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Single-SNP Association Analysis

Many associations have been identified through single-SNP analysis

GWAS Catalog - https://www.ebi.ac.uk/gwas/diagram
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Statistical methods for association analysis

Let Y be a vector of phenotypes and Xj the corresponding vector of
genotypes at the jth SNP, Each vector is typically of length 103 to 104

(number of individuals, i) and j can range up to several millions. We seek
to identify population correlations between Y and one or more of the Xj .

Y is usually binary (usually case-control) or quantitative (continuous);

It can also be (ordered) categorical or a count, or it can be multivariate
(not considered further in this course).
SNPs are linearly ordered along chromosomes and neighbouring SNPs
may be in high linkage disequilibrium (LD) due to co-inheritance of
chromosome fragments from remote ancestors;
unlinked SNPs can also be in LD e.g. due to pop. structure.

Association analysis can be aimed at finding a:

Model selection: identify SNPs that each tag a variant causally associated
with the phenotype; focus is on control of false positives, or

Prediction: identify SNPs that give optimal out-of-sample prediction of
phenotype (assessed e.g. using cross-validation).
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Linkage disequilibrium is our friend and our enemy

UnobservedGenotyped

disequilibrium pair
chromosome

Phenotype

Linkage

Causal

Indirect
association

association

locus
causalSNP

LD is essential for detecting ungenotyped causal variants using SNP data
(not for sequence data):

the higher the LD, the more likely we are to detect a causal signal,
but the harder it is to fine-map (precisely locate) the causal variant.
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Tests of association: case-control study1

Test independence of rows and columns in a 2× 3 contingency table.

Pearson (2 df) χ2 test; Fisher exact test.

Genotype 0 1 2 total

Case 89 369 342 800
Control 56 250 266 572

total 145 619 608 1 372

R code:

> cas = c(89,369,342); con = c(56,250,266)

> chisq.test(matrix(c(cas,con),3,2))

Pearson’s Chi-squared test

X-squared = 2.0551, df = 2, p-value = 0.3579

> fisher.test(matrix(c(cas,con),3,2))

Fisher’s Exact Test for Count Data

p-value = 0.3607
1For further details on this section see: Balding DJ, A tutorial on statistical methods

for population association studies, Nat Rev Genet 7(10): 781-791, 2006.
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(Cochran)-Armitage Trend Test (ATT)

Pearson and Fisher tests both
allow the genotypic relative
risks to take any value –
general genetic model. But
some patterns of association
(genetic models) are more
plausible than others.
The ATT is a single-SNP test
for a linear trend of relative
risk with genotype (coded as
0,1,2). R example:
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> prop.trend.test(cas,cas+con)

Chi-squared Test for Trend in Proportions

X-squared = 1.9853, df = 1, p-value = 0.1588
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Linear regression for continuous (quantitative) traits

plink --linear --bfile <data> --out <output> --pheno <phenfile>

For each j , we fit
Y = µ+ βjXj + ε

where ε is a vector of independent and identically-distributed (iid) noise
variables with variance σ2.

Solve using least squares regression: find µ and βj that minimise∑n
i=1(Yi − µ− Xijβj)

2 where i indexes individuals.

To test whether H0 : βj = 0 can be rejected at each j , compute a p-value
using Likelihood Ratio Test (LRT), or the Wald, Score or F Tests.

Typically, LRT is most powerful.

PLINK uses by default Wald, but LRT can be implemented using
--assoc
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The above tests are sensitive to additive differences in means:

i.e. they have most power when mean heterozygote phenotype is
midway between the two homozygotes, as illustrated above;

this is a consequence of the 0/1/2 coding of genotypes, could test
e.g. recessive or dominant models by changing the genotype coding.
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1df non-additive models
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Linear regression has low/no power to detect such non-linear genetic
effects.
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A more general model (2 parameters/degrees of freedom)

To allow for more general deviations away from additivity (= linearity), we
can define the mean effect at each genotype in terms of µ (overall mean),
a (additive effect) and d (dominant effect):

Genotype (X) E[Y|X]

0 µ− a
1 µ+ d
2 µ+ a

We can write this in a formula as

Y = µ+ (Xj−1)a + Xj(2−Xj)d + ε = µ− a + Xj(2d+a)− X 2
j d + ε

It is common to still assume the same variance for each phenotype (as for
the linear model), but there is also interest in looking for changes in
variance across phenotypes, instead of or in addition to changes in mean.
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Dominant model: d > 0
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Full dominance occurs when d = a.
Recessive model has d < 0; recessiveness is the same as dominance but
with a switch of reference allele.
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Over-dominant model: d > a
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Testing for non-additive effects

In most GWAS testing for non-additivity (d 6= 0) is not performed:

Most association signals found to date have been close to linear;

this is in part a circular argument - they have generally only looked for
additive effects.

Although dominance is common in Mendelian genetics, LD causes
non-additive component of association to decay rapidly

testing for effects that have a low prior probability to be real inflates
the false positive rate.
this justification for ignoring d 6= 0 is less convincing for studies with
very dense genotype or sequence data.

Apparent non-additive effects might be due to genotype error

additive signals of association are considered to be more reliable;

NB counting alleles instead of genotypes to create a 1 df test sensitive to
additive genetic effects is not recommended.
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Linear regression wth covariates

Can include covariates in any regression model (implemented in PLINK by
adding --covar). This extends the linear model to

Y = θ1Z1 + θ2Z2 + . . .+ βjXj = θZ + βjXj

Z1 is (automatically) set to a vector of ones, and θ1 is the global mean
(previously denoted µ)

The estimates of regression coefficients for covariates can be suppressed in
the PLINK output with

plink --linear hide-covar --bfile <data> --out <output> \

--pheno <phenfile> --covar <covarfile>

PLINK by default includes sex as a covariate when testing the X
chromosome. Can be turned off using --no-sex
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Logistic regression for binary (case/control) phenotypes

plink --logistic --bfile <data> --out <output> --pheno <phenfile>

Suppose Y is a vector of phenotypes coded as 1 or 2 e.g. to indicate
case/control status. For each SNP in turn, consider

π = f (θZ + βjXj)

where π = P(Y=1 |Xj) and f is a function that maps the real line into
the unit interval (0,1); f (or more correctly its inverse f −1) is called the
link function. Most common is the logistic link function

f −1(π) = log

(
π

1−π

)
, the inverse of f (x) =

exp(x)

1 + exp(x)
.

With this link function (called logistic regression) βj is the log odds ratio

comparing genotypes that differ by 1 at the jth SNP:

βj = log

(
π2/(1−π2)

π1(1−π1)

)
= log

(
π1/(1−π1)

π0(1−π0)

)
where πk = P(Y=1|Xj=k) for k ∈ {0, 1, 2}.
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Logistic regression versus Pearson and ATT tests

ATT can be derived as score tests of β = 0 under the above logistic
regression model

This assumes genotype is coded as 0, 1 and 2, so that β is then scalar
and the genetic model is additive on the logistic scale.

A general genetic model on the logistic scale can be encoded (in
various ways) using two variables, so that β is a vector of length two.

Above regression models correspond to “prospective” ascertainment: we
condition on genotype and treat phenotype as the outcome. Case-control
studies are usually retrospective: individuals are ascertained according to
phenotype and then genotype is observed.

Fortunately, there is theory to show that analysis based on prospective
model is usually OK for retrospective data2

In some settings there can be advantages to conditioning on
phenotype (“reversing the regression”).

2Prentice R, Pyke R, Logistic disease incidence models and case-control studies.
Biometrika 66: 403-411, 1979.
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Probit regression

The probit link function is the inverse of the Gaussian (Normal)
cumulative distribution function.
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Linear regression for binary data
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The dashed lines result from fitting Y = µ+ βjXj + ε. NB Y is restricted

to two values and so ε is far from Gaussian and the fitted values µ̂+ β̂jXj

are not constrained to lie in (0,1). However, in practice this works well
provided that π is not too close to 0 or 1. It is particularly useful for mixed
model association analysis (MMAA, more later).
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Manhattan plots and (log) P-P Plots

Manhattan plots show − log10(p-value) of SNPs ordered along the
genome:

displays genomically-local patterns of association (useful to zoom into
interesting regions)

a lonely significant SNP can suggest genotyping error.

P-P plots show − log10(p-value) of SNPs ordered by p-value.

A large number of points above the diagonal suggests genome-wide
inflation of test statistics due e.g. to population structure.

Can investigate pattern of association for different SNP categories,
e.g. genotyped vs imputed.

Q-Q plot is similar but shows test statistic values rather than
− log10(p-value).
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Manhattan plot of 1 p-value per SNP, genome-wide

Only SNPs with P < 0.01 are shown (> 2 on the − log10 scale used on
the x-axis). Green and red colouring is used to distinguish chromosomes.
Grey points represent imputed SNPs.
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(log) P-P Plots

It may be preferable to thin SNPs prior to creating plot.
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(log) P-P Plots

Can add approximate (point-wise) or simultaneous 95% confidence
intervals using (e.g.) R package qqplot
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Bayesian vs Frequentist

Frequentist methods focus on performance of methods under repeats of
the analysis with imagined new datasets drawn from the
assumed sampling distribution.

Bayesian methods condition on the observed data and seek a probability
distribution for the unknown of interest. To obtain this
posterior distribution they start with a prior distribution
based on other available information, and then update it
based on the data using Bayes Theorem.
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Bayesian Statistics

Bayesian methods are criticised because conclusions depend on the choice
of prior distribution, and encoding background information always has a
subjective element. They can also be computationally demanding.

However,

Bayesian methods generally answer the right question;

the impact of the prior can be examined through sensitivity analysis;

frequentist approaches are often equivalent to Bayesian analyses with
unexamined and sometimes unreasonable priors;

subjectivity is unavoidable and better to make it explicit;

computational issues are being reduced.

Armidale Genetics Summer Course 2016 Module 3: Association analysis



Computing the posterior probability of association (PPA)

Wellcome Trust Case Control Consortium (2007)3 was the first major
GWAS to report Bayes Factors (BF):

BF =
P(data|H1)

P(data|H0)

under both strictly additive model and a general model that gives most
weight to near-additive models. Then, to compute the PPA:

PPA =
πBF

1−π + πBF
where π =

P(H1)

P(H0)
.

π may vary across SNPs, depending on MAF, proximity to genes of
interest, conservation across species,.... Typically π ≈ 10−4 (so a priori
about 0.3 Mb of the genome has some true association).

The Bayesian solution to the problem of choosing the genetic model is to
average the BF, weighted according to the plausibilities of different models.

3WTCCC, Genome-wide association study of 14K cases of seven common diseases
and 3K shared controls, Nature, 447:661-78, 2007.
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Weighting additive and non-additive models in BF

p-value BF PPA
Trait SNP Trend General (log10) π = 10−4 π = 10−5

BD rs420259 2.2× 10−4 6.3× 10−8 4.1 0.56 0.11
CD rs9858542 7.7× 10−7 3.6× 10−8 4.7 0.83 0.33

T2D rs9939609 5.2× 10−8 1.9× 10−7 5.3 0.95 0.67
CD rs17221417 9.4× 10−12 4.0× 10−11 8.9 0.99999 0.99987

T1D rs17696736 2.2× 10−15 1.5× 10−14 12.5 1.00000 1.00000

Here, BF is computed as a 4:1 weighting of additive and general models
(as defined by WTCCC 2007).

1st row: log10(BF) = 2.0 (additive model); taking π = 10−4, PPA =
0.01; likely to be ignored.
Under general mode, log10(BF) = 4.8 and PPA = 0.86.
But, general model often not tested – additive tests preferred.
With 4:1 weighting, log10(BF) = 4.1, and PPA=0.56.
Only 20% weight given to general model, but BF captures strong
non-additive signal while still emphasising additivity.
Don’t calculate PPA for many models and pick the largest!
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Effect sizes under an additive model

Under the additive model, WTCCC assumed a N(0, 0.2) prior on
effect size (log odds).

A drawback of this is rapid decay in the tails.

Example: effect of prior.

the SEARCH collaborative group (08) reporting that variants in
SLC01B1 are associated with statin-induced myopathy.

most significant SNP is rs4363657, with p = 4.1× 10−9.

Using WTCCC prior, PPA ≈ 0.02

Other Bayesian analyses with more plausible priors give (e.g. mixture
of Gaussians) PPA ≈ 0.4.

Big influence of prior, because data suggest very large effect size for a
rare allele: WTCCC says this is a priori implausible.

p < 10−8 is conventionally regarded as highly significant, but
Bayesian analysis says we should be far from convinced.
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Estimate effect size instead of testing4

Division of SNPs into null or
non-null is artificial;

reality is a distribution of
effect sizes that puts much
weight near zero;

can be modelled using
Normal-Exponential-Gamma
(NEG) prior, and posterior
density obtained numerically;

no BF in this approach, but
posterior P(|θ| > 0.1) =
0.47, 0.39 and 0.35.

4For further details see: Stephens M, Balding DJ, Bayesian statistical methods for
genetic association studies. Nat Rev Genet, 10(10), 681-690, 2009.
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Testing multiple SNPs and Interactions

Regression models can include multiple SNPs and covariates; interactions
among SNPs (G×G), or SNPs with covariates (G×E). Problem: too
many predictors → overfitting, discussed further below. Reasons to include
interactions in models:

1 to help identify causal factors; better models can allow more
convincing evidence for association;

2 to clarify mechanisms of effect, especially for E factors;

3 improved prediction.

In humans, few convincing reports of significant interactions to date:

replication difficult;

huge space of possible hypotheses: very strong signal required to
overcome low prior/strong multiple testing penalty.

easier to establish main effects first, then look for interactions.

Pathway-based analyses correspond to many weak G×G.
Case-only designs can be effective for G×E.
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Haplotype analyses

In single-SNP tests, only one genotyped SNP at a time can ”tag” a
causal variant.

The haplotype block model of the human and other genomes views
the genomes as consisting of many high-LD blocks, usually separated
by recombination hotspots.

This suggests the use of haplotypes rather than SNP alleles, e.g. as
predictors in regression models

gametic phase can be inferred from population samples; need to
incorporate uncertainty in subsequent inferences;
problem of too many haplotypes, many of them rare, can be reduced
e.g. via clustering;
haplotype analyses thought to be advantageous for capturing effect of
multiple causal variants in cis;
many different approaches/software, e.g. UNPHASED (Dudbridge 08).

Haplotype methods enjoyed limited success and were complicated. Success
of imputation methods has largely replaced interest in haplotype analyses.
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Imputation

Imputation is estimation of missing values in a dataset.
It is widely used in the analysis of epidemiological studies

for many analyses, an individual’s entire record might be discarded
because of a few missing values
imputation allows the available information to be analysed.

In genetic epidemiology, because of strong LD between tightly-linked
SNPs, imputation is usually highly accurate in

replacing sporadic missing values
checking for genotyping errors.

It is so effective that it can even be used to impute all the genotypes
at a SNP that was not genotyped in the study.

The information on LD at the missing SNP comes from an external
reference panel, such as HapMap or 1K Genomes, in which the SNP
has been genotyped.

Using this approach the number of SNPs available for analysis can be
increased from, say, 0.5M actually genotyped SNPs up to several
million genotyped + imputed SNPs.
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A simplified view of genotype imputation: 1

X

X

X

X X

X

X X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

Armidale Genetics Summer Course 2016 Module 3: Association analysis



A simplified view of genotype imputation: 2
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A simplified view of genotype imputation: 3
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A simplified view of genotype imputation: 4
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Population genetics models for imputation

Imputation methods are based on
the idea that, due to small
effective population size of our
ancestors, each modern
chromosome can be viewed as a
mosaic of copies of a small
number of ancestral chromosomes

Most popular statistical model to
implement this is a Hidden
Markov Model (HMM).

Emitted states are the observed alleles;
Hidden states are the ancestral chromosomes5

change according to a Markov model usually at recombination hotspots

Solving for the hidden states gives genotypes at missing SNPs.
5Li N, Stephens M (2003) Genetics,165(4): 2213-33.
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Probabilistic genotype calls

Imputation programs give a probability distribution for the genotype at the
missing SNP

e.g. AA 98%; AC 1.5%; CC 0.5%

The variance of the probability distribution over genotypes (coded as
0,1,2) gives a measure of imputation quality

(1/3,1/3,1/3) ⇒ high variance, poor quality

(0.01,0.99,0.00) ⇒ low variance, high quality if model well calibrated.

Analysis can be based on

Most likely genotype

Dosage = expected number of minor alleles

e.g. 1× 0.015 + 2× 0.005 = 0.025

Integrating over the probability distribution.

Dosage is simplest, and works well

but requires an additive model of association.
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Software for imputation

IMPUTE2 (Howie, Donnelly, Marchini 2009) gives very good
performance; use in conjunction with SHAPEIT (Delaneau, Zagury,
Marchini, 2013) for phasing.

MACH6. Nearly best performance, good support, runs quickly.

BEAGLE: Browning & Browning Very fast, slightly worse
performance.

We will provide a guide to SHAPEIT and IMPUTE2 in Module 18.

6Fuchsberger C, Abecasis G, Hinds D. minimac2: faster genotype imputation.
Bioinformatics 2014
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