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@ Prediction and model selection
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Prediction of phenotype from GW data

Our goal here is, given a training set of data (Y}, Xj, Z;) for i =1,...,n
individuals, where

@ Y is the phenotype,
@ X; is a vector of (usually genome-wide) genotypes,
@ Z; is a vector of recorded covariates (e.g. age, location, treatment);

to predict the unobserved phenotype Y, of a future individual given the
corresponding X, and Z, values.

Why?

© Genomic selection: (plant/animal breeding) select individuals to
mate or to be carried forward in a breeding program using estimated
breeding values (EBV); BV = random effect in mixed model.

@ Health care: identify high-risk individuals in order to plan

prophylactic interventions such as a drug treatment or lifestyle
change, or to modify treatments to avoid adverse outcomes.
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Prediction versus model selection

1 above is currently being successfully implemented, 2 has been less
successful so far but we believe that it holds promise for the future:

@ a gain of a few percent may be economically important in
plant/animal breeding;

@ in many settings only very high predictive accuracy is useful for
human health interventions, but incremental advances can be useful
(e.g. enhancing classical risk scores for drug prescription).

In both human and plant/animal genetic studies, the focus in recent years
has shifted from
@ model selection — identifying the SNPs that are significantly
associated with phenotype, with a view to understanding mechanisms
or introducing beneficial alleles;
towards

@ prediction of phenotype, aimed at choosing optimal interventions or
improved selection.
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For prediction, we don’'t mind so much about including variables (e.g.
SNPs) in the model if they turn out to be uninformative:

@ a non-informative “predictor” usually does little harm, and by
adopting a liberal approach we can glean more information from
including many weakly-informative predictors than we lose from
including non-predictors;

@ however, it can still be beneficial to implement some screening to
remove non-predictors.

Therefore, the stringent requirements for genome-wide significance that
have emerged in GWAS are not appropriate for selecting predictors.

@ This has led to the widespread view that the statistical model for
association should be different from that for prediction, with the
latter having less stringent criteria for “feature selection”.

@ An alternative view (that | support) is that there should be just one
model that reflects your best understanding of the reality being
modelled - the difference comes in how you use that model.
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© Measuring success
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How to measure SUCCGSS?1

After fitting a prediction model in a training sample, we can measure
success using a test sample for which the phenotype is available (but these
individuals must not form part of the training population).

o If we don’t have a suitable test sample, we can artificially create one
by holding back a fraction (say 0.1) from the training population;

e predictive accuracy then tends to be understated because the full
training sample is not used to fit the model;

e conversely the test individuals are statistically the same as the training
individuals, which may lead to an overstatement of predictive accuracy
relative to future individuals with slightly different characteristics.

@ Repeatedly estimating prediction accuracy by holding back a fraction
of the training population is called cross-validation (CV). The
held-back individuals may be resampled at random each time, or
sampled systematically so that each individual is a member of the test
sample a fixed number of times (typically once, called k-fold CV
where 1/k is the fraction of individuals in each test sample).

'For ways to go wrong see: Wray N et al. (2013) Pitfalls of predicting complex traits
from SNPs, Nat Rev Genet 14:507-515.
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Metrics of predictive accuracy: continuous traits

Suppose that in a test sample of size k we have predictions \A/l, ceey Yy an,
and the observed values (not used in the prediction process) are then
revealed to be Yi,..., Yk. The closer the \A/, to the Y; the better, but
there are many ways to measure closeness. The different metrics are
typically highly correlated but they are not equivalent, and so there is no
canonical way to measure predictive success.

Some measures of predictive accuracy for continuous Y are:

@ The correlation cor(Y, Y) or else the squared correlation (which is
related to variance explained in a regression);

@ The mean absolute error or the (root) mean square error:

k 1 k
SIY=Y| or 7 d(Y-y)
i=1 i

x| =
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Metrics of predictive accuracy: binary traits

When predicting a binary outcome, rather than return as prediction one of
the two states (e.g. Yi € {negative,positive}), it is usually more useful to
return a continuous value say 7, which is typically constrained to the
interval [0,1] and interpreted as

7« = P(Yi = positive).
A threshold a € (0,1) can be assigned such that
Ty > & Y, = positive.

By varying « the prediction algorithm can be tuned to optimise desired
properties. Two important properties are the

@ true positive rate (TPR) (or “sensitivity” ) which is the proportion of
all true positives that are predicted to be positive, and

e false positive rate (FPR) which is the proportion of all true negatives
that are predicted to be positive (1-FPR="specificity” ).
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ROC and AUC

A Receiver Operating Characteristic (ROC) curve is a plot of the TPR
(y-axis) against the FPR (x-axis) for all & € [0,1]. When a = 0 all
predictions are positive, so TPR=FPR=1. When a =1 all predictions are
negative, so TPR=FPR=0.

The AUC provides a single-number summary of the ROC curve that is
often used to measure predictive success:

@ AUC can be interpreted as the probability that a random true +ve is
assigned a higher probability to be a +ve than a random —ve.?

@ AUC=0.5 = random guessing, no information in the predictions;
Although the AUC is popular it has limitations, including:

o the AUC value is dominated by parts of the ROC curve for which the
false positive rate is too high to be of interest.

®Wray N et al. (2010) The genetic interpretation of area under the ROC curve in
genomic profiling. PLoS Genet 6: €1000864
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Positive Predictive Value (PPV)

Another important measure of predictive success for a given threshold is

PPV — Prior odds x True positive rate
~ (Prior odds x True positive rate) + False positive rate

The PPV is the probability that a positive call corresponds to a true
positive. This differs from TPR and FPR in two important respects:

@ it answers a question of direct interest;
@ it requires a value for the prior probability that a queried individual

will be positive, which can vary according to circumstances even if the
prediction algorithm does not change.
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© Statistical models for prediction
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The Linear Model

The workhorse of genomic prediction is the multiple linear regression model

Y =20+ X3+ ¢
where

Y is an n-vector of phenotypes;
X is an n x p matrix of (suitably coded) genotypes;

[ is an p-vector of genetic effect parameters;

Z is an n X m matrix of covariates (first one constant = intercept),
including treatments;

f is an m-vector of covariate effect parameters;

€ is an n-vector of errors (or “noise”), assumed to be iid and usually
assumed to be normally distributed.
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Modelling assumptions

@ As for model selection, most often only additive genetics effects are
modelled, thus ignoring dominance and epistasis).

@ Although it is difficult to confidently detect dominance and epistasis,
modelling such effects may nevertheless be valuable for prediction.

@ Independence of the e implies that all kinship effects are assumed to
be accounted for through the markers.

In practice covariates can be very important in prediction, but from now
on we ignore them and focus on prediction from genomic data only.
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Too few or too many predictors?

Including only genome-wide significant SNPs in a prediction model usually
leads to poor prediction:

@ the polygenic nature of many complex traits means that many true
predictors do not reach GW significance;

@ each individually conveys little information, but collectively they can
be important.
On the other hand, including many predictors in a model risks over-fitting:
@ parameter estimates achieve close matching of fitted values to the
observed data, which appears good but ...

@ much of this apparent success amounts to “fitting statistical noise”:
parameters are tuned to irreproducible features of the data, leading to
poor fit to new data (poor generalisability).
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Polygenic risk scores®

A compromise is to include SNPs that are significant at a weaker
threshold, chosen to optimise prediction in a training set:

© Test each SNP one-at-a-time in the training sample and record those
that are significant at level « and their estimated effect sizes.

© The polygenic risk score for each test individual is the sum over SNPs
of the effect size estimate times the individual’s genotype.

© It is common to repeat for different o in order to try to maximise
predictive success, but note that the final measure of predictive
success is then likely to be upwardly biased.

The effect sizes can be re-estimated in step 2 by fitting a multiple
regression model including all the SNPs significant in step 1 - only useful if
# SNPs (p) is < size of the training sample (n).

*Dudbridge F (2013) Power and Predictive Accuracy of Polygenic Risk Scores. PLoS
Genet 9(3): €1003348; Purcell S et al. Common polygenic variation contributes to risk
of schizophrenia and bipolar disorder. Nature 460, 748-52 (2009).
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Over-fitting and shrinkage methods (penalised regression)

A better solution to the over-fitting problem is offered by penalised (or
shrinkage) regression in which a penalty in the residual sum of squares or
log-likelihood “shrinks” parameter estimates towards zero.

@ The form of the penalty function can be justified empirically, in terms
of performance on test datasets (e.g. using CV).

@ It can also be motivated in Bayesian terms: the penalty function
should reflect available knowledge about the true distribution of effect
sizes of marker alleles, i.e. your prior distribution.

Although the models can be implemented in a Bayesian way (integrating
out the parameters — more below), for computational reasons it is more
common to maximise over the parameters — maximum penalised
likelihood (MPL).
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Ridge Regression (RR)

RR is an MPL method with a independent mean-0 Gaussianpenalty/prior
on each genetic effect. This leads to a quadratic term in the log-likelihood:

n p p
Briage = argmin ¢ D ef +AD FFH e =Yi— Y X
A i=1 j=1 j=1
RR is equivalent to a best linear unbiased predictor (BLUP) in a mixed

model with allelic-correlation kinships computed from the marker
genotypes.*

@ BLUP the shrinkage parameter A is estimated from the data whereas

in RR it is often treated as a tuning parameter to be chosen by the
investigator.

*Goddard et al. (2009) Estimating Effects and Making Predictions from
Genome-Wide Marker Data, Statist Sci 24(4): 517-29.
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GBLUP and mixed-model BLUP

The RR formulation of BLUP is sometimes called Random

Regression-BLUP or Ridge Regression-BLUP (RR-BLUP) since, unlike

classical regression models, the coefficients are assumed to be random.
@ RR-BLUP is equivalent to genomic BLUP or GBLUP.5

@ Switching between mixed-model (random effect + correlation matrix)
BLUP and shrinkage regression (individual predictors + penalty/prior)
RR-BLUP can be convenient for describing and implementing models.

SMeuwissen et al. Prediction of total genetic value using genome-wide dense marker
maps. Genetics. 2001 157(4):1819-29.
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LASSO Regression

LASSO (Tibshirani 2006) is similar to RR, but assumes a Laplace (double
exponential) penalty on the genetic effects, equivalent to a linear term in
the log-likelihood (L; rather than Lj):

n

p
Passo = argrmin doa+A> 15l
=1

i=1

@ Because the Laplace distribution has a sharp peak at zero, many
genetic effects will be estimated at zero, so LASSO combines model
selection with prediction.

@ In fact the number of non-zero effects is constrained to be < n, which
may be sub-optimal if the true genetic model is highly polygenic.

@ In regions of high LD typically only 1 SNP has BAJ- = 0, which can
generate sub-optimal tagging of an ungenotyped causal variant.

Armidale Genetics Summer Course 2016 Module 11: Genomic Prediction



LASSO extensions

@ Bayesian LASSQ® is the same model but uses Gibbs sampling for
integration rather than maximisation over the ;.

o Extended Bayesian LASSO”: some SNPs have an individual variance
term allowing bigger effects, while weaker effects are absorbed into

the usual polygenic term.
o HyperLASSO®: gamma prior on Laplace rate parameter, 2 parameters
— shape and scale. Good performance for association analysis®.
o LASSO is a special case when the gamma shape parameter is large.
e Smaller values of the shape parameter give flatter tails and a sharper
peak at the origin.
Park T, Casella G (2008) The Bayesian Lasso J Am Statt Assoc 103(482): 681-6.
"Mutshinda C, Sillanpia M. (2010) Extended Bayesian LASSO for multiple
quantitative trait loci mapping and unobserved phenotype prediction. Genetics,
186(3):1067-75
®Hoggart C et al. (2008) Simultaneous Analysis of All SNPs in Genome-Wide and
Re-Sequencing Association Studies. PLoS Genet 4(7): €1000130.
°Ayers K, Cordell H (2010) SNP Selection in genome-wide and candidate gene
studies via penalized logistic regression, Genet. Epi. 34: 879.
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Elastic Net Regression

Elastic Net combines RR and LASSO by weighting their penalties as
follows:

n p
/Benet = arggnin Z 6l2 + /\Z(O‘/Bf + (1 - a’)‘BJ‘)
i=1 Jj=1

The Elastic Net selects variables like the LASSO, and shrinks together the
coefficients of correlated predictors like RR.
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Partial Least Squares (PLS) Regression

@ PLS identifies orthogonal linear combinations of the genotypes
Z1,...,2Zk, like principal components but that maximise the
correlation with phenotype rather than the variance.

@ These can then be used as regression predictors, with parameters
estimated via least squares in the usual way

n k
ﬁpls A argmin Z(Y, —p— z:z,-jbj)2
b i—1 =1
The dimension of the problem is greatly reduced compared with including
all the individual SNPs as predictors
@ so no need for penalty term, but
@ the model does not provide estimates of the genetic effects 5.
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Some pros & cons of different shrinkage models

e Finding a near-optimal value for A in RR and LASSO is
straightforward given an optimality criterion, but two major
candidates are not equivalent: CV predictive correlation and
predictive log-likelihood.

@ Tuning the Elastic Net is time consuming if CV is performed over a
grid for (a, A), but simple hill-climbing searches can be effective and
much faster than a grid.

o Once tuned, Elastic Net outperforms both RR and LASSO.10

@ PLS is the easy to tune, as it has a single parameter k and predictive
correlation and predictive log-likelihood usually are unimodal in k.

1Scutari M et al. (2013) Improving the Efficiency of Genomic Selection. Statist Appl
Genet Mol Biol 12 (4), 517-527.
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Bayesian methods

Bayesian models often have the form:

n p
[IN Vil et > X85 | 0 x pe®) [ [ p(Bjlw)
i=1 j=1 ]

Jj=1

likelihood X prior

@ w: vector of hyperparameters used to specify the prior; they can be
e assumed given;
o integrated out with respect to a prior (fully Bayesian) or
o estimated from the data (empirical Bayes).
@ 02 is commonly assigned a x~2(v, S) prior distribution.
@ Assigning a Gaussian prior to 8 implies that the posterior means are
the GBLUP estimates.

@ Assigning a double-exponential or Laplace prior is the density used in
the Bayesian LASSO (ref above)
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Priors for SNP effect sizes
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densities of marker effects (mean=0, variance=1)
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Fig 1 of: De los Campos, G et al. (2013) Whole-genome regression and prediction
methods applied to plant and animal breeding. Genetics 193(2): 327-45.
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Zoo of prediction algorithms for genomic selection

Bayes A: similar to ridge regression but
o t-distribution prior (rather than Gaussian) for the §;;
e variance comes from an inverse-x? instead of being fixed.
Estimation via Gibbs sampling.

Bayes B: similar to A but with a “spike” (probability mass 7) at
the origin, forcing the effects of many SNPs to zero to
enforce sparsity.

o Estimation via a combination of Metropolis-Hastings and
Gibbs sampling: computationally intensive.

Fast Bayes B: similar to Bayes B, but uses a Laplace distribution to
obtain a closed form posterior and thus speed up model
estimation.?

Meuwissen T et al. (2009) A fast algorithm for BayesB type of prediction
of genome-wide estimates of genetic value”, Genet Sel Evol, 41(1): 2.
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Bayes Crr: uses a “rounded spike” (low-variance Gaussian) at origin
e many small effects can contribute to polygenic component,
o reduces the dimensionality of the model (makes Gibbs
sampling feasible).
Bayes D7r: similar to C, but with a t-distribution prior for SNP effects,
allowing for different variances.

Bayes R: Hierarchical Bayesian mixture model with 4 Gaussian
components, with variances scaled by 0, 1074, 10~3, and
1022
The choice of prior for the [3; should ideally reflect the genetic
architecture of the trait, and will vary (perhaps a lot) across traits.

?Moser G et al. (2015) Simultaneous discovery, estimation and prediction
analysis of complex traits using a Bayesian mixture model. PLoS Genet 11(4):
€1004969.
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Fig 2 of: De los Campos, G et al. (2013) Whole-genome regression and prediction
methods applied to plant and animal breeding. Genetics 193(2): 327-45.
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Table 1 Prior density of marker effects, prior variance of marker effects, and suggested formulas for choosing hyperparameter values

by model
Model Prior variance Solution for scale/variance
p(B; |w) Hyperparameters Var(B; |o) parameter
Bayesian ridge regression
2 2 2 hz“}?
N(g; 10,77) 7 7 b=
Bayesian LASSO
2 1—h?
DE(Bjlo”.A%) {207} 2% a=y/2¢ I ) \isy
BayesA § -
d.f.sS5 , (dfg=2)hog
t(B;|d f.6,5p) {dfg,Ss} p-2 = Ve
Spike-slab
xN| B \o,ﬁ + (1=m)N(B;|0, 0%), ) , (1-7) ) T h?a?
I 198 {m o, 7} U'BX[WJrﬂf} g—B:[m} Moy
(r>1)
BayesC
2 2 2 2 1 hz"';z)
wx1(8, = 0) + (1-m)N(B,[0,03) (m 03} A x(1-m) e
BayesB o .
d.f.sSh , 1 (dfg—2)ho;
mx1(B; = 0) + (1=m)t(B;|d.f.4, ) {m,dfg, Sp} (1 ﬂ)d_fﬁ—z Sg= (=m) dfy Mo

MS,=n"Y0, fi‘ (X —)?,)there xj € (0,1,2) represents number of copies of the allele coded as one at the j (j=1,...,p) locus of the it (i=1,...,n) individual, and X; is

the average genotype at the j& marker.

Table 1 of: De los Campos, G et al. (2013) Whole-genome regression and predic-
tion methods applied to plant and animal breeding. Genetics 193(2): 327-45.
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Many other statistical models

@ Random forest
@ Neural networks
@ Reproducing kernel Hilbert spaces.
The performance of 10 algorithms, with/without bagging/boosting, over 8

crop datasets, is given by: Heslot et al. (2012) Genomic Selection in Plant
Breeding: A Comparison of Models Crop Sci 52 (1): 146-60.

Many other method comparisons reviewed in: De los Campos, G et al.
(2013) Whole-Genome Regression and Prediction Methods Applied to
Plant and Animal Breeding. Genetics 193(2): 327-45.

In general, prediction accuracy depends on:
@ size of the training sample,
@ trait heritability;
@ the number of loci affecting the trait,

@ the genetic relatedness between training and test samples.
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Feature Selection

Redundant predictors have a (small) adverse impact on prediction, and
imply a cost in additional genotyping, so it is often of interest to
incorporate an element of model selection into genomic prediction.

The task of identifying a minimally-nonredundant set of predictors from a
large set has come to be known as feature selection. We aim to find a
minimal subset of markers S C X such that

P(Y[X)~P(Y]S),

Markers in X'\ S are redundant only for Y, and in the case of high LD
they may be redundant for many traits.
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Markov Blankets & Feature Selection

LASSO and EN perform model selection implicitly. An explicit approach is
Markov blanket learning. A Markov blanket (MB) is a minimal set B(Y)
that satisfies

(Y L X\ B(Y)) | 5(Y)
and is unique under very mild conditions.

@ An algorithm for identifying B(Y) approximately satisfying this
condition can be performed in polynomial time using a sequence of
conditional independence tests involving small subsets of markers.

@ The markers in B(Y) can then be used for GS with one of the linear
models illustrated above.

@ Whether or not feature selection is worth the additional

computational effort, or indeed conveys any benefit at all overall, is a
matter of debate.
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Ranking and GS

@ The main goal of GS is to select new varieties with better values for
the trait of interest.

@ For comparison across methods it can be useful to focus on ranks of
the predicted EBVs:

The most common statistic to compare rankings is Kendall's 7:

(concordant pairs) — (discordant pairs)
3(n)(n—1)
where concordant pairs are pairs of EBVs such that the highest ranked

EBV of the pair is the same in both rankings; otherwise they are
discordant.

T =
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Rank-based model averaging

Combining predictions of different models using their predicted ranks:

@ minimises effects of prediction errors made by just one model;

@ allows the combination of the predictions based on different

information, because different models are better at capturing different
kinds of genetic effects;

@ averaged models are “smoother” than the original ones, and have

been shown to have better predictive power for many classes of
statistical models.

Model averaging based on ranks is also called rank aggregation.
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Prediction beyond the training sample

@ Under CV, individuals in the test sample are statistically the same as
those in the training sample.

@ In genomic selection, we want to predict individuals in several future
generations; in other settings we may want to predict into populations
lacking sufficient training data.

@ Fst is a measure of average kinship between two samples and can
give a (imperfect) guide to predictive accuracy.

In a paper with Mackay and Scutari, under review at PLoS Genetics, we
examine the decline of predictive accuracy with increasing Fsr between
training and test samples.
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O MultiBLUP
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Generalising BLUP

o Different generalisations of GBLUP considered above have differed
mainly in choice of prior/penalty, but with the same choice being
applied to all SNPs.

e MultiBLUP!! (incorporated in the LDAK software) extends BLUP by
allowing reduced shrinkage for SNPs in promising genomic regions.

o Easiest to describe in mixed-model formulation:
Y=m1+7+793+...+ ¢ where Var[y,] = 0',217Km with K.,
computed from SNPs in mth region.

@ The regions can be pre-specified or chosen by MultiBLUP — adaptive
MultiBLUP.

1Speed D, Balding D, MultiBLUP: improved SNP-based prediction for complex traits
Genome Res, 24: 1550-1557 (2014).
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Prediction for Crohn's Disease with 5 a priori regions:

3 pathways + 2 genes

Random Effect Region h® | Region r?
IL-9 Signalling 0.006 0.003
IL-2 Receptor Beta Chain 0.003 0.001
IL12 Pathway 0.019 0.016
Gene NOD2 0.012 0.012
Gene IL23R 0.008 0.007
Background Region 0.96 0.09

Correlation of predicted and true values in CV improves from 0.10 (BLUP)
to 0.12 (MultiBLUP with 5 regions).
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Adaptive MultiBLUP

Step 1: Divide genome into (say) 75kbp overlapping chunks.

Step 2: Test each chunk for association (using GBAT).

-lngy pvalua

1 2 a 4 i & i [ El 10 1 1218 14 15 qa 4T qe e 3
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Adaptive MultiBLUP

Step 1: Divide genome into (say) 75kbp overlapping chunks.

Step 2: Test each chunk for association (using GBAT).

-lngy pvalua
]

1 2 a 4 i & i [ El 10 1" 12 1

[ TN T T -]

Step 3: Identify all significant chunks (say P < 1075).
(Merge these chunks with neighbouring chunks with P < 0.01.)

E.g., for Type 1 Diabetes, obtain 4 local regions.
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Adaptive MultiBLUP

Step 1: Divide genome into (say) 75kbp overlapping chunks.

Step 2: Test each chunk for association (using GBAT).

-lngy pvalua
]

1 2 a 4 i & i [ El 10 1" 12 1

[ TN T T -]

Step 3: Identify all significant chunks (say P < 1075).
(Merge these chunks with neighbouring chunks with P < 0.01.)

E.g., for Type 1 Diabetes, obtain 4 local regions.

Step 4: Run MultiBLUP with five random effects.
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Adaptive MultiBLUP vs other methods: WTCCC diseases
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Compute times: Risk score / BLUP: < 1 hr, Stepwise Regression: 2 hrs to
5 days, MultiBLUP: 2-3 hrs, BSLMM: 8-30 hrs.

Adaptive MultiBLUP, BayesR, BSLMM achieve very similar performance,
but noticeably better than Polygenic Risk Scores and BLUP for these data.
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Adaptive MultiBLUP is Computationally Efficient

WT analyses (n ~ 5000, N = 300000) take ~40 min and < 1Gb memory.

Adaptive MultiBLUP can handle upwards of 50 000 individuals and
imputed SNP data.

i)
1

-log10 (P)
20

0 5 10
1

0 10000 20000 30000 40000 50000 60000

Inflammatory Bowel Disease (n = 12,678 N ~ 1.5M); 2 hours, < 1Gb.
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Some larger datasets

BSLMM!2 and BayesR not feasible.
Performance, measured as correlation (AUC):

Irritable Bowel Disease (12,678 individuals, 1.5M SNPs):
e BLUP: 0.15 (0.58)
@ Risk Score: 0.21 (0.63)
o MultiBLUP: 0.34 (0.68)

Celiac Disease (15,283 individuals, 200k SNPs):
o BLUP: 0.40 (0.76)
@ Risk Score: 0.44 (0.78)
e MultiBLUP: 0.54 (0.84)

2Guan & Stephens (2011) Ann. Appl. Stat. 5(3): 1780-1815.
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Conclusions

@ Genome-wide SNPs allow us to think differently about both
heritability and prediction.

@ Many different models have been proposed in literature for genomic
prediction, with different strengths and weaknesses.

o Different models will suit different trait architectures; e.g. some give
more weight to rare alleles than others.

@ The key elements of a statistical model include

e whether to maximise over or integrate out genetic effects;
e prior/penalty assumed for effect sizes.

@ A polygenic term is an important component of many models,
e its correlation structure can be specified by kinships in a mixed model
e or it is implicit in the genome-wide distribution of effect sizes.

@ Using ranks instead of the predicted EBVs can be more robust for GS.
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