It does not arise “naturally” in classical inference
* It appears very naturally in Bayesian inference
=> L, penalty: equivalent to
Gaussian prior
=> L, penalty: equivalent to double
exponential prior
=» Penalties on covariance matrices
equivalent to priors (e.g., inverse
Wishart)

. . . L 38
Bayesian methods arise naturally in predictive inference
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