
Advanced Association Analysis

David Balding
Professor of Statistical Genetics

University of Melbourne, and
University College London

2 Feb 2016

Armidale Genetics Summer Course 2016 Module 5: Advanced association analysis



1 Population Structure and Cryptic Relatedness

2 Multiple testing and Genome-Wide Significance

3 Replication

4 Meta Analysis

Armidale Genetics Summer Course 2016 Module 5: Advanced association analysis



1 Population Structure and Cryptic Relatedness

2 Multiple testing and Genome-Wide Significance

3 Replication

4 Meta Analysis

Armidale Genetics Summer Course 2016 Module 5: Advanced association analysis



Population structure refers to a systematic pattern of mating within a
population;

this results in systematic patterns of (perhaps distant) relatedness, or
kinship

populations without structure are called “panmictic”.

E.g. mating can be influenced by social or religious groups, or spatial
distance or geographic boundaries.
Simple models of population structure include

1 K -subpopulations, or ”island model”

preferential mating within islands

2 Continuous cline, or ”isolation by distance”

preferential mating with close-by individuals.

Admixture: previously distinct populations begin to inter-breed.
Cryptic relatedness: apparently unrelated individuals actually have some
unsuspected relatedness.
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Clinal pattern of humans in Europe: Novembre (08)

Novembre P et al.
(2008) Genes Mirror
Geography in Eu-
rope, Nature 456:
98-101.
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Clinal pattern of humans in Europe: Lao (08)

rest: r2 = 0.37, two-tailed p < 10215; second PC considering IT1
and IT2 against the rest: r2 = 0.014, two-tailed p = 2.313 1029).

Fourth, we studied the geographic distribution of genetic di-
versity by computing mean heterozygosity and mean linkage
disequilibrium (LD) based upon HR2 [15] between markers
at a distance < 10 kb for each subpopulation. Results from
both analyses showed that the genetic diversity tended to be
larger, and the LD smaller, in southern Europe as compared
to northern Europe (Figure 2). Moreover, both analyses
supported a genetic gradient of south-north orientation (r2

adjusted for the number of data points between the mean ob-
served heterozygosity and latitude: 0.76, p = 3.80 3 1028; ad-
justed r2 between HR2 and latitude: 0.71, two-tailed p = 4.333
1027) but not of west-east orientation (adjusted r2 between
heterozygosity and longitude: 0.03, two-tailed p = 0.416;
adjusted r2 between HR2 and longitude: 0.099, two-tailed p =
0.078). Spatial autocorrelation analysis of both variables re-
vealed statistically significant (p < 0.05) patterns compatible
with a clinal distribution as indicated by the presence of posi-
tive and statistically significant autocorrelation values for small
pair-wise distances and negative and statistically significant
Moran’s I values for large distances (see Figure 2). Bearing
analysis [16] revealed for the heterozygosity measure the
maximal angular correlations (r = 0.69) at 87! and the minimal
(r = 20.153) at 165!, as well as for HR2 the maximal at 55!

(r = 0.67) and the minimal (r = 20.167) at 160!, thus also

suggesting a south-to-north spatial distribution of both vari-
able. These results are compatible with larger effective popu-
lation sizes in the south than in the north of Europe and/or a
population expansion from southern toward northern Europe.
Hierarchical analysis of molecular variance (AMOVA) [17]
revealed that clustering the individuals according to four geo-
graphic groups—north (NO, SE, FI), north-west/central (IE, UK,
DK, NL, DE1, DE2, AT, CH, FR), east (HU, RO, PO, CZ), and
south (PT, ES1, ES2, IT1, IT2, YU, EL)—explained an average
of 0.17% (95% coefficient interval: 0.0% to 0.91%) of the total
genetic variance, whereas individual subpopulation affiliation
explained 0.25% (95% coefficient interval: 0.0% to 1.25%).
Overall, our study showed that the autosomal gene pool in

Europe is comparatively homogeneous but at the same time
revealed that the small genetic differentiation that is present
between subpopulations is characterized by a significant
correlation between genetic and geographic distance. Further-
more, the qualitative nature of these results is in close agree-
ment with expectations based on human migration history in
Europe. The major prehistoric waves of human migration in
Europe followed south and southeastern to north and north-
western directions [1], including the first Paleolithic settlement
of the continent by anatomically modern humans [18], most of
the postglacial resettlement during theMesolithic [19], and the
farming-related population expansion during the Neolithic [18,
20]. Thus, both the level and the change in neutral autosomal

Figure 1. SNP-Based PCA of 2,457 European Individuals from 23 Subpopulations

(A) Kernel density plot of the first two dimensions of a SNP-based PCA using those 309,790 SNPs from the GeneChip Human Mapping 500K Array Set
(Affymetrix) that passed quality control.
(B) Geographic distribution of the 23 subpopulations; capitals were used as the respective landmark if location information was either unspecific or lacking
(see Table 1 for further sample details).

Genetic Structure of the European Population
1243

Lao O et al. (2008) Correla-
tion between Genetic and Ge-
ographic Structure in Europe
Current Biology, 18, 1241-8.
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Population structure and genetic association studies

Because of patterns of relatedness, genetic allele frequencies can vary
across populations (more than sampling variation).

Phenotypes can also reflect population structure, because
1 they are controlled by many loci (“polygenic” model) that tend to vary

with the population structure, and/or
2 they vary with climate, diet or other environmental factors that differ

across populations, and/or
3 ascertainment bias: recruitment of phenotypic groups differs across

populations

⇒ genome-wide tendency for genetic associations reflecting these effects
rather than direct causal effect of a SNP.
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Association test results for 1K SNPs under H0, with population structure.
Here and below we assume that the test statistics are χ2

1 under H0.

⇐ Test statistic = 18.5 ⇒
p-value = 1.7× 10−5
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How big is the problem for human studies?

this question has been the topic of controversy for over 20 years

the answer depends on several aspects of study design, e.g.
1 the size of the study

larger studies can detect smaller effects
so a small effect of pop. structure can be relatively important;

2 the demographic histories and environments of the populations studied;
3 the pattern of recruitment.

Effect can be important e.g. for differing levels of admixture among Native-
or African-Americans.
WTCCC study of UK Caucasians: only a small effect of population struc-
ture overall, ∼ 20 genes showing strong association with geography.

Cryptic relatedness:
Most studies of apparently unrelated individuals do include some close rel-
atives, and current practice is to remove one of each relative pair although
impact on results is usually small. Mixed regression models can allow for
effects of kinship so that relatives do not need to be removed.
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Genomic Control (GC)
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GC: divide all test statistics by
λ, the Genomic Inflation Factor
(GIF), defined as the empirical
median of the test statistics di-
vided by the theoretical χ2

1 median
(=qchisq(0.5,1)).

After GC adjustment, empirical
median = H0 value. This makes
sense only if very few SNPs tag
causal variants - not usually true.a

GC now mainly used to measure
the problem, not to remedy it.

aYang J at al., Genomic inflation
factors under polygenic inheritance,
Eur J Hum Genet (2011).
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Principal components

Because n (# individuals) � p (# variables, here SNPs), we
eigen-decompose the n × n matrix XXT (= K ) rather than XTX ,
where X is n × p and is column standardised;

K = average allelic correlation, viewed as a kinship coefficient;

1st PC: linear combinations of individuals with maximal variance; the
closer the kinship of two individuals, the more similar their 1st PC
scores tend to be.

If there are 2 subpopulations, 1st PC usually distinguishes them
admixed individuals have intermediate scores;
similarly, k−1 PCs distinguish k subpopulations (including admixture).

But PCs also strongly influenced by patterns of LD: MHC, inversions.

PCs can be used as regression covariates.1 Typically 2 – 15 PCs are used,
no easy way to decide best number.

1Price A et al., Principal components analysis corrects for stratification in
genome-wide association studies. Nat Genet 38, 904-9, 2006.
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Mixed Regression Models and Kinship

Key idea is to eliminate from phenotypes any correlation that can be
attributed to kinship, reflecting genome-wide polygenic effects. PC
adjustment uses just the first few eigenvectors of the kinship matrix K̂ ,
linear mixed models (LMM) use the whole matrix:

Y = θZ + βXj + γ + ε

covariate effect + SNP effect + random effect + residual

where γ ∼ N(0, σ2gK ) and ε ∼ N(0, σ2e I ).

Random effect γ corresponds to genome-wide additive polygenic
effects, with correlation structure K , assumed known (more later).

σ2g measures the relative importance of polygenic effects, and is
related to narrow-sense heritability via h2 = σ2g/(σ2g+σ2e ).

LMM can be sensitive to ascertainment, which can invalidate the
assumption that phenotype correlation = genotype correlation.

Possible solution reverse the regression: Xj is the response variable;
Haseman-Elston regression: regress Kii ′ against (Yi − Yi ′)

2 ∀i , i ′.
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Methods overview: population structure/cryptic kinship2

Genomic Control: simple; fast; handles cryptic kinship + population
structure; some loss of power, can be severe under ascertainment bias
or polygenic inheritance; can work with ∼ 102 SNPs.

PC adjustment
uses only first few PCs of kinship matrix which (usually) measures
large-scale population structure;
cannot handle cryptic kinship or complex forms of population structure.
problem of choosing # PCs to use.

Mixed regression models use whole kinship matrix

adjust for cryptic kinship as well as population structure;
computational issues now essentially resolved;
doesn’t allow for confounding role of selection;
can be affected by ascertainment for binary data.

2Astle W, Balding D, Population structure and cryptic relatedness in genetic
association studies, Stat Sci 24(4), 451-471, 2009; Price A et al., New approaches to
population stratification in genome-wide association studies. Nat Rev Genet 11(7),
459-63, 2010; Loh P et al. Efficient Bayesian mixed-model analysis increases association
power in large cohorts. Nat Genet 47.3 (2015): 284-290.
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Up until about 2007 there was frequently a failure to replicate reports
of genetic association - the problem is now much reduced but has not
entirely gone away.

One reason was inadequate criteria for deciding when an association
should be regarded as established.

As the number of tests increased with improved marker technology,
the possibilities for false positives also increased: called the problem
of multiple testing.

Traditionally a significance level of α = 0.05 has been used in science,
which allows on average one false positive per twenty tests under the
null hypothesis.

This is unacceptable for testing a million SNPs - it could generate
50 000 false positives.
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Family-Wise Error Rate (FWER)

One solution is to control the FWER – the probability of making at least
one type-1 error (false positive) in a “family” of N tests.

That is, we control P(H0 rejected for ≥ 1 j |H0 holds ∀j).

If each of N independent SNPs is tested at significance level αSNP ,
then the probability under H0 of ≥ 1 significant result is

αFWER = 1− (1−αSNP)N .

So to achieve a desired αFWER we set

αSNP = 1− (1− αFWER)1/N .

Bonferroni approximation: αSNP = αFWER/N.

If N = 106 and we choose αFWER = 5%, then we need

αSNP = 0.05/106 = 5× 10−8.
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Problems with use of FWER

SNPs are dependent (LD), which makes the Bonferroni correction
conservative; difficult to estimate αSNP accurately.

Calculated correctly, αSNP varies with many factors (see below).

Genome-wide H0 is implausible: we always expect some positives,
otherwise we wouldn’t have performed the GWAS.

We should consider all SNPs, even if not typed in current GWAS
(there are likely to be other GWAS by other researchers).

In reaction to early problems of non-replication, it is arguable that the
genetic epidemiology community has over-reacted, imposing too-strict
control of FWER leading to too many false negatives.
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Permutation tests

Allow approximation of αFWER corresponding to different values of
αSNP overcoming the problem of LD.

Randomly shuffle the phenotype values among subjects, with
genotype data fixed.

Analyse the randomised data and observe whether or not any SNP is
significant.

Repeat this procedure M times, and estimate

α̂FWER =
R + 1

M + 1
,

where R = # permuted datasets for which ≥ 1 SNP was significant.

The 1 in numerator and denominator make the procedure tend to be
conservative (estimate is biased slightly upward, E[α̂FWER ] > αFWER)
and ensures that we never obtain an estimate of 0. However the value
1 is arbitrary and does not guarantee that α̂FWER > αFWER .
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Genome-wide significance level

Dudbridge & Gusnanto (2008)3 took real GWAS genotype data and
extrapolated the p-value threshold to an infinite density of SNPs.

They found that α̂FWER = 2× 10−7 for the observed data, but this
decreased to α̂FWER = 7× 10−8 if SNPs with the same statistical
properties were infinitely dense in the genome.

3Estimation of significance thresholds for genomewide association scans. Genetic
Epidemiology, 32(3), pp 227-234.
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Genome-wide significance level

Hoggart et al. (2008)4 used computer simulations of entire genomes under
realistic population genetics models for three large populations. They then
estimated α̂FWER if different classes of SNPs were tested.

They found strong dependence of α̂FWER on many factors, including:

Population
MAF threshold
Choice of statistical test
Numbers of cases and controls.

4Genome-wide significance for dense SNP and resequencing data. Genetic
Epidemiology, 32(2), pp 179-185.
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Some results from Hoggart et al. (2008)

αFWER using 5K cases and 5K controls.

Population: European East Asian West African

MAF>0.05 3.1, 10 2.7, 12 1.5, 6.0
MAF>0.005 1.3, 5.2 1.3, 5.2 0.66, 2.6

All SNPs 0.69, 3.5 0.86, 3.5 0.65, 2.6

The values in each cell ×10−8 are for FWER = 5% and FWER = 20%.

A consensus has developed that αSNP must be 5× 10−8.

From results above, this corresponds to FWER ≈ 20% in Europeans
and East Asians.

West Africans: need αFWER ≈ 2.5× 10−8 to achieve FWER = 20%.
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Power Calculations

Power is the probability that a SNP that is associated with Y in the
population will be detected in the sample:

Power = P[H0 rejected |H0 false].

Many tests have a χ2
1 null distribution, in which case genome-wide

significance corresponds to a test statistic T > qchisq(1-5e-8,1)=29.7

Suppose we have sample size n and the true (population) proportion of
variance explained by a variant is h2. Its test statistic from single-SNP
association testing will be distributed χ2 with df = 1 and non-centrality
parameter (ncp) = nh2/(1−h2), sometimes written χ2

1(nh2/(1−h2)).
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Power Calculations

Given n and h2, we can compute the power in R as

pchisq(29.7,1,ncp=nh^2/(1-h^2),lower=F)

E.g., with h2 = 0.01, n = 1000 and n = 5000,

pchisq(29.7,1,ncp=1000*.01/0.99,lower=F) = 0.012

pchisq(29.7,1,ncp=5000*0.01/0.99,lower=F) = 0.951

The h2 used in these calculations is that of the SNP, which equals r2h2c
where h2c is the heritability of the underlying causal variant and r2

measures the LD between them. It follows that many true signals will not
be detected if the sample size is not large, and/or the heritability of the
causal variant is not high and/or it is poorly tagged by the SNPs tested.5

5See, for case/control traits: How informative is a negative finding in a small
pharmacogenetic study?, Pharmacogenomics (2012)
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False Discovery Rate (FDR)

An alternative to monitoring FWER is to control FDR: the fraction of false
+ves among all +ves.

Significant?

True effect? No Yes

No U V
Yes Q R

Type-1 error = E[V/(U+V)]

FDR = E[V/(V+R)] if V+R > 0,
otherwise 0.

We know which SNPs are significant; we don’t know which of these
are not true effects, but their number can be controlled or estimated.

Controlling FDR is preferred over controlling FWER because it is
more interpretable and more relevant to the investigator’s problem of
deciding which SNPs to follow up. FWER assumes an unrealistic H0.

Armidale Genetics Summer Course 2016 Module 5: Advanced association analysis



FDR: Benjamini-Hochberg (1995) procedure6

Order the p-values for all N SNPs: p(1) ≤ p(2) ≤ . . . ≤ p(N).

Find the largest j such that p(j) ≤ jα/N

All p-values ≤ p(j) are significant.
The FDR is guaranteed not to exceed α.

Same as Bonferroni adjustment for the smallest p-value, but the
threshold gets more liberal with subsequent p-values (by a factor of k
for the kth smallest p-value).

B-H procedure thus allows more significant SNPs than controlling the
FWER at the same α level.

but this is not a good reason to prefer the FDR.

6Benjamini Y, Hochberg Y, 1995. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J Roy Statist Soc B, 57(1), pp 289-300.
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Estimating the fraction of null SNPs: Storey 02 method

Two simulations of association test statistic p-values for 104 SNPs

p-values from 10K tests, all under H_0
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p-values from 10K tests, 1K under H_1
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Top plot: no excess of low-p-values;

This is expected since all were
simulated under H0, and so
p-values should be uniformly
distributed in (0,1).

Bottom plot: For a given λ such that
0 < λ� 1 we can compute the
fraction of p-values > λ. Dividing by
the expected fraction (= 1−λ) gives
an estimate of the fraction of SNPs
that follow H0.

The estimate should be stable
for different values of λ, say
between 0.1 and 0.25.
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Computing the FDR (Storey 02 method)7

First choose a significance threshold α. Here, let’s say α = 10−3

For the bottom histogram on previous slide, λ = 0.15, 0.2, and 0.25
all give estimate of 94% of SNPs following the null.

The true value used for the simulation was 90%, but some have low
effect sizes so cannot be distinguished from null SNPs.

Therefore the number of null SNPs with p-value < α is estimated to
be 0.94× 10 000× α = 9.4.

We observe 47 SNPs with p-value < α.

⇒ among these 47 SNPs we expect 9.4 to be false positives,

giving an FDR estimate of 9.4/47 = 0.2.

If there are few, weak true +ves in a GWAS, precision of the estimate
may be poor. LD also reduces precision.

7Storey J, 2002. A direct approach to false discovery rates. J Roy Statist Soc B,
64(3), pp 479-98.
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Replication is usually regarded as a mandatory step to establish that
an association is real.

One goal of replication is to eliminate the possibility that the
association found in the primary study was due to some undiscovered
bias or error.

However there is much confusion and some bad practice around what
constitutes adequate replication.

It is more powerful to put all resources into a single study, rather than
split into two sub-studies to claim replication

such artificial replication should be avoided.
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Replication

Some researchers seek both the increased power of a single study and
the protection from bias of a replication by performing a
meta-analysis to combine two sub-studies

this is unacceptable, you have to choose one or the other goal.

GWAS analyses have reached a mature stage, so the opportunities for
bias or error are now limited and well understood; the need for
replication should be reduced e.g. for rare phenotypes.

Technical replication

Seek to obtain the same result using the same study samples

Use a different genotyping technology, applied to the top hits or to
non-hits with a priori support.

Can eliminate false positives due to genotyping errors, and confirm
sample identity.
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Direct replication

Requires independent study samples from the same population as the
original (“discovery”) study

Must involve the same genetic variant, or a very good proxy (r2 ≈ 1)

Association should be in the same direction and be consistent with the
same genetic model (dominant, recessive, codominant). Odds ratios
should be similar (may be reduced by “winner’s curse”, see below).

SNP 1

Effect Size Estimate

−0.5 0.0 0.5 1.0

Replication

Main Study

SNP 2

Effect Size Estimate

−0.5 0.0 0.5 1.0

SNP 3

Effect Size Estimate

−0.5 0.0 0.5 1.0
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Indirect replication

Indirect replication tries to combine two different goals:

to check that the original report of association was correct, and

to investigate its generalisability, or the mechanism of association, by
varying one or more factors from the discovery study.

The factors that are varied could include

different alleles in the same gene/region

different population

different (but closely related) phenotype

e.g. obesity rather than type 2 diabetes
an intermediate quantitative trait, such as bone mineral density rather
than a binary osteoporosis classification.
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Replication examples

Direct

Wellcome Trust Case-Control Consortium (2007) found association of
the G allele of rs17696736 with Type-1 diabetes (OR = 1.37,
p = 7× 10−14) in UK subjects

Todd et al. (Nat Genet 2007) replicated this association in a larger
sample of UK subjects (OR = 1.16, p = 2× 10−6)

Indirect

Stacey et al. (Nat Genet 2008) found association of the G allele of
rs10941679 with breast cancer (OR = 1.19, p = 3× 10−11)

Turnbull et al. (Nat Genet 2010) found association with other SNPs
in the same region (chr 5p12): rs7716600 (OR = 1.11, p = 0.0034)
has r2 = 0.75 with rs10941679.
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Replication significance

Question: what significance level is required to achieve replication?

No consensus on this. It is agreed that a less stringent threshold is
required for replication than for the primary association, but that it
should be more stringent than 0.05. Sometimes αrep = 10−3 or
αrep = 10−4 are suggested as reasonable thresholds.

Question: how big should my replication study be?

Bigger is always better.

Replication study should in general be no smaller than the primary
study.

When calculating power for a planned replication study, remember to
use a smaller effect size than was observed – because of winner’s
curse bias.
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Winner’s curse (Beavis effect)

The “winner’s curse” bias can arise in sports performance, accident rates
at “black spots”, genetics and many other fields.

If there are many items (sports players, intersections, genetic loci)
and the observation at each is due to a combination of

1 true effect: randomly-distributed over items; fixed over time,

2 “noise”: randomly-distributed over items; varying over time,

then in any period of study the items with largest scores will have among
the biggest values of both true effects AND noise.

In any follow-up study the true effect will be the same but the noise
is likely to be much smaller (because it just happened to be unusually
large in the primary study).

Noted by Galton over 100 years ago; came to be known as “regression
to the mean”: the heights of children of tall parents are
above-average, but < parental mid-height.
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Locus

Crohn's disease (Parkes et al. 2007)

WTCCC

Replication

Odds-ratio estimates for 11 SNPs identified by the WTCCC (2007) as
associated with Crohn’s disease, estimated from the original study
and a follow-up replication study.
In most cases the estimate in the replicate study is lower: this is the
“winner’s curse”:

There are many more than 11 SNPs with true but weak association.
The 11 that were discovered were due to a combination of true effect
+ “luck”. In the replicate study the true effect may be the same but
we are usuaully not so “lucky”.

Armidale Genetics Summer Course 2016 Module 5: Advanced association analysis



Unbiased OR estimates and publication bias

Replication studies give unbiased estimates

but inefficient as they ignore the discovery data.

Various methods available to adjust GWAS data for selection by a
p-value threshold

Bowden & Dudbridge (Genet Epidemiol 2009) combine GWAS and
replication data into an unbiased estimate

“Reporting” or “Publication” bias

significant results are more likely to be published than non-significant;

this can bias meta-analyses and systematic reviews;

every well-conducted study should be published, irrespective of its
outcome.
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Meta Analysis

Meta Analysis (MA) involves combining the results of several studies
to obtain an overall conclusion. The MA usually has more power than
any individual study.

MA does not replace the need for replication – it retains any biases
present in the individual studies.

Results from an MA and all its component studies can be represented in a
forest plot (next slide).

The lines indicate the confidence interval (CI, usually 95%) for the
parameter of interest (usually additive model OR for a binary trait).

The square represents the point estimate and its area reflects the
study size.

The diamond shows point estimate and CI for the meta-analysis.
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Forest Plot8

8Sagoo G, Little J, Higgins J (2009) Systematic Reviews of Genetic Association
Studies. PLoS Med 6(3): e1000028
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Meta analysis: fixed effects model

assumes that the effect size is the same in all studies contributing to
the meta-analysis

unrealistic assumption, as LD and environmental effects may differ
between populations
contribution of heterogeneity across studies to estimation variance is
measured by I 2.

Then the effect size estimate Yi from the ith study, i = 1, . . . , k , has
E[Yi ] = µ and Var[Yi ] = σ2i .

The inverse-variance weighted average is given by

Ȳ =
k∑

i=1

wiYi where wi =
1/σ2i∑
i 1/σ2i

.

Then E[Ȳ ] = µ and 1/Var[Ȳ ] =
∑

i 1/σ2i which is the minimum
variance among weighted averages with weights that sum to 1. Note
that if σ2i = σ2 ∀i then wi = 1/k and Var[Ȳ ] = σ2/k .
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Meta analysis: random effects model

Assumes that the true odds ratio in each study is drawn
independently from an N(µ, σ2) distribution.

So estimates are shrunk towards a global average.

It is a more realistic model, but the wrong hypothesis is usually
tested:

H0 : µ = 0 is tested treating σ2 as a nuisance parameter
should test H0 : µ = σ = 0.

This error can lead to a dramatic loss of power, because if the effect
size varies over populations this tends to weaken the significance of
the MA when it should strengthen it.

Despite this it has often been recommended by statisticians as more
conservative than fixed effects MA: fortunately, this advice has
generally been ignored.
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Meta analysis: further issues

Best practice is for a consortium to plan a meta-analysis in advance

This allows harmonisation of QC procedures and analysis methods, and
sharing of expertise.

Ideally individual-level data would be pooled for joint analysis, which
allows more sophisticated analyses

adjustment for individual covariates
fine control of population stratification
pooling of information about covariates across studies.

However for reasons of convenience and to avoid issues around
permissions for data use, MA usually proceeds only by combining over
studies their test statistics, such as OR estimates, together with a
measure of precision such as sample size or CI.
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