Module 14: Advanced Heritability Analysis

© Estimating SNP Heritability

© Genome Partitioning

© Intensity of Heritability

@ Testing Different Models

© Using Other Datatypes

© Bivariate Analysis

@ Mixed Model Analysis

© Gene-Based Association Testing
© Adaptive MultiBLUP

@ Applying to Animal and Plant Data
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@ Estimating SNP Heritability
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Recap of Module 9

We looked at estimating heritability from SNP data. To do this in a mixed
model framework, it is necessary to construct a kinship matrix K, which
estimates relatedness / genetic similarity between all pairs of individuals

Most commonly, K takes the form of allelic correlations K = XX, in
which case, the mixed model is equivalent to a random effect regression
model

When individuals are related, we will obtain an estimate of narrow-sense
heritability, h?

When individuals are unrelated, (and there is no inflation due to
population structure or genotyping error) we will obtain an estimate of
SNP heritability, hg-NP
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Recap of Module 9

The standard K used when estimating SNP heritability, corresponds to a
(very) specific set of model assumptions
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Changing K changes estimates of h%NP; sometimes by a large amount
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Different Methods Give Different Estimates

ANALYSIS Al

"g’emrrfctics
Improved Heritability Estimation from Genome-wide SNPs

Doug Speed,’* Gibran Hemani,2 Michael R. Johnson,? and David J. Balding!

Common SNPs explain a large proportion of the heritability

for human height of ity, I, from ide SNPs genotyped in unrelated individuals has recently att
et v Wittrtreuseof it has been estimatec
Jian Yang’, Beben Benyamin!, Bria P sehotyping anay. In compart

Pames & Maddent, Amdrw  He,
Peee M Vischerh . ulation the validity of sever
genctlcs fund that the method is rea

P discovered by
ium (LD) between SNPs: cont

wide 35
oo oy 2 fncionct ...; o

3:1%;5

eximated te proportor] ons of low LD. The overall d
593 uted il i e bstantial in realistic scenario
i i Sk 1a} this correction greatly re
ke vttt s o ‘e first seven diseases studie
e e becae o i s e for immune-related diseas¢

o pss singent sgnifcance ests. We p

immune diseases. To calcula
e et sl

exscerbated by causal variani e
vy than e SNbs explore o it

ot ¢

 Nature America nc. Allrights reserved.

Genetic variance estimation with imputed variants finds |
negligible missing heritability for human height and body .

Estimation of SN 111aSS index

Heritability from
Y l.2,24‘
Dense Genotype ;;,:n“hae:,gn R

Tothe Editor: Recently, Spee The LifeLine
hensive and elegant evahja  Patrik KE
underlying the linear mixec Naomi R Wra;
program GCTA® for estif:
They concluded that the trretirod-fs-Tobust-to-vivtrtior
of four of the assumptions. However, they found that
SNP-heritability estimates were sensitive to uneven linkage
disequilibrium (LD) between SNPs (implying uneven
tagging of causal variants) and suggested an approach to
improving the robustness of estimates in this context.
Speed et al.” tested their method on relatively sparse geno-

PMCID

ed Heritability Analysis

$on,> and David J. Balding’

They also noted that uneven tagging of causal variants by
genotyped SNPs generated biased estimates of i under
some genetic architectures. They proposed that SNP contri-
butions should be weighted by the LD () between SNPs.
However, we found that the weighted GRM can generate To the Editor: In Speed et al.,! we identified two potential issues when p

“This artile has been cited by other articies In PMC.

Main Text

upwardly blased mnmates of h2 in the context of dense

AFATAT waihaict SNP-based heritability estimation: (1) estimates of 4 can be biased whe

Armidale Genetics Summer Course



The Missing Heritability Problem is Solved

Human Height Schizophrenia Obesity

GWAS SNPs

Environment
Other
SNPs
Other
Genetics

Crohn's Disease Bipolar Disorder Epilepsy

Regardless of the exact numbers, SNPs explain considerable heritability
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Purpose of a GWAS

The three main objectives are:
1 - Identify the causal variants
2 - Create prediction models

3 - Understand the genetic architecture of the trait

The most popular analysis is single-SNP testing
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1 - ldentify the Causal Variants
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2 - Creating Prediction Models

Successful for traits with very large causal variants (e.g., BRCAL for breast
cancer, HLA for celiac)

But limited success for most common traits

Armidale Genetics Summer Course Module 14: Advanced Heritability Analysis



3 - Understanding Genetic Architecture

Would like to know how much causal variation is due to:

common variation

rare variation

additivity

dominance / recessiveness / epistasis

coding regions

copy number changes, frameshifts, splicings, methlation, etc.

Single-SNP GWAS analysis mainly tells us that there are few common
variants of strong effect
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SNP-Based Heritability Analysis to the Rescue
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© Genome Partitioning
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Genome Partitioning

The basic (single-kinship) model assumes

Y = b1 X1+ B2 Xo + B3X3 + BaXa + Bs Xs + B6Xe + B7X7
+ BgXs + BoXo + B10X10 + F11X11 + B12X12 + B13X13 + B1aX14
+ B15X15 + B16X16 + B17X17 + B18X1s + B19X10 + B20X20 + B21X21
+ B22X22 + B23X23 + B24Xo4 + Bas Xos + BasXoe + P27 Xor + BagXos
+ ... + B500000X500 000
+ e.

Assume 3; ~ N(0,0%/N) and e ~ N(0, 03).

Then Y ~ N(0, Kaz, + 102), where K = Xff,T
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Genome Partitioning

We can extend this to

Y = b1 X1+ B2 Xo + B3X3 + B4 Xa + Bs Xs + B6Xe + B7X7
+B8Xg + BoXo + BroX10 + B11X11 + F12X12 + B13X13 + B14X14
+P15X15 + P16 X16 + B17X17 + S18X1s + B19X19 + B20X20 + 21 X201
+B22X02 + B23Xo3 + B2aXoa + PasXos + [BasXoe + B27Xo7 + B28 X0
+ ... + B500000X500000
+ e.

Assume [3; ~ N(07a§1/N1) and B ~ N(O,O’éZ/NQ).

X1 X"

.
Then Y ~ N(0, K103, + Kooz, + 102), where Ki = =t and Ky = %%

N>

Instead of estimating only total h_%NP, we can now estimate h’ of RED
SNPs and h? of BLUE SNPs
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Genome Partitioning

Genome partitioning of genetic variation for complex
traits using common SNPs

Jian Yang'®, Teri A Manolio?, Louis R Pasquale?, Eric Boerwinkle?, Neil Caporaso®, Julie M Cunningham®,
Mariza de Andrade’, Bjarke Feenstra®, Eleanor Feingold®, M Geoffrey Hayes'®, William G Hill'},

Maria Teresa Landi'2, Alvaro Alonso'?, Guillaume Lettre'4, Peng Lin'%, Hua Ling'¢, William Lowe!7,
Rasika A Mathias'®, Mads Melbye®, Elizabeth Pugh'é, Marilyn C Cornelis'?, Bruce § Weir2®,

Michael E Goddard?!22 & Peter M Visscher!
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© Intensity of Heritability
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Intensity of Heritability

Suppose you have used genome partitioning to estimate contributions of
genic and inter-genic regions

h?_ =60%

S

h? _  =40% h? =20%

GENIC INTER-GENIC

Genes Non-Genes

Want to decide whether a partitioning is significant

Define a region’s intensity of heritability, I, as its h* divided by how much
variation it captures (its sum of SNP weightings)

Can then test whether two (or more) partitions have significantly different
intensity of heritability
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The Role of Genes

Is intensity of heritability higher for exonic than inter-genic SNPs?

Intensity of heritability (h2/1000 “SNPs")

Trait Total h? Exons Intergenic P

Bipolar Disorder 68% 1.7 1.3 0.37
Coronary Artery Disease 44% 3.1 0.6 0.008
Crohn’s Disease 62% 1.6 0.7 0.21
Hypertension 54% 3.6 11 0.007
Rheumatoid Arthritis 52% 3.1 0.3 0.004
Type 1 Diabetes 76% 7.5 0.3 5e-11
Type 2 Diabetes 47% 0.9 0.6 0.40

Inter-genic defined as >100kb from a coding region.
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The Role of Genes
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Exons 0-10Kb 10-20Kb 20-30Kb 30-40Kb 40-50Kb

Can investigate what happens as we move away from exons.

Find intensity of heritability significantly high until >30kb.
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Concordance Between Traits

Are SNPs associated with one trait more important for others.

Bipolar Disorder Coronary Artery Diseas Crohn's Disease Hypertension Rheumatoid Arthritis Type 1 Diabetes Type 2 Diabetes
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p-values for Schizophrenia and Crohn’s obtained from independent studies.
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Concordance Between Traits

Are SNPs associated with one trait more important for others.

Bipolar Disorder Coronary Artery Diseas Crohn's Disease Hypertension Rheumatoid Arthritis Type 1 Diabetes Type 2 Diabetes
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SNPs associated with Crohn's are more important for Crohn's. (Good!)
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Concordance Between Traits

Are SNPs associated with one trait more important for

Crohn's Disease
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Concordance Between Traits

Are SNPs associated with one trait more important for others.

Bipolar Disorder Coronary Artery Diseas Crohn's Disease Hypertension Rheumatoid Arthritis Type 1 Diabetes Type 2 Diabetes
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Find concordance between Crohn's and Type 1 Diabetes.
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@ Testing Different Models
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Examining the Relationship between MAF and Effect Size

The default assumption is that all SNPs (GCTA) or genetic variations
(LDAK) contribute equal heritability

This seems to be supported by empirical evidence for some traits
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Genetic architecture of body size in mammals, Kemper et al (2012)
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Distribution of Heritability across the MAF Spectrum

(If true), this gives us an idea of how heritability varies with MAF

Distribution of MAF - COMMON SNPs

Proportion

|

0.0 01 02 03 04 05

[ I I I I I I 1
le-04 0.001 0.01 0.1 0.2 0.3 0.4 0.5

Minor Allele Frequency
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Distribution of Heritability across the MAF Spectrum

(If true), this gives us an idea of how heritability varies with MAF

Distribution of Heritability - COMMON SNPs

Share of Heritability
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Minor Allele Frequency
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Distribution of Heritability across the MAF Spectrum

(If true), this gives us an idea of how heritability varies with MAF

Distribution of Heritability — ALL SNPs

Share of Heritability

|
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[ I I I I I I 1
le-04 0.001 0.01 0.1 0.2 0.3 0.4 0.5

Minor Allele Frequency

In particular, it suggests the relative contribution of rare (red) and
common (grey) variants
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Is this Assumed Distribution Accurate?

Must recognise there is an implicit bias, because we tend to only find the
highest heritability variants

Effectsize

104
Common with'largs éffects:

unlikefy 1o exist

0.1 4

_ g B’"' T
e Rare with small gffetis; "ﬁ
00.1 2 beyond the scope of ganetics

r T T 1
<0.00001 0.0001 0.02 0.5

/ery) Rare Intermadiate Common
Minor allele frequancy

Understanding complex traits: from farmers to pharmas, Speed and
Balding et al (2012)
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Distribution of Heritability across the MAF Spectrum

Also, this assumes rare SNPs are equally likely to be causal as common
SNPs. Is this a fair assumption?

Distribution of Heritability — ALL SNPs

Share of Heritability
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Minor Allele Frequency
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Distribution of Heritability across the MAF Spectrum

Things would change if the probability of a variant being causal depended
on MAF

Common SNPs 10x More Likely to be Causal

Share of Heritability
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Minor Allele Frequency
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Testing How Heritability Varies with MAF

We can test this by performing heritability analysis with different kinship
matrices, each corresponding to a different assumed relationship, and
seeing which fare best

Ky = zl S wi(X; — mean(X;))(X; — mean(X;)) x [Var(X)]"

Smaller a means that rare variants contribute more h?
The default in humans is & = —1 (all variants contribute equal h?)
The default in animals is & = 0 (more common = more h?)

We can now analyse our data using multiple a and see which fits best
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Results for 22 GWAS Traits

Likelihood Ratio Statistic

60

20 30 40 50

10

0

WTCCC 1 » Tuberculosis
* WTCCC 2 Height & MDD
e MS & Celiac WRAT & IOP
Epilepsy * AVERAGE

-150 -125 -100 -0.75 -0.50 -0.25 0.00 0.25 0.50

Standardization Power

Smaller LRT (y-axis) = more support for corresponding «

We deduce that o« = —.5 bests fit for these 22 traits
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© Using Other Datatypes
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Variance Explained by Copy Number Variants

We are not restricted to considering SNPs
the methodology can be applied to any data type

For breast cancer data, we constructed kinship matrices based on copy
number variants (so now, each row of X represents the number of copies
of a variant possessed by each individual)

Genome-wide Somatic Heritability

NWWMWMMWW

9 10 M 18 20

Heritability
00 04 0 5

Chromosomal Location of Gene Probe Probe

Instead of variance explained by SNPs, we estimate variance explained by
copy number (where the phenotype is gene expression).
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Variance Explained by Gene Expression

Alternatively, you can construct kinship matrices based on gene expressions
(each row of X now represents intensity of a particular gene probe)

Genome-wide Influence of each CNA on the Transcriptome

: hLml‘uthMn

8 9 10 11 12 14 16 18 20

-log10 p-value
0 100

Chromosomal Location of CNA

Cis Influence of each CNA on the Transcriptome

MMWMM

8 g9 10 11 12 14 16 18 20

-log10 p-value
0 100 250

Chromosomal Location of GNA

We are now estimating variance explained by gene expression (where the
phenotype is copy number change at a particular locus).
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@ Bivariate Analysis
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Bivariate Analysis

Trait 1: Y7 = Zag + B1 X1 + BoXo + ... + B500000X500000 + €1
=Zat+g1+e

Trait 2: Yo = Zap + 71 X1 +72Xo + ... + 7500000X500000 + €2

=Zarx+ o+ e

Now interested in the correlation between genetic effects:
p = cor(g1, &2).

Or equivalently can think of the average correlation between effect sizes:
p = cor(f,7;)
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Examining Concordance Between Traits

Genetic relationship between five psychiatric disorders
estimated from genome-wide SNPs

Cross-Disorder Group of the Psychiatric Genomics Consortium”

0.6 - Haritabifties Caheriabilitios
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= 025 Bipolar I
2 oo
2 018 Sechizophrama -
§ a.10 Dﬂ
" commen |
% 0 Iﬂmiﬂﬂ:lx]:.:l:q] | . - |
-0.06 I i
e 00 01 02 03 04
EHHTTHHT i
g&'ﬁggg 1T Heritability Component

Hong will explain more in Module 17
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@ Mixed Model Analysis
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Mixed Model Association Analysis

Introduced in Module 5

Suppose we want to test SNP j for association with Y
Standard Single-SNP Analysis:

Y =BiX+e

Mixed Model Association Analysis:
Y=8X+g+e g~N(0 KoJ)

Including the background (polygenic) random effect g effectively allows for
confounding due to familiar relatedness and population structure
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© Gene-Based Association Testing
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GBAT: Gene-Based Association Testing

Standard GWAS analysis examines each SNP individually.

There are many reasons we might prefer a gene-based analysis.

Reduces total number of tests
Biologically plausible
Can accumulate evidence across SNPs
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GBAT: Gene-Based Association Testing

Standard GWAS analysis examines each SNP individually.

There are many reasons we might prefer a gene-based analysis.

Reduces total number of tests
Biologically plausible
Can accumulate evidence across SNPs

Our software GBAT performs set-based tests of association.

Fast and Powerful.
Bayesian version accommodate prior information.
Suitable for meta-analysis.
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Gene-Based Association Testing

To estimate the total contribution of all SNPs, we use the model:

Y = B1X1 + BaXo + B3X3 + B4 Xs + Bs Xs + B6Xe + B7 X7
+ B Xg + BoXo + Br0X10 + B11X11 + B12X12 + F13X13 + S14X14
+ B15X15 + B16X16 + B17X17 + P18 X1g + B10X19 + B20X20 + [F21X21
+ 822Xz + B23X23 + B24Xo4 + Bas Xos + BasXog + Ba7 Xo7 + [B2g Xog
+ ... + B500000X500 000
+ e.
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Gene-Based Association Testing

To test a set of SNPs S, can reduce it to:

Y = BoXr+ B+ PG A s X+ e X+ 7X7
+ g Xg oo+ B10X10 + B11 X1 + B12X12 + S13X13 + S14X14
+ B15X15 + B16X16 + B17X17 + S18X1s+HroXo P00 X
+ BoXor+BmXos B Xor P Xos+ s Xoe+BarXor Pz Xs
+ ——+B500000X500000
+ e.

e, Y =23 s XiBj + e with g; ~ N(0, 0% /Ns).

Perform a likelihood ratio test for P(0% > 0).

Armidale Genetics Summer Course 2016 Module 14: Advanced Heritability Analysis



Simulation Study

Generate phenotypes where 50 out of 1000 genes contribute heritability.

1 Causal SNP per Gene 2 Causal SNPs per Gene 3 Causal SNPs per Gene
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GBAT most powerful and fastest (does not require permutations).
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Accommodating Prior Information

Frequentist methods base inferences only on evidence from data.

Bayesian methods combine evidence from data with prior beliefs.
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Accommodating Prior Information

Frequentist methods base inferences only on evidence from data.

Bayesian methods combine evidence from data with prior beliefs.

Frequentist "Prior" Bayesian Priors

.

00 02 04 06 08 10

Likelihood
Likelihood

[ I I I I 1
00 02 04 06 08 10

Heritability Heritability

Frequentist analysis assumes a
gene is as likely to explain 1% or
99% of heritability.

Bayesian GBAT lets the user
specify a prior distribution for
heritability.
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Single-SNP Meta-Analysis

Meta-analysis allows us to combine evidence for SNP associations across
cohorts.

Study mean difference (rancdom) Wigight mean difference (random)

or sub-category mean difference (SE) 95% Cl % 95% Cl
Silver €.9000 (3.1300) —_—) 8.839 €.90 [0.65, 13.15)
Davas Pulse Cyc 7.5000 (3.0100) —_— 8.13 7.50 [1.80, 13.40]
Pakas High Pred 12.4000 (3.3600) e 4 8.10 1z.40 [5.81, 18.99)
Pakas Low Pred =0.7000 (1.3300) i —, 13.1z =0.70 [-4.48, 3.08)
Hoyles Z.4000 (Z.0800) o —, 1z.50 2.40 [-1.88, £.48)
Madashkevich 1.5000 (z.0g00) S—T 1z.50 1.50 [(-2.58, 5.58)
Tashkin =1.0000 (0.0764) L] 18.86 -1.00 [-1.1%, -0.85]
Aird 2.0000 {(0.2100) —— 17.20 2.00 [0.2z, 2.72]
Total (35% CI) -~esiijiee-- 100.00 2.83 [0.35, 5.31]
Test for heterogeneity: Chi® = 44 66, df = 7 (P < 0.00001), F = 84 3%

Test for overall effect: Z =224 (P =0.03)

-10 -5 0 5 10

Existing gene tests are not well-suited for meta-analysis

But when we score genes based on heritability, meta-analysis becomes
straightforward
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12-Cohort Gene-Based Meta-Analysis for Epilepsy

Work for the International League Against Epilepsy (ILAE)

0.02
1

Projection 2

-0.02

—— UK1 ~ FINLAND  —— US4
—e— Us1 ~e—= HOLLAND -%— USs
—— |RELAND —%— USs2 HONGKONG
—— UK2 - US3 —%— BELGIUM
3
e
T T T T
-0.04 -0.02 0.00 0.02
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12-Cohort Gene-Based Meta-Analysis for Epilepsy

Single-SNP Meta-Analysis

-log1io P

Bayes Factor

BLACK: EXONS — RED: INTRONS — GREEN: INTER-GENIC

Armidale Genetics Summer Course Module 14: Advanced Heritability Analysis



Two Hits on Chromosome 2
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Liability Heritability
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Liability Heritability
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Fine Mapping of SCN1A

BASIC CONDITIONAL
o _|
52
Q9 EXONI
NTRO IC
S H INTERGENI(
o |
N
& 5
= n _] oy
g -
o
o |
=
| “" ‘ I I .l
o,..... ol o—c...o XX ' '
T T T
5 10 15 5 10 15
Index Index

For each region of interest, can regress phenotype on each
exon/intron/inter-genic chunk conditional on all other SNPs
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© Adaptive MultiBLUP
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Adaptive MultiBLUP - See Module 11

Step 1: Divide genome into (say) 75kbp overlapping chunks.

Step 2: Test each chunk for association (using GBAT).

-lngy pvalua
]

1 2 a 4 i & i [ El 10 1" 12 1

[ TN T T -]

Step 3: Identify all significant chunks (say P < 1075).
(Merge these chunks with neighbouring chunks with P < 0.01.)

E.g., for Type 1 Diabetes, obtain 4 local regions.

Step 4: Run MultiBLUP with five random effects.
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@ Applying to Animal and Plant Data
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Applying these Methods to Animal Data

Human Genetics Animal Genetics

Low Relatedness High Relatedness

10000s of Individuals 100,/1000s of Individuals
Millions of SNPs 10/100000s of SNPs
Binary Traits Quantitative Traits
Loadsa Money Nice Waterproof Clothing
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Wellcome Trust Hetergeneous Stock Mice

25000C

150000

Frequency

50000
|

0
|

[ T !
0.0 0.5 1.0

Pairwise Relatedness

1940 mice, descended from 8 founders. 10091 SNPs.
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Estimating SNP Heritability

Total Heritability

1.0

Heritability
(%)
z
T
T
g
o
g
E;

|

0.0

\ \ \ \
Unrelated Low Moderate High

Levels of Relatedness

WILL NOT WORK - Requires individuals to be unrelated
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Genome Partitioning

Simulated 80% heritability, of which 10% on Chr 1, 30% on Chr 2.

<
-

0.8
|
0o

|

0.6

Heritability

= .

0.2
|

T T ]
Chromosome 1 Chromosome 2 Chr1/Chr2

SEMI WORKS - Absolute values inflated, but relative values reasonable
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Intensity of Heritability

SNPs 1, 3, 5, ..., 10091 explain 20% of variance
SNPs 2, 4, 6, ..., 10090 explain 60% of variance

e _
i

o]
o T

B —

0.6

Heritability

0.4
|

0.2
o

[ I 1
Odd SNPs Even SNPs Odd / Even

WORKS - Although precision low even with sparse SNP density
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Armidale Genetics Summer Course

Mixed Model Association Analysis

LTSI

Nature Genetr'cs 38, 203 - 208 (2005)

A unified mixed-model method for association
mapping that accounts for multiple levels of
relatedness

Jianming YulZ, Gael Pressoirl2, William H Briggs2, Irie Vroh Bil, Masanori
YamasakiZ, John F Doebley2, Michael D McMullend-2, Brandon S Gauts,
Dahlia M Nielsen®, James B Holland*~, Stephen Iﬂ(resowchl & & Edward S
Bucklerl3.2

As population structure can result in spurious associations, it has
constrained the use of association studies in human and plant
genetics. Association mapplng, however, holds great promise if
true si Is of f ti lation can be separated from the
vast number of false signals generated by population structurel-2,
‘We have developed a unified mixed-model approach to account for
ple levels of related ly as detected by
random genetic markers. We applied this new approach to two

WORKS - this is what it was designed for!

ARTICLE LINKS

+  Figures and tables
+  Supplementary info

ARTICLE TOOLS

B3 send to a friend

B Export citation

% Export references

% Rights and permissions
ﬁ% Order commercial reprints
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Analysis of Schizosaccharomyces pombe

Data from Dan Jeffares

Collection of 161 natural isolates, phenotyped for 53 measurements of cell
shape and growth rates.

Data highly structured; while genotyped for over 1000000 SNPS, the
effective size of the genome is closer to 1000.
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Analysis of Schizosaccharomyces pombe

Single-SNP Analysis

-log10(P)

0 2 4 6 8

Standard Single-SNP analysis leads to high inflation

Single-SNP Mixed Model Analysis

8

“log10(P)
0 2 4 6

This is controlled by mixed model association analysis, but power is low
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Analysis of Schizosaccharomyces pombe

On next slide: across 58 traits, green are loci significant through
chunk-based testing, red are those significant through single-SNP test

There are many more green (chunk-significant) hits than red
(single-SNP-significant) hits

A gene (chunk) based test can have much higher power, because it
considers groups of variants (typically in high LD) together and can afford
a far lower significance threshold
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Analysis of Schizosaccharomyces pombe
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Adaptive MultiBLUP
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WORKS - across 143 mice traits find modest improvement over BLUP
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Yang, Visscher et al. showed that by applying mixed-models to GWAS
data for unrelated individuals, it is possible to estimate h%NP

While this was a major breakthrough in the missing heritability discussion,
in my view, this is just the tip of the iceberg

By realising that different K correspond to different underlying models, we
can now use (extensions of) SNP-based heritability analysis to investigate
traits in fantastic detail

e.g., genome partitioning, intensity of heritability, distribution of h?,
gene-based association analysis, MultiBLUP prediction

While estimating h?SNP require unrelated individuals

MANY OF THE EXTENSIONS DO NOT
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