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Reasons for successss
Impressive, extremely powerful technology

Potentially very useful in Human genetics

Many data publicly available ! ☺
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Stanford Microarray Database

http://genome.www5.stanford.edu/MicroArray/SMD/

Lymphoma/Leukemia Molecular Profiling Project

http://llmpp.nih.gov/lymphoma/index.shtml

Yandell’s references
http://www.cs.wisc.edu/~yuanj/gene/array.html

Gene Expression Omnibus

NIH / NCBI

EISEN’s lab

Treeview

cDNA microarray principle

NHGRI
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A typical cDNA microarray data consists of 
the measurements of laser intensity, which 
are assumed to be proportional to the original 
amount of mRNA in the tissue, of the i-th 
individual / sample and the j-th gene, {Gij}

Some questions that can be 
addressed by microarrays

• Is a gene expressed differentially in two or 
more treatments (tissues, time, disease 
status, etc)?

• How much different are several treatments / 
genes in terms of their expression profile?

• How does evolution affect gene expression?

• Phenotype prediction: disease status, disease 
subtype, survival time.

• What is the genetic basis in the variation of 
gene expression?

• Can expression data be useful to identify 
causal genes?
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Learning techniques

Unsupervised: no information on outcome

• Clustering

• Principal components (PCA)

• Self Organizing Maps (SOM)

Supervised: information on outcome

• Linear Discriminant Analysis (LDA)

• Support Vector Machine (SVM)

• Neural networks (NN)

• Partial Least Squares (PLS) 
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Unsupervised Learning

There is usually not a measure of ‘success’, as 
compared to the supervised methods.

⇒ Proliferation of approaches, as their 
validity is a matter of opinion.

Clustering techniques

The idea behind is to group genes that show a similar 
behavior,thus identifying patterns of gene expression

There exist dozens of variants that can be 
grouped in

• Hierarchical / Non hierarch. clustering

• Agglomerative / Divisive

• Self-organizing maps

Among others
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All ⇒ Definition of distance or ‘proximity’

Euclidean distance:

∑
=

=
n

1i

2
iixy ) y- (x  d

Pearson’s correlation

∑ ∑∑ ∑

∑ ∑∑

= == =

= ===
σσ

σ
=

n

1i

n

1i

2
i

i
i

n

1i

n

1i

2
i

i
i

n

1i

n

1i
i

n

1i
iii

yx

xy
xy

 y( - y  x( - x

 yx - yx
     r

))

WARNING!
• Results depend on 
distance chosen

• Difficult to justify 
any given distance 
measurement

Hierarchical Clustering
Unweighted Pair-Group Method Average (UPGMA)

Applied to µarray data by Eisen et al. (1998)

Measure of distance = ri,j (correlation in expression 
between genes i and j, or tissue i and j)
Iterate on:

1) Maximal r ==> Next node.

2) New observation computed as the average expression 
levels of joined genes.

3) Recompute r for remaining pairs.

The UPGMA method was widely used in phylogeny ==> 
rooted tree.

The nice appearance of the result (dendrogram) is one of the 
main reasons for its success 
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94305, USA
† These authors contributed equally to this work

Nature 406, 747-752 (17 August 2000)

Example

Human breast tumours are diverse in their natural history and in their 
responsiveness to treatments. Variation in transcriptional programs accounts for
much of the biological diversity of human cells and tumours. In each cell, signal 
transduction and regulatory systems transduce information from the cell's identity
to its environmental status, thereby controlling the level of expression of every 
gene in the genome. Here we have characterized variation in gene expression 
patterns in a set of 65 surgical specimens of human breast tumours from 42
different individuals, using complementary DNA microarrays representing 8,102
human genes. These patterns provided a distinctive molecular portrait of each 
tumour. Twenty of the tumours were sampled twice, before and after a 16-week
course of doxorubicin chemotherapy, and two tumours were paired with a lymph 
node metastasis from the same patient. Gene expression patterns in two 
tumour samples from the same individual were almost always more similar
to each other than either was to any other sample. Sets of co-expressed 
genes were identified for which variation in messenger RNA levels could be 
related to specific features of physiological variation. The tumours could be 
classified into subtypes distinguished by pervasive differences in their gene
expression patterns.

Perou et al. 2000
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Figure 1 Variation in expression of 1,753 genes
in 84 experimental samples. Data are presented
in a matrix format: each row represents a single
gene, and each column an experimental sample. 
In each sample, the ratio of the abundance of
transcripts of each gene to the median 
abundance of the gene's transcript among all the 
cell lines (left panel), or to its median 
abundance across all tissue samples (right 
panel), is represented by the colour of the 
corresponding cell in the matrix.. a,
Dendrogram representing similarities in the
expression patterns between experimental 
samples. All 'before and after' chemotherapy 
pairs that were clustered on terminal branches 
are highlighted in red; the two primary 
tumour/lymph node metastasis pairs in light
blue; the three clustered normal breast samples
in light green. Branches representing the four
breast luminal epithelial cell lines are shown in
dark blue; breast basal epithelial cell lines in 
orange, the endothelial cell lines in dark yellow,
the mesynchemal-like cell lines in dark green,
and the lymphocyte-derived cell lines in brown. 
b, Scaled-down representation of the 1,753-
gene cluster diagram; coloured bars to the right
identify the locations of the inserts displayed in 
c–j. c, Endothelial cell gene expression cluster; 
d, stromal/fibroblast cluster; e, breast basal
epithelial cluster; f, B-cell cluster; g, adipose-
enriched/normal breast; h, macrophage; i, T-
cell; j, breast luminal epithelial cell. 

Hierarchical Clustering:
A note of caution

Results depend very much on distance used.

Results may depend largely on some observations 
(bootstrap required to assess stability).

The method imposes a hierarchical structure on the 
data that may not reflect reality.
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Learning ⇔ Phenotype prediction

The issue:
X ≡ {cDNA measurements}

y ≡ {probability of phenotype, say disease status

qualitative or quantitative}

y = f (X, θ) ?



10

Partial Least Squares (PLS)
Wold (1975)

Dimension reduction strategy in a situation where we 
want to relate a set of response variables Y to a set of
predictors variables X. 

th = X wh
* (orthogonal X-components)

uh = Y ch (orthogonal Y-components)

such that max. Cov(th, uh).

There may be many more variables than observations

In PLS-DA the Y are binary clasificatory variables

Widely used in chemometrics, some examples in µarray 
analysis (Nguyen & Rocke, 2002; Datta 2002; Pérez-
Enciso & Tenenhaus, 2003).

yk =  Σh=1,k X w*h ch+ e = X W* c + e

wh
* = p dimension vector with the weights given to

each original variable in the k-th component

ch = the regression coefficient of yk on h-th X-
component variable
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Perou et al. 
data

reanalyzed

84 tissues

(11 tumoral cell cultures, 65 breast 
cancer and 3 normal breast 
samples)

1753 cDNA clones
1. disease status (tumoral / normal)

2. before and after chemotherapy treatment

3. estrogen receptor (ER) status

4. tumor classification.

Discriminant 
analyses

Pérez-Enciso & Tenenhaus 2003

disease status: 
principal components

81 cancer / 3 normal, 
all 1753 variables

normal
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disease status: 
PLS-DA

81 cancer / 3 normal, 
all variables

normal

But ...

Models of very poor predictive abilities

Subset of variables (cDNA levels) preselected 
according to its variable importance in 
prediction (VIP), sort of weighed correlation.
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81 cancer / 3 normal, 

21 cDNA levels selected

normal

disease status: 
PLS-DA

21 variables

normal

Obs. 1 normal, 4-35 tumor predicted

Prediction of disease status: 
PLS-DA
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Before / After chemotherapy
PLS-DA

48 observations

19 cDNA levels

before

after

ER positive / negative
PLS-DA

60 observations

30 cDNA levels

negative

positive
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Tumor class
PLS-DA

54 observations

11 cDNA levels

class 4

class 3

class 2

class 2: 2 - 5 cm

class 3: > 5 cm

class 4: > 5 cm & infiltration
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VIP Symbol Name
1.20 AQP7 Aquaporin 7
1.20 ITGA7 Integrin, alpha-7
1.20 CDK5R1 Cyclin dependent kinase 2

1.13 FOSB FJB osteosarcoma oncogene homolog B
1.13 COL14A1 Undulin 4

1.11 PFKFB3 6 Phosphofructo-2-kinase
1.06 674 -
1.06 GPD1 Glycerol 3 P dehydorgenase
1.00 LPL Lipoprotein lipase
1.00 767 -
.97 FOS FJB osteosarcoma oncogene homolog 2

.96 ADH2 Alcohol dehydrogenase 2

.95 GPD1 Glycerol 3 P dehydrogenase

.94 GPX3 Glutathione peroxidase

.93 CNN1 Calponin 1

.90 FOS FJB osteosarcoma oncogene homolog

.89 50 -

.88 CDKNC1C Cyclin dependent kinase

.83 647 -

.83 760 -

cluster g of Perou 
related to 

adipocytes in 
tumoral tissues

ovarian 
cancer

oncogenes

altered in cancer
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VIP Symbol Name
1.22 RCV1 Recoverin
1.21 FOS FJB osteosarcoma oncogene homolog 1

1.15 HBA1 Hemoglobin alpha1
1.08 CTGF Connective tissue growth factor
1.06 TCEB3 Transcription elongation factor B
1.06 DCT Dopachrome tautomerase
1.05 FOS FJB osteosarcoma oncogene homolog 1

1.04 CTGF Connective tissue growth factor
1.02 GEM GTP-binding mitogen-induced t-cell protein
1.00 NR4A1 Nuclear receptor subfamily 4
0.98 CDK5R1 Cyclin dependent kinase 1

0.98 DPYSL3 Dihydropyrimidinase-like 3
0.94 FY Blood group-duffy system
0.91 ATF3 Activating transcription factor 3
0.90 CDKN1A cyclin-dependent kinase
0.86 COPEB Core promoter element-binding protein
0.85 EGR2 Early growth response 2

ocular tumors 
chemotherapy changed

growth factors, 
cyclines

transcription 
factors

oncogene
M
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Symbol VIP Name
1.17 GATA3 GATA-binding protein 3 wg

1.14 ESR1 Estrogen receptor 1 wg

1.12 GATA3 GATA-binding protein 3 wg

1.11 PES1 Pescadillo 1
1.08 ITPR3 Inositol 1,4,5-triphosphate receptor, type 3
1.07 GATA3 GATA-binding protein 3 wg

1.06 GATA3 GATA-binding protein 3 wg

1.00 DSC2 Desmocollin 2
1.00 GRO1 Growth regulated protein precursor 
1.00 CCNE1 Cyclin E1
1.00 TFF1 Trefoil factor 1 w

0.99 SLC7A8 Solute carrier family 7 g

0.98 ORM1 Orosomucoid 1
0.97 PFKP Phosphofructokinase, platelet type g

0.97 LRP8 Low density lipoprotein receptor-related protein8 
0.96 HNMT Histamine n-methyltransferase
0.96 HNF3A Hepatocyte nuclear factor 3-alpha
0.94 NAT1 N-acetyltransferase 1
0.94 HMG1 High mobility group protein 1 g

0.91 PTK7 Tyrosine-protein kinase-like 7 precursor 0.90
TRIP13 Thyroid hormone receptor interactor 13 

well 
known

also in 
Gruvberger

also in 
West

Upregulated in 
cancer, induced by 

estrogens
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VIP Symbol Name
1.35 COL14A1 Undulin 1

1.21 1244 -
1.08 LOX Protein-lysine 6-oxidase
1.00 CRIP2 Cysteine-rich intestinal protein 2
.96 767 -
.93 459 -
.93 TFAP2B Transcription factor AP2-beta
.90 1542 -
.86 ARHB RAS homolog gene family, member B
.84 1017 -
.79 MRSPSZ7 KIAA protein

altered in cancer

tumor 
progression

transcription, 
growth factors
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Studying expression levels as any other quantitative 
trait

1. Which is the transcriptome’s genetic architecture?

2. Can mRNA levels be used to refine QTL position 
estimates?

Aim

QTL  for  mRNA  levels

Dumas et al. 2002

Brem et al. 2002

Pérez-Enciso 2004
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Dumas et al. (2000)

Mapping of quantitative trait loci (QTL) of differential stress gene 
expression in rat recombinant inbred strains.

Biological Background
Heat shock proteins (hsp) are highly conserved, they are induced
by several stressors, protect other proteins from denaturalization.

HSPs are mediated by heat shock transcription factors (hstf) 1 
and 2.

Stress susceptibility is correlated with future high blood pressure.

Methods

• 20 recombinant inbred lines BN.Lx with SHR.

• cDNA probes for 5 hsps.

• 3 Tissues: kidney, heart, and adrenal tissue.

• 4 rats / line.

• 475 polymorphic markers, ~ 20 markers / chr.

• Analysis with MapManager, no statistical details provided 
(single marker analysis?).
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Dumas et al. 2000

Adrenal

tissue
founder 
strains

Dumas et al. 2000
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Main results

• Wide variability in expression levels despite uniformity in founder 
strains

• No QTL (except evidence of 1) mapped to the gene itself.

• High correlation in expression levels for the same gene between
tissues.

• The largest effect QTL region contained the hsft1 gene (chr. 7).

• And also the same QTL affected the expression of all hsps.
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Brem et al. (2002)

• Comparison of two S. cerevisae strains, lab and wild types

• Large differences in gene expression: 1528 / 6215 (P < 0.005)

• Genotyping with microarrays in tetrads, 3312 SNPs, > 99% genome

• Test for linkage between every marker and every cDNA level: 
Wilcoxon-Mann-Whitney test and P level assigned by permutation.

Main results
308 / 1528 (20%) cDNA levels showed linkage with at least one marker 
(P<10-5)

262 mRNA levels not different between strains but linkage to some 
marker (as in Dumas et al’s results).

1220 (80%) mRNA levels were different but no significant linkage: 
evidence of multiple loci affecting message level, probably > 5 loci 
according to simulation.

Is the linked marker located close (< 10 kb) of the gene encoding the 
mRNA? 185 / 570 = 32% yes action in cis

For the remaining (trans-acting) markers, small number of marker affects 
many mRNA levels, or many markers each affecting a few  mRNAs?: 10 
bins contained more than 5 levels (impossible by random), ranging from 7 
to 87 levels.           
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Expression levels of parents and 
segregants for two genes that show 
linkage. In each panel, the first column
shows expression levels for all 
40 segregants, and the second and third 
columns show expression levels for six
replicates of each parent. The fourth and 
fifth columns show expression levels for
segregants that inherited the linked
marker from BY and RM, respectively. 
(A) The gene is YLL007C, and the marker 
lies in YLL009C. 
(B) The gene is XBP1 (YIL101C), and the
marker lies in YIL060W. Note that, in this 
example, the effect of the locus is in the
opposite direction from the difference 
between the parents, illustrating
transgressive segregation. 

Figure 2

The number of linkages plotted against genome location. The genome 
is divided into 611 bins of 20 kb each, shown in chromosomal order from the 
start of chromosome I to the end of chromosome XVI. The dashed line is 
drawn at 5 linkages; no bin is expected to contain 5 linkages by chance. The
regions with an unusually large number of linkages are marked 1 through
8 and correspond to the groups in Table 1. 

Figure 3
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Table 1. Groups of messages linking to loci with widespread transcriptional effects. The 
location of the center of the linked bin is shown as chromosome:base pair. Lists of genes in
each group are available as supplementary information (32). 

Group
Number of 
messages Common function Linkage bin Putative

regulator

1 18 Budding, daughter cell separation II: CST13
2 21 Leucine biosynthesis III: LEU2
3 28 Mating III: MAT
4 7 Uracil biosynthesis V: URA3
5 28 Heme, fatty acid metabolism XII: HAP1

6 16 Subtelomerically encoded helicases XII: SIR3

7 94 Mitochondrial XIV: Unknown

8 19 Msn2/4-dependent induction XV: Unknown

Conclusions

• Most levels affected by several loci

• Many regions in cis

• Small number of alleles trans-acting and 
affecting many mRNA levels simultaneously        
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Pérez-Enciso 
(Genetics, 2004)

1. QTL 'hotspots' reliability.

2. Estimates’ stability.

Traditional simulations

1. Model specification (M) and its 
associated parameters (θ)

2. Data simulation (y) given the model (M) 
and θ

p(y | θ, M)

Additivity, 
# loci

heritabilityphenotypes
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Simulación no tradicional

1. Given real expression data (y1)

2. Genotype simulation (y2) 

3. Assignment of genotypes randomly to 
phenotypes

4. Data analysis

p( y2, θ2 | y1)

Real data

• Rosenwald et al. 2002 (NEJM)
• 240 individuals with lymphoma
• 7399 probes (lymphochip)
• ~ 10% missing data

• Whitney et al. 2003 (PNAS)
• n= 76 (blood)
• 3441 probes
• ~ 4% missing data
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Simulation: haplotypes

1. Coalescence (programa ms de Hudson): 3000 
chrs., 100.000 SNPs, ρ = 4Ne r = 1000

2. Gene dropping 1000 gens., Ne = 1500, 1 
Morgan

3. ~ 25,000 SNPs in t = 1000

4. Only SNPs frec > 0.10 analyzed (~ 20,000)

Simulation (contd.)

Random assignment of two chrs. to each individual

For each mRNA (j), QTL (k) position is estimated by  
maximum likelihood (ML)

∏
=

σµ−φ=
N

1i

2
jkijkijjk ) , y(  L

i-th indiv., j-th mRNA level

mean genotype ijk

Residual variance jk
(constant ∀ genotype)

Significance if
P < 10-6
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Results (1): hotspots

Rosenwald
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Results (1): hotspots
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Schadt et al. 2003 (mouse)
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Brem et al. 2002 (yeast)

Results (2): estimates’ reliability

Noise added to the system by:

1. Randomly elimination of 16% of individuals

2. Elimination of 9 out of 10 consecutive SNPs 
(remaining ~ 2000)
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What happens with less individuals?
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Dataset R-Ind R-Ind-SNP

% P<10-6 67 40
δ=0(%) 70 23
δ<10(%) 73 50
δ<100(%) 77 60
δ>104(%) 5 6

Adding noise (Rosenwald)

Distance between 
‘true’ and ‘estimated’ 
estimates (in SNPs)

Power

Adding noise (Brem, yeast)

Dataset B-Ind B-Ind-SNP BR-Ind

% P<10-6 72 42 73
δ=0(%) 76 17 58
δ<10(%) 94 70 59
δ<100(%) 100 99 64
δ>104(%) 0 0.1 6

Power

Distance between 
‘true’ and ‘estimated’ 
estimates (in SNPs)
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How an association profile looks like?
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Results ML 
vs. 

ANOVA

0

5000

10000

15000

20000

0 5000 10000 15000 20000
SNP LRT

SN
P 

AN
O

VA

0

5

10

15

0 5 10 15

-log10 (P LRT)

-lo
g1

0 
(P

 A
N

O
V

A
)

Conclusions

•QTL hotspots should be interpreted with caution

• LD/associatio profiles in outbred populations can 
be extremely complex

• Unstability in ~ 40% QTL
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Refining gene positions

• Wayne & McIntyre 2002

• Mootha et al. 2003

• Pérez-Enciso et al. 2003

Wayne & McIntyre (2002)
Combining mapping and arraying: 

An approach to candidate gene identification 

Drosophila ovariole number: related to fecundity and varies 
with latitude.

QTL analysis in RIL of Oregon-R and 2b strains (⇒ 5286 
candidate genes).

Deletion mapping (⇒ 548 candidate genes).

Differences in mRNA levels between strains (⇒ 1 to 25 
candidates). Pools of 25 individuals were assayed, 3 replicates per 
line. Analysis via ANOVA.
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The black arrow highlights the recombinational map position of the candidate genes 
CG17327, yellow-f, and Su(fu). Red curves indicate the value of the test statistic for the 
presence of QTL. Blue triangles indicate cytological markers used in the QTL experiment. 
Horizontal bars are the deficiencies that were tested; gold bars showed a significant interaction 
across parents and genotypes, whereas green bars did not 

QTL 
profile

main 
candidate

significant 
deletionsnon 

significant 
deletions

Mootha et al. (2003):
Identification of a gene causing human cytochrome 

c oxidase deficiency by integrative genomics

Leigh syndrome (French-Canadian type) is relatively 
comon in a Quebec region (1/23 incidence, 1/2000 
newborn are affected).

Shown previously to be associated to a region in chr. 
2p16-21.

A single founder haplotype was evidenced.
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Chr 2p16-21 region

Fig. 2. Microsatellite markers and 
genetic distances are shown to the left of 

the chromosome map. Genes with 
varying levels of annotation support are 

shown with different colors (RefSeq 
gene, blue; Ensembl gene, green; human 
mRNA, orange). Genes represented in 
mRNA expression sets are indicated 
with a check to the right of the gene 

names.

Microarray analysis

Mitochondria neighborhood index (NR): number of 
mitochondrial genes among the R most similar genes in 
expression pattern. 

Distance between expression levels measured by the 
Euclidean distance.

Public data were used.
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Validation of NR

EXAMPLE: N10 = 5 because there are 
five mitochondrial genes within the 

query's 10 nearest-neighboring genes

Distribution of N100 values. The 
blue histogram shows the 

distribution of N100 for all genes, 
and the red histogram plots N100 for 
known mitochondrial genes. *, the 
histogram bin containing LRPPRC

Combining data

Among the candidate genes, LRPPRC had a 
remarkably high NR.

Different peptides from the LRPPRC gene were 
identified in the mithocondrian fraction; no other 
candidate gene could explain the observed protein 
pattern.
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(B) Representative tandem mass spectrum showing y-ion and b-ion series 
along with the deduced peptide sequence. (C) The predicted LRPPRC amino 
acid sequence with high-scoring peptides, identified by organelle proteomics, 
marked in red. 

Identifying the mutation

The gene was initially sequenced in two patients, a 
parent and an unrelated control.

A single mutation was identified in all patients and 
in no control, resulting in a missense mutation.

A deletion was found in an additional single 
patient. This patient was doubly heterozygous for 
both mutations.
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Fig. 5. Mutations identified in LRPPRC. LRPPRC has 38 exons (blue) predicted to 
encode a 1,394-aa protein. The amino acid sequence corresponding to exons 9 and 
35 are shown as well as the aligned sequences from mouse, rat, and Fugu. The exon 
9 missense mutation, A354V, and the exon 35 truncation, C1277STOP, are shown in 
red. Conserved residues are shaded in gray. *, a stop codon

missense

STOP

Can microarray data be used to refine gene 
positions?

Combining gene expression and molecular marker information for 
mapping complex trait genes: a simulation study

Pérez-Enciso et al. (2003) Genetics, accepted

Expression data could be used to improve QTL mapping if the 
following two conditions were met:

1. Some of the gene expression levels must be under (at least 
partial) genetic control of the QTL

2. Some of these heritable gene expression levels must be 
related to the trait. 

Otherwise, accommodating expression data in a statistical model 
would reduce power of tests.
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Underlying genetic 
model logistic

P(yi = 1 | hi) = exp(hi) / [1 + exp(hi)]

hi = ω' xi
underlying liability

expression 
data indiv. iunknown 

weights

The QTL shifts the expected value of h 

(affects simultaneously several expression levels)

How can we simulate realistic 
data?
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Unusual simulation procedure

1. Specify a subset of parameters (θ1)

2. Simulate disease phenotypes (y2) and rest of 
parameters (θ2) given expression data (y1) and 
θ1

p(y2, θ2 | y1, θ1)

incidence, 
allelic frequenciesaffected / 

non affected

ω vector

µarray data

The procedure

4

p(h|g=BB)

p(h|g=AA)

p(h|g=AB)

Haplotype 
simulation

y=0          y=1

Real 
microarray 
data

532

1

1. Characterize ω

2. Simulate disease status (Binom.)

3. Determine QTL parameters

4. Sample QTL genotype

5. Sample surrounding haplotype
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1. Choosing weights to expression levels

Most of elements in ω will be zero

ng mRNAs were chosen among those with no missing values

'Diffuse' scenario: mRNAs with ω≠0 chosen independently at 
random

'Clustered' scenario: first mRNA at random, successive chosen 
with a probability that was proportional to the correlation with
the first mRNA

'Uniform' scenario: weights ω chosen from a uniform (-1, 1).

'Exponential' scenario: weights ω chosen from an exponential µ=1.

Weights were found by trial and error, setting the restriction 
E(y)=0.50±0.05, to mimic a case/control study.

2. Generating disease status

For each indiv.,

P(yi = 1 | hi) = exp(hi) / [1 + exp(hi)]

Binomial sampling
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3/4. Generating QTL parameters and genotypes

Diallelic QTL

f(h | g) = N(µg, σ2)

P(gk | hi) = P(gk) f(hi | gk) / Σj [P(gj) f(hi | gj)]

Var(h) = Eg [Var(h|g)] + Varg [E(h|g)]

used for 
sampling 
individual  
genotypes

Given a= (µg=AA - µg=BB )/2σ and σ:

The within genotype variance was obtained solving iteratively 
from: 

5. Generating the haplotype

10 Nearby SNPs were generated assuming that a 
founder haplotype carrying the mutant QTL allele 
appeared 500 generations ago using an exponential 
growth model.

Minor SNP allele = 0.3.
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Data used

Sorlie et al. (2001) PNAS 98:10869-10874

http://genome-www5.stanford.edu/MicroArray/SMD/

85 breast cancer samples

456 mRNA clones (their 'intrincsic set')

Log2 ratios between the sample and a control are 
reported.

71 mRNAs did not have any missing record, and 
were thus eligible to be in h.

Parameters used

ng = 1, 5, 10, 20

a = 0.5, 1, and 1.5 SD

QTL genotype frequencies: 

0.5/0/0.5 & 0.25/0.50/0.25

Scenarios: D/U, D/E, C/U, C/E

500 simulations per case 
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Analysis strategy

• No µarray data: ANOVA on phenotypes and 
markers as classifying variable.

• µarray data used: ANOVA on estimated liability 
and markers as classifying variable. Liability estimated 
using Partial Least Squares (PLS) logistic regression.

Logistic regression with PLS (Esposito-Vinci & Tenenhaus, 2001)

For each variable j = 1, 2,..., q compute its significance in a logistic 
regression, each variable in turn using the model P(yi = 1) = exp(b0 + 
β1j xij) / [1 + exp(b0 + β1j xij)],

The regression coefficient b1 is obtained from fitting P(yi = 1) = 
exp(b0 + b1 t1i) / [1 + exp(b0 + b1 t1i)].

Select those variables that are significant; The first 'supergene' is 
defined, for each i-th individual, as t1i = w1' xi,  with w1j = β1j/ C1 ∑

ℜ∈ 1j

2
1jβ

The next PLS component is obtained by testing again each of the 
original q variables plus the previous 'surpergene' P(y = 1) = exp(b0
+ b1 t1 + β2j xj) / [1 + exp(b0 + b1 t1 + β2j xj)], j = 1, 2,..., q. Once it is 
determined the new set of significant variables, the second 
'supergene' is obtained from t2i = w2' xi, with w2j = β2j / C2 ∑

ℜ∈ 2j

2
2jβ
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Main conclusions

1) The usefulness of microarray data for gene mapping increases when both 
the number of mRNA levels in the underlying liability and the QTL effect 
decrease, and when genes are coexpressed. 

2) The correlation between estimated and true liability is large. 

3) It is unlikely that mRNA clones identified as significant with PLS are the 
true responsible mRNAs, especially as the number of clones in the liability 
increases. 

4) The number of significant mRNA levels increases critically if mRNAs are 
co-expressed in a cluster; however, the proportion of true causal mRNAs 
within the significant ones is similar to that in a no co-expression scenario. 

5) Data reduction is needed to smooth out the variability encountered in 
expression levels when these are analyzed individually.
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