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5. Introduction to non-
parametric curve fitting:

Loess, kernel regression, 
reproducing kernel methods, 

neural networks

Distinctive aspects of non-parametric 
fitting

• Objectives: investigate patterns free of strictures 
imposed by parametric models

• Can produce surprising results
• Regression coefficients appear but (typically) do 

not have an obvious interpretation
• Often have very good predictive performance in 

cross-validation
• Tuning methods similar to those for parametric 

methods
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Example: thin-plate splines

Risk of heart attack after 19 years as a function of cholesterol level and blood pressure. 
Left: logistic regression model. Right: thin plate spline fit. Wahba (2007)
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LOESS REGRESSION:

Non-parametric exploration 
of inbreeding depression for 
yield and somatic cell count 

in Jersey cattle
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AN OVERVIEW OF LOWESS 
REGRESSION

1) DATA POINTS xi,yi; i  1, 2, . . . ,n

4) COMPUTE Δx0   maxx i⊂Nx 0 |xo − xi |

2) SPANNING PARAMETER f; 0  f  1

k  fn; k  LARGEST INTEGER ≤ fn

3) FOR EACH x0 FIND k POINTS xi “CLOSEST” TO x0

Nx0  NEIGHBORHOOD OF k POINTS

7) REPEAT FOR EACH OF THE x0

5) TO EACH xi,yi; xi ⊂ Nx 0 ASSIGN WEIGHT

wix0  1 − |xo − xi |
Δx0 

3 3

6) FIT BY WEIGHTED LEAST-SQUARES

∑
i1

k

wix0y i − 0 − 1x i − 2xi
2 2

RETURN yx0  

0 −


1x i −


2xi

2
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ROBUST LOWESS

•STANDARD LOWESS NOT ROBUST

 BASED ON LEAST-SQUARES WEIGHTS

•BI-SQUARE LOWESS

RE-WEIGHT POINTS ACCORDING TO RESIDUAL
IF RESIDUAL LARGE, WEIGHT IS DECREASED

2) CALCULATE LOESS RESIDUALS yi − y i

3) COMPUTE q 1
2
 median|yi − y i |

4) CALCULATE BI-SQUARE ROBUST WEIGHTS

r i  1 −
yi −

y i

6q 1
2

2 2

5) REPEAT LOESS WITH WEIGHTS riwix0

6) REPEAT 2-5 UNTIL LOESS CURVE ”CONVERGES”

1) FIT DATA USING STANDARD LOESS
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Example
• Birth rate in US population

(U. S. Department of Health, Education and 
Welfare) 

• n=96 

• births per 1000 US population 

• during 1940-47

Top > Ordinary Least Squares with 1st, 2nd & 3rd degree polynomial 
Bottom > LOWESS fit with f = .2, f=.4 & f=.6
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GALTON’S BEND
(Wachsmuth et al. 2003, Am. Stat.)

A possibility is that
Galton ignored
concealed heterogeneity
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Does the bend disappear by disaggregation of the sample?
Analysis of data from Pearson and Lee (1903)

BEND
STILL
THERE!

Wachsmuth et al. (2003) write:
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• Examine relationships of yield (milk, 
protein, fat) and somatic cell score (SCS) 
with inbreeding coefficient (F) using field 
data from US Jerseys

• Use REML, BLUP and “local regression” 
method (LOESS)  for this purpose

INBREEDING DEPRESSION

LEVEL OF INBREEDING IN HOLSTEINS, USA
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• Relationship between mean value of a 
quantitative trait and inbreeding 
coefficient (F) expected to be linear
under dominance

• Not so if epistatic interactions 
between dominance effects exist

(Crow & Kimura, 1970)

ONE-LOCUS MODEL

ADDITIVE MODEL WITH F (or H) AS COVARIATECONTRADICTORY

GENOTYPE X A1A1 A1A2 A2A2

FREQUENCY p1
21 − F  p1F 2p1p21 − F p2

21 − F  p2F

PHENOTYPE  − A   D   A

EX    Ap2 − p1   2p1p2D − 2p1p2DF

   F

  − 1 − F − 1

    − %Heterozygosity
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TWO (UNLINKED) LOCI:
NO EPISTASIS

GENOTYPE A1A1 A1A2 A2A2

FREQUENCY p1
21 − F  p1F 2p1p21 − F p2

21 − F  p2F

B1B1 r1
21 − F  r1F  − A − B   DA − B   A − B

B1B2 2r1r 21 − F  − A  DB   DA  DB   A  DB

B2B2 r2
21 − F  r2F  − A  B   DA  B   A  B

EX    Ap2 − p1   Br2 − r 1

 2p1p2DA  2r1r2DB

− 2p1p2DA  r1r2DBF

 ′  ′F

Joint frequencies are product of marginal frequencies

TWO (UNLINKED) LOCI: 
EPISTASIS

GENOTYPE A1A1 A1A2 A2A2

FREQUENCY p1
21−F p1F 2p1p21−F p2

21−F p2F

B1B1 r1
21−F  r1F −A−BI DA −B−L A−B−I

B1B2 2r1r21−F −ADB −K DA DB J ADB K

B2B2 r2
21−F  r2F −AB−I DA BL ABI

•ALLELES  AT A and B LOCI SAME SUBSCRIPTADD I
(ADDITIVE X ADDITIVE)

•HOMOZYGOUS AT A HETEROZYGOUS AT BSUBSTRACT AND ADD K
HOMOZYGOUS AT B HETEROZYGOUS AT ASUBSTRACT AND ADD L
(ADDITIVE X DOMINANCE)

•HETEROZYGOUS AT A AND BADD J
(DOMINANCE X DOMINANCE)

I,J,K,L: parameters (4 d. freedom)
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Mean value under dominance x 
dominance epistasis

EX    Ap2 − p1  Br2 − r1  2p1p2DA  2r1r2DB

 Ip1 − p2r1 − r2  2Lp1p2r1 − r2  2Kr1r2p1 − p2

 4Jp1p2r1r2

− 2p1p2DA  r1r2DB  Lp1p2r1 − r2 Kr1r2p1 − p2  4Jp1p2r1r2F

 4Jp1p2r1r2F2

 ′′  ′′F  F2

•Dominance, additive x dominance, and dominance x dominance intervene 
in linear regression

•Dominance x dominance intervenes in second-order regression

•Epistasis without dominance does not enter into mean-F relationship

DATA
• First lactation records (herds) on 59,778 

(1,142) Jersey cows 

• 6 generations of known pedigree

• First calving between 1995 and 2000 
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Distribution of F

• F calculated from all known pedigree 
information

• F ranged between 0 and 34%

• Median F = 6.25% 

Histogram of F values

(%)F
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Procedures
• Fit linear models without F as covariate

• Compute EBLUP residuals from these 
models

• Fit nonparametric regression to EBLUP 
residuals in order to obtain nonparametric 
lines describing relationship between 
performance and inbreeding level

Linear Models 

ijkkijkjiijk eaDDAGEHYSy  )(1

Model 

yijk = somatic cell score (SCS), milk, protein, or fat yield; 

HYSi = fixed effect of herd-year-season (i = 1,2,….,12276 for DS2; 11158 for DS4 or 
6406 for DS6, with seasons classes January–April, May–August, September–December);

AGEj = fixed effect of age at calving class; j = 1,2,….,6  
(< 617, 617- 716, 717-816, 817-916, 917-1016, or >1016 days of age);
= fixed regression coefficient of performance on days in milk;

Dijk = days in milk for animal k in herd-year-season i and age of calving class j;

D = 263;

ak = random additive genetic effect of animal k, and 

eijk = random residual.

1
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Linear Model Assumptions 
• Genetic and residual effects assumed mutually 

independent, with                   and                    where A is the 
additive relationship matrix (1 + Fk in the kth diagonal 
position, Fk is the inbreeding coefficient of animal k) 

)σ,N(~ a
2A0a),N(~ 2

eI0e

Nonparametric regression
• Fit LOESS regression to BLUP residuals 

with F as covariate

• Vary spanning parameter & degree of local 
polynomial

• Plot fitted values of residuals against F
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LOESS
(Fitting done by locally weighted least 

squares)

• is LOESS fit using only residuals in the 
neighborhood of Fi, i=1,2,…n
(i=1,2,…,n animals; j=1,…,4 traits)

• Size of neighborhood determined by
q = number of points in neighborhood

n = total number of points

ij
~

n

q
f 

“Robust” LOESS
Weights assigned to     :

t=1,2,3,4
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(%)F

1f

polynomial local degreend2

pedigreeknownofsgenerationleastatwithCows 6

aσ
residual

“Robust” original (black) with bootstrap (light blue) LOESS curves of 
yields for US Jerseys with at least 6 generations of known pedigree, 

based on medians of EBLUP residuals (y-axis =              )

f=0.9 f=0.5 f=0.9

2nd degree local polynomial

aijke ̂/ˆ



17

Conclusions

• LOESS analysis suggested local relationships.

• Effects of inbreeding seem nil, until for F values
up to ~7%

• Effects of inbreeding not accounted well by
additive models

• Results may be confounded by effects of selection
that are unaccounted for

Kernel Regression
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yi  gx i ei; i  1,2, . . . ,n

where:
 yi is the measurement taken on individual i
 x i is a p  1 vector of observed SNP genotypes
 g.  is some unknown function relating genotypes to phenotypes.
 Set gx iEyi ∣ x i conditional expectation function
 ei  0,2  is a random residual



19



20



21



22


