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3. Genetical genomics

Heat shock proteins (rats)
Whole genome (yeast)

Combining expression and markers for
gene detection
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Reasons for SUCCQSSSS

Impressive, extremely powerful technology

Potentially very useful in Human genetics
Many data publicly available !




Yandell’s references
http://www.cs.wisc.edu/~yuanj/gene/array.html

Stanford Microarray Database
http://genome.wwwb.stanford.edu/MicroArray/SMD/

Lymphomal/Leukemia Molecular Profiling Project

http://llmpp.nih.gov/lymphoma/index.shtml

cDNA microarray principle

PrepareiIcDNATRrobe Prepare Microarray,




A typical cDNA microarray data consists of
the measurements of laser intensity, which
are assumed to be proportional to the original
amount of mMRNA in the tissue, of the i-th
individual / sample and the j-th gene, {G;;}

Some questions that can be
addressed by microarrays

Is a gene expressed differentially in two or
more treatments (tissues, time, disease
status, etc)?

How much different are several treatments /
genes in terms of their expression profile?

How does evolution affect gene expression?

Phenotype prediction: disease status, disease
subtype, survival time.

What is the genetic basis in the variation of
gene expression?

Can expression data be useful to identify
causal genes?




Learning techniques

Unsupervised: no information on outcome

mm - Clustering
* Principal components (PCA)

* Self Organizing Maps (SOM)

Supervised: information on outcome
* Linear Discriminant Analysis (LDA)
* Support Vector Machine (SVM)

* Neural networks (NN)
mm) - Partial Least Squares (PLS)

1. Basic techniques
Clustering
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Unsupervised Learning

There is usually not a measure of 'success’, as
compared to the supervised methods.

= Proliferation of approaches, as their
validity is a matter of opinion.

Clustering techniques

The idea behind is to group genes that show a similar
behavior, thus identifying patterns of gene expression

There exist dozens of variants that can be
grouped in

* Hierarchical / Non hierarch. clustering
» Agglomerative / Divisive
* Self-organizing maps

Among others




All = Definition of distance or ‘proximity’

Euclidean distance:
WARNING!

dyy = /Zn:(xi - Yi)2 * Results depend on
i=1 distance chosen

- Difficult to justify

Pearson’s correlation any given distance
measurement
n n n
c 2XYi = 22X
— Xy _ i=1 i=1_i=1
XY o,0

SRR S 00 S S o
i=1 i=1 i=1 i=1

Hierarchical Clustering
Unweighted Pair-6Group Method Average (UPGMA)
Applied to parray data by Eisen et al. (1998)

Measure of distance = r;; (correlation in expression
between genes i and j, or tissue i and j)

Iterate on:

1) Maximal r ==> Next node.

2) New observation computed as the average expression
levels of joined genes.

3) Recompute r for remaining pairs.

The UPGMA method was widely used in phylogeny ==>
rooted tree.

The nice appearance of the result (dendrogram) is one of the

main reasons for its success




Molecular portraits of human breast
tumours

Example

CHARLES M. PEROU, THERESE SORLIE, MICHAEL
B. EISEN, MATT VAN DE RIJN, STEFANIE S.
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94305, USA
1 These authors contributed equally to this work

Nature 406, 747-752 (17 August 2000)

Human breast tumours are diverse in their natural history and in their
responsiveness to treatments. Variation in transcriptional programs accounts for
much of the biological diversity of human cells and tumours. In each cell, signal
transduction and regulatory systems transduce information from the cell's identity
to its environmental status, thereby controlling the level of expression of every
gene in the genome. Here we have characterized variation in gene expression
patterns in a set of 65 surgical specimens of human breast tumours from 42
different individuals, using complementary DNA microarrays representing 8,102
human genes. These patterns provided a distinctive molecular portrait of each
tumour. Twenty of the tumours were sampled twice, before and after a 16-week
course of doxorubicin chemotherapy, and two tumours were paired with a lymph
node metastasis from the same patient. Gene expression patterns in two
tumour samples from the same individual were almost always more similar
to each other than either was to any other sample. Sets of co-expressed
genes were identified for which variation in messenger RNA levels could be
related to specific features of physiological variation. The tumours could be
classified into subtypes distinguished by pervasive differences in their gene
expression patterns.




Figure 1 Variation in expression of 1,753 genes
in 84 experimental samples. Data are presented
in a matrix format: each row represents a single
gene, and each column an experimental sample.
In each sample, the ratio of the abundance of
transcripts of each gene to the median
abundance of the gene's transcript among all the
cell lines (left panel), or to its median
.abundance across all tissue samples (right
panel), is represented by the colour of the
corresponding cell in the matrix.. a,
Dendrogram representing similarities in the
expression patterns between experimental
samples. All 'before and after' chemotherapy
pairs that were clustered on terminal branches
are highlighted in red; the two primary
" tumour/lymph node metastasis pairs in light
blue; the three clustered normal breast samples
in light green. Branches representing the four
breast luminal epithelial cell lines are shown in
dark blue; breast basal epithelial cell lines in
orange, the endothelial cell lines in dark yellow,
the mesynchemal-like cell lines in dark green,
and the lymphocyte-derived cell lines in brown.
b, Scaled-down representation of the 1,753-
gene cluster diagram; coloured bars to the right
- identify the locations of the inserts displayed in
" ¢j. ¢, Endothelial cell gene expression cluster;
d, stromal/fibroblast cluster; e, breast basal
epithelial cluster; f, B-cell cluster; g, adipose-
enriched/normal breast; h, macrophage; i, T-
cell; j, breast luminal epithelial cell.

Hierarchical Clustering:
A note of caution

Results depend very much on distance used.

Results may depend largely on some observations
(bootstrap required to assess stability).

The method imposes a hierarchical structure on the
data that may not reflect reality.
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2. Prediction of phenotype given cDNA
pattern
Partial Least Squares

Learning < Phenotype prediction

The issue:
X = {cDNA measurements}
y = {probability of phenotype, say disease status
qualitative or quantitative}
y=f(X,0)?




Partial Least Squares (PLS)
Wold (1975)

Dimension reduction strategy in a situation where we
want to relate a set of response variables Y to a set of
predictors variables X.

t. =X w, (orthogonal X-components)
u,=Yc, (orthogonal Y-components)
such that max. Cov(t,, u,).
There may be many more variables than observations

In PLS-DA the Y are binary clasificatory variables

Widely used in chemometrics, some examples in parray
analysis (Nguyen & Rocke, 2002; Datta 2002; Pérez-
Enciso & Tenenhaus, 2003).

Vi = Ze  XW9cte =XWcec+e

w," = p dimension vector with the weights given to
each original variable in the k-th component

c, = the regression coefficient of y, on h-th X-
component variable




Perou et al.
data
reanalyzed

84 tissues

(11 tumoral cell cultures, 65 breast
cancer and 3 normal breast
samples)

1753 cDNA clones

Discriminant
analyses

Ao Dd -

Pérez-Enciso & Tenenhaus 2003 . e : '

disease status (tumoral / normal)
before and after chemotherapy treatment
estrogen receptor (ER) status

tumor classification.

disease status:
principal components

81 cancer / 3 normal,

all 1753 variables
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disease status:
PLS-DA

81 cancer / 3 normal,

all variables
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But ...

Models of very poor predictive abilities

Subset of variables (cDNA levels) preselected
according to its variable importance
prediction (VIP), sort of weighed correlation.

in




. 81 cancer / 3 normal,
disease status:

PLS-DA 21 cDNA levels selected

*3 | normal

L 3]

2]

4 7F 6 -5 4 3 -2 101 2 3 4 5 B 7 8 9 10111213 14 15

Prediction of disease status:
PLS-DA

21 variables

4 A

norma]

tpred[2]

tpred(1]

Obs. 1 normal, 4-35 tumor predicted




Before / After chemotherapy
PLS-DA

48 observations
19 cDNA levels
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Tumor class
PLS-DA

54 observations
11 cDNA levels

2]

L it}
class 2
s
I 7 class 4
[
2 +84 +82 o35
u] &E BTo +40
T "k .ig i -
class3 ’.5%&235594.44 ol

class 2: 2-5cm
class 3: >5cm

class 4: > 5 cm & infiltration

VIP Symbol
1.20 AQP7
1.20 ITGA7
1] 120  CDK5R1
e 1.13 FOSB
S 113 COL14A1
v 1.11 PFKFB3
- 106 674
ol 1.06 GPD1
3)) 1.00 LPL
o 1.00 767
< 97 FOS
'_6 96 ADH2
o0 95 GPD1
= o4 GPX3
e 93 CNN1
S 9 FOS
%) .89 50
8 88 CDKNC1C
Q 83 647
O g 760

Name

Aquaporin 7

cluster g of Perou
related to
adipocytes in
tumoral tissues

Integrin, alpha-7
Cyclin dependent kinase 2

altered in cancer ‘

oncogenes

Alcohol dehydrogenase 2
Glycerol 3 P dehydrogenase
Glutathione peroxidase

ovarian
cancer

Calponin 1
FJB osteosarcoma oncoge

e homolog

Cyclin dependent kinase




ocular tumors

E VIP Symbol Name / chemotherapy changed
© 122 RCV1  Recoverin
g 1.21 FOS FJB osteosarcoma oncogene homolog '
4+ 1.15 HBA1 Hemoglobin alpha1
g 1.08 CTGF Connective tissue growth factor
o 1.06 TCEB3 Transcription elongation factor B
—S w 1.06 DCT Dopachrome tautomerase
= E 1.05 FOS FJB osteosarcoma oncogene homolog’ growth _factors,
‘— O 1.04 CTGF  Connective tissue growth factor cyclines
_8 +V_) 1.02 GEM GTP-binding mitogen-induced t-cel
> 1.00 NR4A1  Nuclear receptor subfamily 4 N
O 098  CDK5R1 Cydlin dependent kinase ’ transcription
é 0.98 DPYSL3 Dihydropyrimidinase-like 3 factors
‘7) 0.94 FY Blood group-duffy system
Q) 0.91 ATF3 Activating transcription f
g 0.90 CDKN1A cyclin-dependent kinase
O 0.86 COPEB Core promoter element-birnding protein
0.85 EGR2 Early growth response 2
Symbol VIP Name
117 GATA3  GATA-binding protein 3 w9 well
‘3 1.14 ESR1  Estrogen receptor 1 %9 / known
"6 1.12 GATA3 GATA-binding protein 3 "9 /
";n‘ 1.11 PES1  Pescadillo 1 Upregulated in
oy 108 ITPR3  Inositol 1,4,5-triphosphate Wpe 3 cancer, induced by
W 1.07 GATA3 GATA-binding protein 3 "9 estrogens
< 1.06 GATA3 GATA-binding protein 3 "9
'_5 100  DSC2  Desmocollin 2 .
o 1.00 GRO1 Growth regulated protein precursor also in
= 100  CCNE1 CyclinE1 / West
g 1.00 TFF1 Trefoil factor 1 ¥
S 099 SLC7A8 Solute carrier family 7 9
v 0098 ORM1  Orosomucoid 1 ‘\/ also in
g 0.97 PFKP Phosphofructokinase, platelet type 9 Gruvberger
O 097 LRP8 Low density lipoprotein receptor-related protei
? 0.96 HNMT  Histamine n-methyltransferase
6 0.96 HNF3A Hepatocyte nuclear factor 3-alpha
S 0.94 NAT1 N-acetyltransferase 1
0.94 HMG1 High mobility group protein 19
0.91 PTK7 Tyrosine-protein kinase-like 7 precursor 0.90
TRIP13 Thyroid hormone receptor interactor 13




Genes involved in tumor classification

VIP
1.35
1.21
1.08
1.00
.96
.93
.93
.90
.86
.84
.79

Symbol Name

COL14A1 Undulin ! } altered in cancer
1244 -

LOX Protein-lysine 6-oxidase tumor
CRIP2 Cysteine-rich intestinal protein 2 progression
767 -

459 -

TFAP2B Transcription factor AP2-beta

1542 ° \ transcription,
ARHB RAS homolog gene family, memberB/ growth factors
1017 - - -

MRSPSZ7 KIAA protein <~
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3. Genetical genomics

Heat shock proteins (rats)
Whole genome (yeast)

Combining expression and markers for
gene detection




Aim

Studying expression levels as any other quantitative
trait

1. Which is the franscriptome’s genetic architecture?

2. Can mRNA levels be used to refine QTL position
estimates?

QIL for mRNA levels

Dumas et al. 2002
Brem et al. 2002
Pérez-Enciso 2004




Dumas et al. (2000)

Mapping of quantitative trait loci (QTL) of differential stress gene
expression in rat recombinant inbred strains.

Biological Background

Heat shock proteins (hsp) are highly conserved, they are induced
by several stressors, protect other proteins from denaturalization.

HSPs are mediated by heat shock transcription factors (hstf) 1
and 2.

Stress susceptibility is correlated with future high blood pressure.

Methods

+ 20 recombinant inbred lines BN.Lx with SHR.
+ cDNA probes for 5 hsps.

+ 3 Tissues: kidney, heart, and adrenal tissue.

* 4 rats / line.

* 475 polymorphic markers, ~ 20 markers / chr.

* Analysis with MapManager, no statistical details provided
(single marker analysis?).
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Strain distributi pnnevn of hsp expression in the RIS adrenal (a), heart (b), and kidney (c). H » B, strain originating from female SHR < male
BN.Lx pmgunnm B x H, strain ongml-ng from female BN.Lx < male SHR progenitors. Each bar rapresents a strain. The results are the
mean + SEM of four rats per st

Dumas et al. 2000

Dumas et al. 2000

Tatle 1 Total genome scan of hsp expression in the adrenal, heart and kidney of RIS

Adrenal Heart i o
# Marker < r P r P ! wkdeie sgonsRRo ﬁid-“ st S0P \
hep27 et D7 il <t Q04— 088 0.002 " 0.40 008 [ o4
Myh3 - = 050 0.02 - <
hsp70 D7 063 0,003 051 0.02 0.48 0.03
¥ Chr - - 0.35 013 0.60 0,008
Myh3 = = E S 0.44 0.05
hspB4 D7 0.42 0.07 - - 0.35 0.14
D9 057 0,009 - - - -
D4 - - 071 0.0002 - -
(LOD score 3.1)
hsp86 o7 0.58 0.007 0.44 0.06 0.53 0.02
¥ Chr = - - - 063 0.003
Myh3 - - 0.30 0.20 0.55 0.02
hsp105 D7 053 0.02 0.42 0,06 04 0.08
¥ Chr - - - - 0.49 0.03
S SEos R oss 001 i Py 5L
= ‘g:? s R 23 L os2 ‘oiog' 1 L 1ELL AL s

Carrelations equal to or higher than 0.3 are displayed. Suggestive (P < 0.001) or significant linkages (P < 0,0003) appear in bold type. Abbreviations: D7,
D7Cebrp18753/0D7Cebr? 751 marker; D9, DICebr16C2752 marker; D4, D4Mit19 marker; D12, D12Cebrp97s8/s4 marker; Myh3, myosin heavy chain (embryonic)
gemmuhr(d!mmsomﬂoj ¥ Chr, Y chromosome. .

*Toi power, ions from results on the three organs were combined for analysis of individual hsp at the D7 marker.
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Chromosome 7

5

hstf1 9 -

Dumas et al. 2000
|

p= Mit2, MitT1

b Bzrp
b Mit13

- Cyp11b1
b= Cyp11b2, Mit14

= Mit3

j= Cebrp187s3, Cabr77s1

= Mitd

b My

P-value

0.51

0.002
0.002

0.004
0.0006

0.04

00002 <_ :“ D7 marker

0.01

0.32

'1cM

Main results

* Wide variability in expression levels despite uniformity in founder

strains

* No QTL (except evidence of 1) mapped to the gene itself.

* High correlation in expression levels for the same gene between

tissues.

* The largest effect QTL region contained the hsftl gene (chr. 7).
* And also the same QTL affected the expression of all hsps.




Brem et al. (2002)

+ Comparison of two S. cerevisae strains, lab and wild types
* Large differences in gene expression: 1528 / 6215 (P < 0.005)
* Genotyping with microarrays in tetrads, 3312 SNPs, > 99% genome

* Test for linkage between every marker and every cDNA level:
Wilcoxon-Mann-Whitney test and P level assigned by permutation.

Main results

308 / 1528 (20%) cDNA levels showed linkage with at least one marker
(P<10%)

262 mRNA levels not different between strains but linkage to some
marker (as in Dumas et al’s results).

1220 (80%) mRNA levels were different but no significant linkage:
evidence of multiple loci affecting message level, probably > 5 loci
according to simulation.

Is the linked marker located close (< 10 kb) of the gene encoding the
mRNA? 185/ 570 = 32% yes action in cis

For the remaining (trans-acting) markers, small number of marker affects
many mRNA levels, or many markers each affecting a few mRNAs?: 10
bins contained more than 5 levels (impossible by random), ranging from 7
to 87 levels.




-
-
>

=
o

&
7]
" s mes

&
-

log2 [ecpression ratia)
&
-

- e 8

]
L]

&

-
B
g 8 A IBES § RIS b 8
2

parent

AM 589 589
parant  inher BY  inhar AM

Figure 2

Expression levels of parents and
segregants for two genes that show
linkage. In each panel, the first column
shows expression levels for all

40 segregants, and the second and third
columns show expression levels for six
replicates of each parent. The fourth and
fifth columns show expression levels for
segregants that inherited the linked

B : marker from BY and RM, respectively.
1o : (A) The gene is YLLOO7C, and the marker
7 ' . lies in YLLOO9C.
5 0 . H . (B) The gene is XBP1 (YIL101C), and the
: . i . § ' marker lies in YILO60W. Note that, in this
-y ' I ' example, the effect of the locus is in the
U : opposite direction from the difference
I, " between the parents, illustrating
. transgressive segregation.
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The number of linkages plotted against genome location. The genome
is divided into 611 bins of 20 kb each, shown in chromosomal order from the
start of chromosome | to the end of chromosome XVI. The dashed line is
drawn at 5 linkages; no bin is expected to contain 5 linkages by chance. The
regions with an unusually large number of linkages are marked 1 through

8 and correspond to the groups in Table 1.




Table 1. Groups of messages linking to loci with widespread transcriptional effects. The
location of the center of the linked bin is shown as chromosome:base pair. Lists of genes in
each group are available as supplementary information (32).

Group Number of Common function Linkage bin
messages
1 18 Budding, daughter cell separation 11:
2 21 Leucine biosynthesis I11:
3 28 Mating I11:
4 7 Uracil biosynthesis V:
5 28 Heme, fatty acid metabolism XII:
6 16 Subtelomerically encoded helicases XII:
7 94 Mitochondrial XIV:
8 19 Msn2/4-dependent induction XV:

Putative
regulator

CSTI3
LEU2
MAT
URA3
HAPI

SIR3
Unknown

Unknown

Conclusions

* Most levels affected by several loci

* Many regions in cis

+ Small number of alleles trans-acting and
affecting many mRNA levels simultaneously




Pérez-Enciso

(Genetics, 2004)

1. QTL 'hotspots' reliability.
2. Estimates’ stability.

Traditional simulations

1. Model specification (M) and its
associated parameters (0)

2. Data simulation (y) given the model (M)
and 0

py | 6, M

Additivity,
# loci

heritability




Simulacion no tradicional

1. Given real expression data (y;)
2. Genotype simulation (y,)

3. Assignment of genotypes randomly to
phenotypes

4. Data analysis

P(Ya 021 Y4)

* Rosenwald et al. 2002 (NEJM)
* 240 individuals with lymphoma
» 7399 probes (lymphochip)

* ~ 10% missing data

Real data




Simulation: haplotypes

1. Coalescence (programa ms de Hudson): 3000
chrs., 100.000 SNPs, p = 4Ne r = 1000

2. Gene dropping 1000 gens., Ne = 1500, 1
Morgan

3. ~ 25,000 SNPs int= 1000
4. Only SNPs frec > 0.10 analyzed (~ 20,000)

Simulation (contd.)

Random assignment of two chrs. to each individual

For each mRNA (j), QTL (k) position is estimated by
maximum likelihood (ML)

N
L =] |1 O (yi—mi > o%k)
i=

Residual variance jk
(constant vV genotype)

i-th indiv., j-th mRNA level

Significance if
P<10°¢




minor allele frequency

Simulation
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Results (1): hotspots

# QTL

40 -

30 4

Rosenwald

a bin is made of
50 consecutive

SNPs

Results (1): hotspots
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Results (1):
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Schadt et al. 2003 (mouse)
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Brem et al. 2002 (yeast)
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Results (2): estimates’ reliability

Noise added to the system by:

1. Randomly elimination of 16% of individuals

2. Elimination of 9 out of 10 consecutive SNPs
(remaining ~ 2000)




What happens with less individuals?
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What happens when we run out of money
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Adding noise (Rosenwald)

Dataset R-Ind R-Ind-SNP

% P<10% 67 40 w
8=0(%) 70 23

8<10(%) 73 50

8<100(%) 77 60

85>10%(%) 5 6

Distance between

‘true’ and ‘estimated’
estimates (in SNPs)

Adding noise (Brem, yeast)

Dataset B-Ind B-Ind-SNP BR-Ind

% P<10°% 72 42 73 m
3=0(%) 76 17 58

8<10(%) 94 70 59

8<100(%) 100 99 64

5>104(%) 0 0.1 6

Distance between
‘true’ and ‘estimated’
estimates (in SNPs)




How an association profile looks like?

-log10 (P)

0 5000 10000 15000 20000
SNP

How an association profile looks like?
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-Hog10 (P ANOVA)

15 S
.
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) / Results ML

’ ’ -Hog10 (P L:a:) * VS .
ANOVA

0 5000 10000 15000 20000

Conclusions

*QTL hotspots should be interpreted with caution

* LD/associatio profiles in outbred populations can
be extremely complex

* Unstability in ~ 40% QTL




Refining gene positions

* Wayne & McIntyre 2002
* Mootha et al. 2003
- Pérez-Enciso et al. 2003

Wayne & McIntyre (2002)

Combining mapping and arraying:
An approach to candidate gene identification

Drosophila ovariole number: related to fecundity and varies
with latitude.

QTL analysis in RIL of Oregon-R and 2b strains (= 5286
candidate genes).

Deletion mapping (= 548 candidate genes).

Differences in mRNA levels between strains (= 1 to 25

candidates). Pools of 25 individuals were assayed, 3 replicates per
line. Analysis via ANOVA.
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Recombination map

The black arrow highlights the recombinational map position of the candidate genes
CG17327, yellow-f, and Su(fu). Red curves indicate the value of the test statistic for the
presence of QTL. Blue triangles indicate cytological markers used in the QTL experiment.
Horizontal bars are the deficiencies that were tested; showed a significant interaction

across parents and genotypes, whereas green bars did not

Mootha et al. (2003):

Identification of a gene causing human cytochrome

c oxidase deficiency by integrative genomics

Leigh syndrome (French-Canadian type) is relatively
comon in a Quebec region (1/23 incidence, 1/2000

newborn are affected).

Shown previously to be associated to a region in chr.
2p16-21.

A single founder haplotype was evidenced.
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Microarray analysis

Mitochondria neighborhood index (Ng): number of
mitochondrial genes among the R most similar genes in
expression pattern.

Distance between expression levels measured by the
Euclidean distance.

Public data were used.
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Combining data

Among the candidate genes, LRPPRC had a
remarkably high Nj.

Different peptides from the LRPPRC gene were
identified in the mithocondrian fraction; no other
candidate gene could explain the observed protein
pattern.
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(B) Representative tandem mass spectrum showing y-ion and b-ion series
along with the deduced peptide sequence. (C) The predicted LRPPRC amino
acid sequence with high-scoring peptides, identified by organelle proteomics,
marked in red.

Identifying the mutation

The gene was initially sequenced in two patients, a
parent and an unrelated control.

A single mutation was identified in all patients and
in no control, resulting in a missense mutation.

A deletion was found in an additional single
patient. This patient was doubly heterozygous for
both mutations.




STOP [ wens

C1277STOP R*
Human RCGATAEQTPILLLELLRNSRKQGK
Mouse RCGAIAEQSSLLSVECLRTSQKPKK

missense

A354V v

Human DAMNL1ELEVEEKEEDVALQIELACBVSKED--~~GPSVFGSFFLOHCVTMNT

Mouse DAMNLTLFLALEKLEDTAFQVLLALPLSKDE----SSDNFGSFFLRHCVTLDL

Rat DAMNLILLLVEEKLEDTAFQVLLALPLARDE-~~-TSSSFGSFELRHCVTMDT

Fugu DAMNLCLSLILQGLEDSAFY ILKTFBTLOSDNLNTDSSNVGNEFLREC-—-—~-
Exon 9

Fig. 5. Mutations identified in LRPPRC. LRPPRC has 38 exons (blue) predicted to
encode a 1,394-aa protein. The amino acid sequence corresponding to exons 9 and
35 are shown as well as the aligned sequences from mouse, rat, and Fugu. The exon
9 missense mutation, A354V, and the exon 35 truncation, C1277STOP, are shown in
red. Conserved residues are shaded in gray. *, a stop codon

Can microarray data be used to refine gene
positions?

Combining gene expression and molecular marker information for
mapping complex trait genes: a simulation study
Pérez-Enciso et al. (2003) Genetics, accepted

Expression data could be used to improve QTL mapping if the
following two conditions were met:

1. Some of the gene expression levels must be under (at least
partial) genetic control of the QTL

2. Some of these heritable gene expression levels must be
related to the trait.

Otherwise, accommodating expression data in a statistical model
would reduce power of tests.




Underlying genetic

model logistic
Py, =11 7%) = exp(h;) / [1 + exp(h)]
| underlying liability | heax
/ expression
unknown data indiv. i

weights

The QTL shifts the expected value of h

(affects simultaneously several expression levels)

How can we simulate realistic
data?




Unusual simulation procedure

1. Specify a subset of parameters (0,)

2. Simulate disease phenotypes (y,) and rest of
parameters (0,) given expression data (y,) and
0,

P(¥2 0] ¥y, 01)

incidence,
allelic frequencies

parray data

microarray
data

. _ The procedure

o [Py © ®
_—

Haplotype
simulation

l@
)
M‘_/—\

y=0 y=1

1. Characterize ® 4. Sample QTL genotype

2. Simulate disease status (Binom.) 5. Sample surrounding haplotype

3. Determine QTL parameters




1. Choosing weights to expression levels

Most of elements in ® will be zero
ny MRNAs were chosen among those with no missing values

'Diffuse’ scenario: mMRNAs with =0 chosen independently at
random

'Clustered' scenario: first mMRNA at random, successive chosen
with a probability that was proportional to the correlation with
the first mMRNA

‘Uniform’ scenario: weights o chosen from a uniform (-1, 1).
‘Exponential’ scenario: weights o chosen from an exponential p=1.

Weights were found by trial and error, setting the restriction
E(y)=0.50+0.05, to mimic a case/control study.

2. Generating disease status

For each indiv.,

P(yl =1 | hl) = eXp(hi) / [1 + exp(hi)]

Binomial sampling




3/4. Generating QTL parameters and genotypes

Dialleli TL
BlElee used for

sampling
individual
genotypes

f(h | 9) = N(g, 0?)

Given a= (ungA- Hg-BB )26 and o:
P(g, | ) = P(gy) f(h | g) / Z; [P(gy) f(h; | g))]

The within genotype variance was obtained solving iteratively
from:

Var(h) = E4 [Var(h|g)] + Var, [E(h|g)]

5. Generating the haplotype

10 Nearby SNPs were generated assuming that a
founder haplotype carrying the mutant QTL allele
appeared 500 generations ago using an exponential
growth model.

Minor SNP allele = 0.3.




Data used

Sorlie et al. (2001) PNAS 98:10869-10874
http://genome-www5.stanford.edu/MicroArray/SMD/
85 breast cancer samples
456 mRNA clones (their 'intrincsic set')

Log2 ratios between the sample and a control are
reported.

71 mRNAs did not have any missing record, and
were thus eligible to be in h.

Parameters used

n,=1,5,10,20

a=0.5,1,and 1.5SD

QTL genotype frequencies:
0.5/0/0.5 & 0.25/0.50/0.25

Scenarios: D/U, D/E, C/U, C/E

500 simulations per case




Analysis strategy

* No parray data: ANOVA on phenotypes and
markers as classifying variable.

* narray data used: ANOVA on estimated liability
and markers as classifying variable. Liability estimated
using Partial Least Squares (PLS) logistic regression.

Logistic regression with PLS (Esposito-Vinci & Tenenhaus, 2001)

For each variable j = 1, 2,..., g compute its significance in a logistic
regression, each variable in turn using the model P(y, = 1) = exp(b, +

;B/j Xij) I+ eXp(bo + ﬂ[j X,'j)]a

Select those variables that are significant; The first 'supergene’ is
defined, for each i-th individual, as t,, = w/' x;, with w,, = 8,/ C, > 8

The regression coefficient b, is obtained from fitting P(y;= 1) =
exp(b, + b, t,)/[1+exp(b,+ b, t,)]

The next PLS component is obtained by testing again each of the

original g variables plus the previous 'surpergene’ P(y = 1) = exp(b,

t b, b+ Py x) [ [1+explby+ bt +Byx),j=1,2,..,q Onceitis

determined the new set of significant variables, the second

'supergene’ is obtained from ¢, = w,’ x;, with w,; = 3, / C, \/Ziﬂzzl
jeR?
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Main conclusions

1) The usefulness of microarray data for gene mapping increases when both
the number of mRNA levels in the underlying liability and the QTL effect
decrease, and when genes are coexpressed.

2) The correlation between estimated and true liability is large.

3) It is unlikely that mRNA clones identified as significant with PLS are the
true responsible mRNAs, especially as the number of clones in the liability
increases.

4) The number of significant mMRNA levels increases critically if mRNAs are
co-expressed in a cluster; however, the proportion of true causal mRNAs
within the significant ones is similar to that in a no co-expression scenario.

5) Data reduction is needed to smooth out the variability encountered in
expression levels when these are analyzed individually.
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