SNP-Based Heritability Analysis

@ SNP-based Heritability Analysis with Unrelated Individuals

© Equivalence with Random Effects Regression
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Recap of Module 7

The focus is on estimating h?> = Var(A)/Var(Y), the narrow-sense
(additive) heritability. Var(Y) is in general easy to estimate

We explained how to estimate h? from (a single type of) related pairs: the
Covariance Equation explains how phenotypic covariance (Cov(Y}, Y})) is
related to additive variance (Var(A))

When we have multiple types of related pairs, a generalization of the
Covariance Equation is the Mixed Model. Key to this analysis is
construction of the kinship matrix K, which provides pairwise genetic
similarities

Traditionally, Kj; represented expected relatedness (twice IBD) between
Individuals i/ and j based on the known pedigree. When SNP data are
available, can instead use actual relatedness / genetic similarity
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Allelic Correlations

Suppose the matrix S (size n x N) contains for n individuals the genotypes
for each of N SNPs. First, for each SNP, we standardise the genotypes so
they have mean zero and variance one'

Subtract column means

Divide by column SDs

Then we use K = XX /N (“allelic correlations”) as an estimator of
genetic similarities

Tas discussed in Module 8, other standardizations can be used
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Allelic Correlations

XXT /N measures pairwise IBS (identity by state) how similar the
genotype values are for each pair of individuals

For example, to calculate Kj», correlations between individuals 1 and 2,
you can imagine laying their two genomes side by side, then examining for
each SNP in turn, how similar their genotypes

s 0 2 2 1 2
1
s 2 2 0 1 1
2
Effect on K, -+ - +
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Allelic Correlations

XXT /N measures pairwise IBS (identity by state) how similar the
genotype values are for each pair of individuals

For example, to calculate Kj», correlations between individuals 1 and 2,
you can imagine laying their two genomes side by side, then examining for
each SNP in turn, how similar their genotypes

s 0 2 2 1 2
1
s 2 2 0 1 1
2
Effect on K, -+ - +
X -3 .8 .9 .8 1.2
1
Xz 2.6 .8 -.5 1.6 .3
K12 = (-.78 +.64 -.45 +1.28 +.36) /N
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Using actual relatedness improves accuracy

By measuring actual genetic similiarity, rather than relying on expected
similarity, we can obtains more precise estimate of h?

Full-siblings

Purple boxes are estimates using expected relatedness; red use actual
relatedness (green, blue use less accurate measures of actual relatedness)

Even bigger benefit - we can use “unrelated” individuals

Module 3
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@ SNP-based Heritability Analysis with Unrelated Individuals
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Using unrelated individuals

In 2010, Jian Yang, Peter Visscher, et al. considered estimating heritability

using only “unrelated individuals”

Why? Estimates of h?> become less precise as number of close relatives in

the sample decreases

With Close Relatives

Squared Phenotype Difference

Relatedness

Squared Phenotype Difference

Without Close Relatives
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Relatedness
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Using unrelated individuals

However, using unrelated individuals has three key advantages:

Less of a problem that we ignore effects of common environment (and
dominance / epistasis)

Can use GWAS data, so sample sizes are much larger than using family
data

The resulting estimates, referred to as hg-NP, are estimates of “SNP
heritability”, the total variance explained by all SNPs

This area is referred to as SNP-based heritability analysis. The major
software is GCTA; our software is LDAK

Armidale Genetics Summer Course Module 3



The missing heritability problem

From about 2006 - 2012 human geneticists were increasingly referring to
the missing heritability problem

_Thecaseof the missing heritability

Maher, Nature news feature (2008)
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The missing heritability problem

Although GWAS had found a number of associations for a wide range of
phenotypes, the proportion of variance explained by the associations for
any particular phenotype (hZ,45) was typically slight compared to the
phenotype’s heritability

The classic example was height. The heritability is about 80%

In 2008, 20 associations had been found, but these explained only a few
percent of variation (Genome-wide association analysis identifies 20 loci,
Nature Genetics - next slide)

A 2014 study by the GIANT consortium increased the number of loci to
> 100, but h%;WAS remains only 10% (Defining the role of common
variation ... in human height, Nature Genetics)
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The missing heritability problem

Display Settings: (] Abstract Send to:

Mat Genet. 2008 May;40(5):575-83. doi: 10.1038/ng.121. Epub 2008 Apr 6

Genome-wide association analysis identifies 20 loci that influence adult height.

Weedon MN' Lango H, Lindgren CM, Wallace C, Evans DM, Mangino M, Freathy RM, Perry JR, Stevens S, Hall AS, Samani NJ, Shields B, Prokopenko |
Farrall M, Dominiczak A; Diabetes Genetics Initiative; Wellcome Trust Case Control Consortium, Johnson T, Bergmann S, Beckmann JS, Vollenweider P,
Waterworth DM, Mooser V, Palmer CN, Morris AD, Ouwehand WH; Cambridge GEM Consortium, Zhao JH, Li S, Loos RJ, Barroso |, Deloukas P, Sandhu MS
Wheeler E, Soranzo N, Inouve M, Wareham NJ, Caulfield M, Munroe PB, Hattersley AT, McCarthy MI, Frayling TM.

@ Author information

Abstract

Adult height is a model polygenic trait, but there has been limited success in identifying the genes underlying its normal variation. To identify genetic
variants influencing adult human height, we used genome-wide association data from 13,665 individuals and genotyped 39 variants in an additional
16,482 samples. We identified 20 variants associated with adult height (P < 5 x 10(-7), with 10 reaching P < 1 x 10(-10)). Combined, the 20 SNPs
explain approximately 3% of height variation,_with a approximately 5 cm difference between the 6.2% of people with 17 or fewer ‘all' alleles
compared to the 5.5% with 27 or more tall' alleles. The loci we identified implicate genes in Hedgehog signaling (IHH, HHIF, PTCH1), extracellular
matrix (EFEMP1, ADAMTSL3, ACAN) and cancer (CDK6, HMGA2, DLEUT) pathways, and provide new insights into human growth and
developmental processes. Finally, our results provide insights into the genetic architecture of a classic quantitative trait.
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The missing heritability problem

h?® Pedigree h% GWAS

Trait or Disease Studies Hits*

Type 1 diabetes 0.9% 0.6™ <
Type 2 diabetes 0.3-0.61" 0.05-0.10%
Obesity (BMI) 0.4-0.6'192  0.01-0.02%
Crohn's disease 0.6-0.8193 0.1
Ulcerative colitis 0.5103 0.0512
Multiple sclerosis 0.3-0.8104 014
Ankylosing spondylitis  >0.90"" 0.2

Rheumatoid arthritis 0.6

Schizophrenia 0.7-0.81%8 0.017
Bipolar disorder 0.6-0.71% 0,027
Breast cancer 03" 0.08""

Von Willebrand factor ~ 0.66-0.75"211% 13114

Helght 0.3”5'116 0.1 13
Bone mineral density  0.6-0.81%7 0.05118
QT interval 0.37-0.6011%120 g o712
HDL cholesterol 0.5 015
Platelet count 0.81% 0.05-0.1%%

Armidale Genetics Summer Course

h? pedigree =
narrow sense heritability
(estimated from relateds)

Five years of GWAS Discovery.
AJHG. 2012



The missing heritability problem

Human Height Schizophrenia Obesity
Environment.
Genetics
Crohn's Disease Bipolar Disorder Epilepsy
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The missing heritability problem

Human Height Schizophrenia Obesity

GWAS SNPs

Envronn' ‘ ‘

Other Genetics

Crohn's Disease Bipolar Disorder Epilepsy
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The missing heritability problem SOLVED

0 Nature America, Inc. All rights reserved.

natre
genetlcs

ANALYSIS

Common SNPs explain a large proportion of the heritability

for human height

Jian Yang!, Beben Benyamin', Brian P McEvoy', Scott Gordon', Anjali K Henders!, Dale R Nyholtl,
Pamela A Madden?, Andrew C Heath?, Nicholas G Martin!, Grant W Montgomery, Michael E Goddard® &

Peter M Visscher!

SNPs discovered by genome-wide association studies (GWASs)
‘account for only a small fraction of the genetic variation of

of variation that their effects do not reach stringent significance
thresholds snd/or the causl variants are not in complete linksge

complex %

D) with

" " h
human height explained by 293,831 SNPs genotyped on
3,925 unrelated individuals using a linear model analysis, and

‘minor allele frequency (MAF) than genotyped SNPs. Here we test
these two hypotheses and estimate the contribution of each to the

ight easy 1o measure
and studied for well over s century as 8 model for investigating the

an be explained by considering all SNPs simultaneously. Thus,
and ok i s

i 100 small
to pass stringent significance tests. We provide evidence

9.11-13). Rar
short or tall stature have been found 1415 but these do not explain
ofthe varat

exacerbated by causal variants having lower minor allele
frequency than the SNPs explored to date.

ed -
associated with height n the population, but these in total account
for nly - 5% of phenotypic varisncel -,

Square of z-score diierence

002 ~0.01 [
Ganatic ralationship (adjusted estimats)

0.01 0.02

Figure 3 All pairwise comparisons contribute to the estimate of genetic
variance. Shown are the squared z-score differences between individuals
(ay3,) plotted against the adjusted estimates of genetic relationship (A ).
The blue line is the linear regression line of Ayf,, on Ay, . The intercept
and regression coefficient are estimates of twice the phenotypic variance
and minus twice the genetic variances?3, respectively. The intercept is
1.98 (s.e. = 0.001), and the regression coefficient is ~1.01 (s.e. = 0.27),
consistent with estimates of the phenotypic and additive genetic variance
of 0.990 and 0.505, respectively, and 2 proportion of variance explained
by all SNPs of 0.51.

Estimating h.2§NP using mixed model analysis with unrelateds found SNPs
explain at least 45% of variation in height - over half the heritability
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The missing heritability problem SOLVED
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The missing heritability problem SOLVED

Human Height Schizophrenia Obesity
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Environment.
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Why SNP heritability?

When our sample contains related individuals, h? was an estimate of
narrow-sense heritability, the proportion of variance explained by ANY
ADDITIVE genetic variation

When individuals are unrelated, h> becomes an estimate of hyp, the total
variance explained by all SNPs

This is because, when two individuals are related, the similarities between
their SNP genotypes are (mainly) due to the relatedness, and there will be
similar patterns of similarities between other types of genetic variation

When individuals are unrelated, any similarities are due to chance, so
similarities observed across SNPs will be independent of (uncorrelated
with) similarities across other types
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Why SNP heritability? (Explanation 1)

Consider two full-sibs - they share 50% of genetic variation due to IBD

Individual 1

Individual 2
IBD Genome

Matching
Genotyped SNPs

Matching Other
SNPs

Matching Other
Variation
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Why SNP heritability? (Explanation 1)

Consider two full-sibs - they share 50% of genetic variation due to IBD

Individual 1

Individual 2
IBD Genome

Matching
Genotyped SNPs

Matching Other
SNPs

Matching Other
Variation
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Why SNP heritability? (Explanation 1)

Consider two full-sibs - they share 50% of genetic variation due to IBD

Individual 1 ] ]

Individual 2 i i

Two full-sibs will share 50% of genotyped SNP mutations

Armidale Genetics Summer Course

IBD Genome

Matching
Genotyped SNPs

Matching Other
SNPs

Matching Other
Variation
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Why SNP heritability? (Explanation 1)

Consider two full-sibs - they share 50% of genetic variation due to IBD

Individual 1 R | |
Individual 2 I J- .
IBD Genome
-S| il 0, i
Two full-sibs will share 50% of genotyped SNP mutations I Matching
But will also share 50% of unobserved SNP mutations Genotyped SNPs
] Matching Other
SNPs
[ Matching Other
Variation
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Why SNP heritability? (Explanation 1)

Consider two full-sibs - they share 50% of genetic variation due to IBD

|ndividua| 1 % W

Individual 2 ——— TW I E—
IBD Genome

-si i 0, i
Two full-sibs will share 50% of genotyped SNP mutations I Matching
But will also share 50% of unobserved SNP mutations Genotyped SNPs
. ) ] Matching Other

..... and 50% of epigenetic effects SNPs

... and 50% of proteomic effects 1 Matching Other
Variation

So can not tell whether any phenotypic similarity due to SNPs or other
genetic variation
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Why SNP heritability? (Explanation 1)

When two individuals are unrelated, they will still match for some genetic
variation

But these matching variants will occur at random (be independent)

So if they match for one SNP, this does not mean they will match for
other SNPs, or for other genetic variation

Therefore, if individuals with a particular SNP mutation tend to have
higher phenotype, then the phenotypic similarity must be due to this SNP,
rather than being due to a different source of genetic variation correlated
with this SNP

Stay tuned for Explanation 2 later :)
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GCTA: Recipe for a Nature Paper (2010-2012)

Collect GWAS data for a particular trait (say > 5000 individuals with
genome-wide genotyping)

Compute allelic correlations K
Remove individuals so that no pair remains with K;; > 0.05
Perform REML to estimate Var(A) and Var(E)

h2yp = Var(A)/Var(Y) is an estimate of the total variance explained by
all SNPs

Write up paper explaining how much higher h%NP than h2GWA5
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The Liability Model

/N

'
We only observe whether L above Control /, Y, Case

or below a threshold T /
Z

T determined by disease prevalence K

Liability

One way to model binary traits is to assume for each individual, there is a
normally distributed, underlying liability. We can not observe the liability
directly, but only know whether it is above (case) or below (control) a
threshold, T

This is the model behind the probit link discussed in Module 3
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The Liability Model

__/\_\
We only observe whether L above Control /, Y, Case
or below a threshold T / K
z

T determined by disease prevalence K

Liability

If we knew the liability L, we could fit L ~ N(a, Ko? + 102) and estimate
h?., = o2/ Var(L), the heritability estimate on the liability scale directly

But with L unknown, we instead analyse the phenotype pretending it is
continuous, then use the following transformation:

Liab = NSnp Pi=P)22

where K is the prevalence, P the ascertainment, and z is the “height of
the standard normal distribution” at the liability threshold, T
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GCTA: Recipe for a Nature Paper (20

Since the application to human height in 2010, this approach has been
applied to over 40 traits, including:

Crohns Disease Bipolar Disorder

Type | Diabetes Body Mass Index

Intelligence Economic & Political Preferences
Schizophrenia Parkinsons Disease

Human Personality Major Depressive Disorder
Multiple Sclerosis Cilantro soapy taste detection

Cardiovascular Disease  Childhood Leukaemia
Atherosclerotic Stroke  Adult Antisocial Behaviour
Executive Functioning  Canine Leishmaniasis

Rheumatoid Arthritis Neuroticism & Extraversion
Eating Disorders Life Span
Cannabis Use Bird wing span

In two years, there were at least 10 publications in Nature or Nature
Genetics, all identical except for the trait considered
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hZ s Vs h%yp Vs narrow sense heritability

Table 1. Population Variation Explained by GWAS for a Selected

Number of Complex Traits

h? Pedigree h*GwAs hial
Trait or Disease Studies Hits* GWAS SNPs"
Type 1 diabetes 0.9% 0.6% < 0.312
Type 2 diabetes 0.3-0.6" 0.05-0.10*
Obesity (BMI) 0.4-0.6'11%  p01.0.02% 02"
Crohn's disease 0.6-0.8103 0.1 0.4'2
Ulcerative colitis 0.5103 0.0512
Multiple sclerosis 0.3-0.810¢ 0.1%
Ankylosing spondylitis  >0.90'%% 0.2
Rheumatoid arthritis ~ 0.6'"7
Schizophrenia 0.7-0.8'08 0.017 0.31%%
Bipolar disorder 0.6-0.710% 0.027° 0.412
Breast cancer 0.3 0.08""
Von Willebrand factor  0.66-0.75"2!1%  p.13'1 0.25"
Helght 0.8115'116 OJIJ D‘sll_l{
Bone mineral density ~ 0.6-0.8'Y7 0.0511%
QT interval 0.37-0.60119120 g o712 .21
HDL cholesterol 0.5'22 0.1%
Platelet count 0.8'23 0.05-0.1%8

Armidale Genetics Summer Course

h? pedigree =
narrow sense heritability
(estimated from relateds)

h2 GWAS hits = b2 s

h? all GWAS SNPs = K2, ,



Why is hgyp > heyus

Is it that estimates of h%NP are wrong?

Suggested that estimates of h_%NP are inflated by genotyping errors or
population stratification. (Population structure can inflate SNP-based
heritability estimates. AJHG. 2011)

Inflation is a problem - you are estimating the total contribution of
500 000+ SNPs, so even if you over-estimate the contribution of each
SNP by 0.00001% (one ten-thousandth of a percent), your estimate of
hZyp will be 50% higher than the truth

But shown that with careful quality control and checks, inflation can be
avoided (Improved Heritability Estimation. AJHG. 2012)

Now estimates of h%NP are generally accepted ... ish

Armidale Genetics Summer Course 2016 Module 3



Why is hgyp > hguas

GWAS are only powered to find strong SNPs with large effect sizes

Manhattan Plot for Crohn's Disease
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Why is hgyp > heyus

GWAS are only powered to find strong SNPs with large effect sizes

Variance Explained

0.002 0.004 0.006 0.008 0.010 0.012 0.014

Heritability Manhattan Plot for Crohn's Disease

e ® il

Heritability Required for Genome-Wjide Significance

MMM‘M ¥

T TT T rrrorr1m
10 1 12 14 16 18 20

Genomic Position

e.g., a GWAS with 5000 individuals can only find SNPs explaining at least
0.6% of variance. So one explanation is that most phenotypes are highly
polygenic, with 100s or 1000s of SNPs causal, but most of these
contribute only tiny heritability
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Epilepsy

For epilepsy, no individual SNPs reach genome-wide significance

o —

-lag,y p-values

1 2 3 4 5 6 7 8 9 10 11 12 14 16 18 21 X

But collectively, all SNPs explain about 25% of (liability) variance

T T T T 1
10 20 20 a0 50

Variance Explained

Density
01 015

0.05
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Epilepsy

Consider different ways heritability is distributed across causal loci for
each, calculate probability of a GWAS finding no significant SNPs

(=]
£ < — Equal
= —— Exponential
= —— Chi Squared
= —
[} [Ts} —
PR = T S ettt
3 | — |
o] " |
S T |
o o —— | |
(=]

\ \ \
0 1000 2000 3000 4000

Number of Causal Loci

This gives an indication of how many SNPs contribute heritability

Describing the genetic architecture of epilepsy. Brain. 2014
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Epilepsy

Which in turn allows us to speculate how heritability is spread across
contributing SNPs

F 8 g 8
=1 =1
5 2 Equal Distribution (870 Causals) 5 = Uniform Distribution (1230 Causals)
= =]
o 6.0 o
L - 2 . 1443 72101 -,
[ 1 I I 1
0.00 002 0.04 006 008 0.10 0.00 002 004 006 0.08 0.10
7.1
g 8 e e g g
q:_: =1 - Exp al (2160 Causals) % =]
8 76 g
T Shif 2 1106020201 &
1 1T 1T 1T 1
0.00 002 0.04 006 008 0.10 0.00 0.02 0.04 0086 008 010
Causal Variant Heritability (%) Causal Variant Heritability (%)

Describing the genetic architecture of epilepsy. Brain. 2014
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Is the missing heritability problem solved?

For most phenotypes we have
found that h2GWA5 is much less
than SNP heritability

...but that SNP heritability
remains less than trait h?

This has led to talk of the “still
missing heritability problem”

s com» e o » rchive» s » analyss - et e 4
Figure 4: Aspects of disease heritability: known, hiding and missing.

From
‘The contribution of genetic variants to discase depends on the uler
ccher & Naomi R. Wr

cher oy
N 765776 (2014) | 410 1038/wg3TE0

—— Total heritability
+ Estimated from family studies and assumed to reflect additive

genetic effects

(‘still-missing heritability: not captured by GWAS variants
+ On average will not decrease with larger sample size but will
decrease as more of the genetic variance is captured
_ (for example, rare variants)

Missing
Heritability

Chip heritability
* Proportion of variance attributed to all variants assayed
by GWAS arrays

(Hiding heritability: could ultimately be captured by
GWAS variants
| * Should decrease as sample sizes grow

Heritability due to known variants
« Proportion of variance attributed to significant GWAS variants

Ll Zero heritability explained

Nature Reviews | Genetics
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Reasons for h%,p < narrow-sense heritability

Even the latest genotyping arrays do not include all SNPs

SNP genotypes only focus on common variants (present in > 1% of
population), so h?SNP does not capture the contribution of rare SNPs

SNPs are only one type of genetic variation; there are also structural
variants (e.g., CNVs), epigenetic effects, and a whole host of “omics”
(e.g., proteomics, lipidomics, transcriptomics, metabolics, etc)
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9 Equivalence with Random Effects Regression
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The Mixed Model

The mixed model of Module 7 states:" Cov(Y) = Kag, + 102

This corresponds to assuming Y ~ N(Z6, Kag, +102)

0 denotes fixed effects corresponding to Z, a matrix of covariants

Note, that we could extend this to, say,
Cov(Y) = Kcré + ~Var(C) + lo2,

but because we are using only unrelated individuals, the shared
environment contributions (off-diagonal values of ) are expected to be
negligible

fNote, to be consistent with SNP-Based heritability analysis, we have
replaced Var(A) by o2 and Var(E) by o2
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The Mixed Model

With SNP data available, the most common way' to compute K is via
allelic correlations, K = XX /N,

With related individuals, allelic correlations are a good choice, because they
provide an (almost) unbiased estimate of the coefficient of relatedness;
i.e., the average allelic correlation for full-sibs will be 0.5 (strictly, the
average will be 0.5-1/n, because SNP MAFs are estimated from the data)

When individuals are unrelated, we can justify the use of allelic correlations
as the consequence of assuming a specific random effects regression model

fAlternative methods typically attempt to identify (relatively long) shared
regions between pairs of individuals (e.g., FASTIBD, Chromopainter)
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Motivating allelic correlations, K = XXT/N

Suppose we assume the following linear model:
Y =20
+ B1X1 + B2 Xo + B3 Xz + BaXa + BsXs + B6 X6 + B X7
+ B Xg + BoXo + B10X10 + F11X11 + F12X12 + S13X13 + S14X14
+ B15X15 + B16X16 + B17X17 + B18X18 + B10X19 + B20X20 + B21X21
+ B22X22 + B23X23 + B24Xoa + Bas Xos + BasXoe + P27 Xor + P28 Xos
+ ... + B500000X500 000
+ e,
where 3; ~ N(0,0’é//\/) and e ~ N(0, 02)

Then g = Y, 3iX; ~ N(0,Ko2)
and therefore Y ~ N(Z8, Koé +102), where K = XXT /N
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Motivating allelic correlations, K = XXT/N

So when we perform mixed model analysis with Y ~ N(Z8, Kaz, + 102),
where K = XX T /N, we are asking how much phenotypic variation is
explained under a linear model in which every SNP is allowed to contribute
towards the phenotype:

Y =20 + 51 X1 + 52 Xo + 53X3 + BuXn

and where we assume that each effect size has distribution N(0, 03 /N)
and that the noise terms have distribution N(0, o2)

When individuals are “unrelated”, each SNP X; captures only the genetic
variation at that basepair and very nearby basepairs (in high LD), and
therefore, we end up with an estimate of how much phenotypic variation is
explained BY THE SNPs

This is Explaination 2 ... easier, right?
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Assumptions in SNP-Based Heritability Analysis

While (implicitly) assuming a specific random effects regression model,
provides motivation for using allelic correlations

. it also makes clear that we are making a lot of assumptions

In particular, we assume:
@ All SNPs are Causal
@ Gaussian Effect Sizes
@ Gaussian Noise Terms

@ Inverse Relationship between MAF and Effect Size

i.e., all SNPs contribute equally h?

Therefore, we set out to test these assumptions:

Improved Heritability Estimation from Genome-wide SNPs, AJHG (2012)
Armidale Genetics Summer Course 2016
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Assuming All SNPs are Causal

We simulated traits with varying
numbers of SNPs contributing
heritability

Even when relatively few were
causal, estimation remained P
reasonably precise Ew

Hesitakdily Eslimatas fram 50 Rephcales

L B s T s T sy |
1 5 20 100 2000 ALL
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Assuming Gaussian Effect Sizes
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We simulated using alternative distributions for effect size

estimation remained reasonably good
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Assuming Gaussian Noise Terms

Standard Kinship Matrix
Exponential Laplace

Frequency
0 60000
[
Frequency
0 60000

, L
08
i
| B
L
I o

1
1

Frequency
0 30000
Liay
Frequency
0 60000
L Lo
Heritability Estimates from 50 Replicates
0.4
|
& |
o+
8 |
B
= E
S

e, v i G
Exponential  Laplace  Gamma Refl. Gamma Log-Normal ~Gaussian

Frequency
0 80000
[
Frequency
0 40000
I
0.0

1

We simulated using alternative distributions for noise terms

estimation remained reasonably good
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Assuming All SNPs ribute Equal h?

Standard Kinship Matrx
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We simulated using alternative relationships between MAF and effect size

estimation remained reasonably good
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Estimates are Sensitive to (Uneven) Linkage Disequilibrium

Without Weightings

PC Axes 2

-0.02 0.00 0.02 0.04 0.06

PC Axes 1

A common problem when performing principal component analysis
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Levels of LD vary greatly across the genome

Regional LD (Genotyped SNPs only)

50

Tagging
20

1711

Frequency
0 150
I

T T T T T T T 1
0 10 20 30 40 50 60 70

Tagging (Genome divided into 100kb segments)

Values are sums of r? between each SNP and neighbours within 100 kb
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Estimates are Sensitive to LD

Allelic correlations represent average genome-wide similarity

S 02 2 1 2
1
Sz 2 2 0 1 1
Effect on K, -+ - +
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Estimates are Sensitive to LD

Allelic correlations represent average genome-wide similarity

s 0 2 2 1 2
1
s, 2 2 0 1 1
EffectonK12 - + — +

s 02 2 11 1 11 111 2
! HIGH LD REGION
S 2 2 0 11 1 11 111 1
2

- + - ++ + + 4+ +++

Effect on K12

More highly tagged genetic variation contributes more to K
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Estimates Can be Sensitive to LD of Causal Variants

Standard Kinship Matrix

1
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Very Weak  Weak Average Strong  Very Strong

Tagging of Causal SNPs

Causal variants in high LD areas = over-estimation of h%NP

Causal variants in low LD areas = under-estimation of h%NP
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Adjusting for Uneven Tagging

™
A
™

5 B2 B3BG BSB4BBBQ
R A
. 1 1 ‘.2 :3: 3 4 44 4
.l. .l I l Underlying
| | | | Variation
u, u, u, u

LDAK assumes that the observed SNPs are tagging independent
underlying signal
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Adjusting for Uneven Tagging

% Y 1 %Ys VaYaYaYs Weightings
B, B, B, BB,  B,BBB,
— : - Genotyped
X X X X X SNPs
1 . 1 :12 3 3
l >| I | Underlying
I 1 1 I Variation
u, U, U, u,

...then calculates SNP weightings so that each underlying signal

contributes once
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Estimates are Sensitive to LD

Then instead of computing standard (unweighted) allelic correlations
where each SNP contributes evenly to K

S 0 2 2 1 2

1
s, 2 2 0 1 1

Effect on K12 -+ - +

X -3 .8 9 .8 1.2

1

X 26 8 -5 1.6 3

2

*w1 *Wz *W3 *W4 *WS

K (-.78 .64 -.45 +1.28 .36) /N

12

LDAK constructs “LD-Adjusted” Allelic Correlations where the
contribution of each SNP is weighted according to local patterns of LD
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LDAK: Linkage Disequilibrium Adjusted Kinships

Standard Kinship Matrix Weighted Kinship Matrix

o H
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2 s .
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Very Weak  Weak Average Strong  Very Strong Very Weak ~ Weak Average Strong  Very Strong

Tagging of Causal SNPs

LDAK estimates are unaffected by whether causal variants are in low or
high LD regions (e.g., tend to be rare or common)
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LDAK: Linkage Disequilibrium Adjusted Kinships

Without Weightings Using LDAK Weightings
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LDAK weights offer an alternative to pruning

e.g., when performing PCA or computing genetic profile risk scores
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Different Methods Give Different Estimates

For each of 22 (almost) independent GWAS traits (on average 6500
individuals), we estimated h%,, from imputed SNP data (N =2-4 M)
using LDAK and three versions of GCTA

WTCCC 1 * Tuberculosis )
- « WTCCC 2 Height & MDD °
¢ MS & Celiac WRAT & IOP
- Epilepsy ¢ AVERAGE

Relative h2
08 10 12 14 16 18 20

GCTA-SPARSE  GCTA GCTA-MS GCTA-LDMS LDAK

MS: MAF Stratification; LDMS: LD+MAF Stratification.
GCTA-SPARSE is GCTA using only genotyped SNPs (N =200-500 k)
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Different Methods Give Different Estimates

o ° <:
o ¢ —
* Physical O —
¢ Blood !;—_3
S Cardiology ¢ .
g  Blood Pressure :
2 Cholesterol ‘
3 5 » AVERAGE
o -
o
- i SRE
[ I I |
GCTA GCTA-MS LDAK LDAK-MS

Also estimated analysed 21 traits where individuals were genotyped using
the “Metabochip” (captures approximately 25% of genome-wide variation)
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Different Methods Give Different Estimates

GCTA weights each SNP equally

LDAK (attempts to) weight each source of genetic variation equally

Across 22 (21) traits, estimates of h%, from LDAK are on average 66%
(50%) higher than those from GCTA

Neither the GCTA nor LDAK assumption is correct - but if the LDAK
model was closer to the truth, then this indicates the “still missing
heritability” is even smaller
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Inflation to Population Structure

Am J Hum Genet. 2011 Jul 15; 89(1): 191-193. PMCID: PMC3135810 (
doi: 10.1016/].ajhg.2011.05.025

g
Population Structure Can Inflate SNP-Based Heritability ]
Estimates
Sharon R Browmng“’* and Brian L Browning2 S

Author information  Copyright and License information »

This article has been cited by other articles in PMC.

Qa m

To the Editor: Recently, Lee et all presented a method to estimate the proportion of
phenotypic variation explained by common SNPs for case-control phenotypes. This
extends the work of Yang et al2 for estimating the proportion of phenotypic

-~

variation that can be explained by common SNPs for quantitative traits. Yang et al2
found that 45% of variation in height in Australian individuals of European descent

o o wmw =

can be explained by common SNPs. Lee et al. showed that a high proportion
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Doug Speed - 18/4/2012

Effect of relatedness on heritability estimates
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Proportion of Genome Included in Calculation of Correlation Matrix
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Doug Speed - 18/4/2012

Criticism One:
Contribution of Population Structure

“Replicated” Browning and Browning'’s results using WT controls

First denoted 90% of English individuals to be controls (remainder cases)
Denoted 90% of Non-English individuals to be cases (remainder controls)

Normals Diseased
(no known cure)
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Doug Speed - 18/4/2012

Criticism One:
Contribution of Population Structure

Replicated Browning and Browning'’s results using WT controls

First denoted 90% of English individuals to be controls (remainder cases)
Denoted 90% of Non-English individuals to be cases (remainder controls)

02 03
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£
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w
z
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0.0 041

T
30 40 50 Overall

Performed for 50 Replicates

Found same results — significantly non-zero estimates (even with 20 PCs)
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Doug Speed - 18/4/2012

Solution to Criticism One
(Inspired by Suggestion of Yang, Visscher et. al.)

To see how much contribution of cryptic relatedness P inflates heritability H:
Calculate heritability from whole genome: H,, + P
Calculate heritability from left half: H +P
Calculate heritability from right half: Hy+P

Whole
Left

Right
Corrected

@
=
©
£
=
7]
w
£
=
©
=
=
[T}
T

40 50 Overall

Performed for 50 Replicates

The total contribution of population structure + relatedness is h_+ hy—h,,
A corrected estimate is therefore 2h,—h —hg
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Inflation to Population Structure

Am J Hum Genet. 2011 Jul 15; 88(1): 193—195. PMCID: PMC3135797
doi: 10.1016/].ajhg.2011.05.022

Response to Browning and Browning

Michael E. (30ddard,1’2 S. Hong Lee,3 Jian Yang_,3 Naomi R. ‘l.-'\.l'ran,-',3 and Peter M. Visscher®

Author information » Copyright and License information b

Main Text Go to: [+

We thank Browning and Browning for questioning the effect of fine-scale population
structure on variance explained by consideration of all SNPs together in methods we
have proposed and implemented. Recently, we have taken the methodology further
and have partitioned additive genetic variation across the genomre.l Browning and
Browning investigate the effect of two sources of bias in estimates of the variance
explained by SNPs—these sources are population stratification and correlation
between environment and genotype—but their examples refer mainly to the latter.
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“Limitations of GCTA"

heritability problem

Siddharth Krishna Kumar®', Marcus W. Feldman®, David H.

Limitations of GCTA as a solution to the missing

hkopf®, and Shripad Tuljapurkar®

Bl

" Edited by Mary-Claire King, University of Washington, Seattle, WA, and approved November 20, 2015 (received for review October 9, 2015)
” Gonomo-\mdo association smdns (GWASs) seek to understand the
L)

plex p ype(s) (e.g., height) and up to
millions of single-nudeotid ly his (SNPs). Early
of GWASs are commonly bolmnd to have 'nnsnd' mud\ of the
additive genetic vari d from rel-
atives. A more recent method, genome-wide complex trait analysis
(GCTA), obtains much higher csumaus of heritability using a model

of random SNP effects L similar in-
dmduds. GCTA has now been applnd to many phenotypes from
hrenia to schol: recent studies
GETA'e i nf hari ili Hara h. that GCTA

Kumar et al, PNAS (December 2015)

Armidale Genetics Summer Course

*Department of Biology, Stanford University, Stanford, CA 94305-5020; and ®School of Medicine, Stanford University, Stanford, CA 94305-5020

GCTA are satisfied exactly, heritability estimates produced by
GCTA will be biased, and it is unlikely that the confidence
intervals will be accurate. When there is genetic stratificationin
the population, we show that GCTA’s heritability estimates are
guaranteed to be unstable and unreliable, which is especially
relevant because stratification is common in human GWASs.
Our analysis has two other important consequences: (i) the
heritability estimate produced by GCTA is sensitive to the choice
of the sample used; and (#) the estimate is sensitive to mea-
surement errors in !hc phcnotypc Wc a:guc that !hns mstabil
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“Limitations of GCTA"

f estimate
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Analysed 2698 individuals from the Framingham study, which (in their
words) “is known to be stratified”

They first estimated h%,, for Blood Pressure to be 26.3 (SD 5)

Then they repeatly estimated h 0% the variance explained by a random
10% of the genome. hlo% was typically much higher than 2.6%, which
they declared “proof” that the approach is flawed
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For many years, estimating h? involved recruiting related individuals

Recently, it was realised that with SNP data, the same methods could be
applied to unrelated individuals. The resulting estimates correspond to
h%NP, the total proportion of phenotypic variance explained by all SNP

For human traits, this approach has largely solved the missing heritability
debate, and as we will see in Module 14, this is just the start of things!

SNP-based heritability analysis is largely accepted, although some
Americans still don't believe

but then a third of Americans believe in Donald Trump ...
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