Motivation
The problem of predicting genetic merit

What’s wrong with what we do now?



The Prediction Problem

Model Equation
y=Xb+Zu+e

Other aspects of the model
First moments  E[u] =0, E[e] = 0, therefore E[y] = Xb
Second moments var[u] = G, var[e] = R, cov[u,e'] =0
Distributional Assumptions e.g.u,e ~ MVN

Want to predict u or linear functions like k'u



Original Solution

Generalized Least Squares (GLS)

For estimable q'b, q'ﬁ“ 1S BLUE (Best Linear Unbiased Estimator)
where b’ =(X'V'X) X'V'y  forV=ZGZ'+R

then ot = GZ'V"! (y - Xb" ) is BLUP (BLU Predictor)

(same as Selection Index/BLP except (y - XB”) in place of (y - Xb)

obtained by exploiting (genetic) covariances between animals
In traditional animal breeding practice

G is large and dense and determined by A the numerator relp matrix

V is too big to compute X'V



BLP vs GLS BLUP

y=XB+Zu+e
y-XB=7Zu+e, afully random model
Selection Index Equations Pb = Gv

b =P'Gv, defines the best linear function to predict u
the "weights" are the same for every animal with the same

sources of information (ie same traits observed)
BLPu=b'(y-X3)=vGP"'(y-Xp3)
¢f GLSBLUP o= GZ'V"! (y : XBO)



Henderson’s Contributions One

Developed methods to compute G and R from field data
Henderson’s Method | (not his!), Il and Il
Including circumstances that involved selection



Henderson’s Contributions Two

Invented the Mixed Model Equations

XR'X XR'Z X X'R'y
I Z'R'X ZR'Z+G! u Z'R'y

, for full rank G

and jointly showed k'b® and & were BLUE and BLUP

Computationally tractable if G and R assumed diagonal or block-diagonal
(eg sire model with relationships ignored)

(Order 40 matrix takes weeks to invert by hand)

MME typically sparse in national animal evaluation



Henderson’s Contributions Three

Invented an algorithm to directly form A™ from a pedigree list

Then G™ can be formed as a scalar product or kronecker product
define d to be "mendelian" sampling variance
d=(1,3/4,1/2) for 0, 1 or 2 parents known
define s'=(-1/2, -1/2, 1) to represent sire (if known), dam (if known)

and individual equations

accumulate sd~'s'in the sire, dam and individual rows/columns

for every trio of animals in the pedigree list



Consequence of A1 structure

sire  dam ]

Accumulate for each animal sire i 025 025 -05 ]
dam | 025 025 -05 |d”

[ | —0.5 05 1 |

When both parents are known
Nonparents (ie terminal offspring)

Own equation (ie row) has 2 on diagonal, -1 in sire column -1 in dam column
Parent with one offspring

Own equation has 2+1/2 on diagonal, -1 in sire and dam columns

in addition to -1/2 in the column of its mate, -1 in column of offspring
Parent with many offspring to different mates

accumulates a large diagonal element, many small negative offdiagonals



Consider rearranging the MME

In general,

[ Z'R'X ZR'Z+G* ]

b =[]

u
or equivalently [Z'R'IZ + G'lj[ﬁ] = [Z'R'l (y - Xb’ )]

Single trait animal model R =I6?, G =Aoc?, G =A"'6?

2

or multiplying o, [Z'Z +AA™ ][ﬁ] = [Z'(y — XIA)O)] , With A = %;



Consider the MME for a nonparent

22+ A7 ][] =| 2'(y - Xb’)|
Nonparent animal with one record
(1 + 22’)lj\tanmflal B )I‘I;\tsire o lﬁdam — adjusted_y

A _ 2)’(1:251'1”6 + l;\ldam) + (adeSted_y)
ainel (1+21)2 (1+24)

1

=(1-w)PA+w(adjusted _y) for W:(1+2ﬂ,)




Consider the MME for a nonparent

. 1
u . =((-w)PA+wladjusted or w=
animal ( ) ( -] —y) f (l‘l' 22/)
1_h2 2 .
A= 7 so for h =1, A=0,w=1, (no shrinkage)

for h* =low, A= big, w = small, (shrink the deviation)
Two sources of BV information are pooled

The parent average PA

The individual prediction (shrunk deviation)

with heritability influencing shrinkage



Consider the MME for a nonparent

22+ A" |[i]=| Z'(y - Xb’) |
Nonparent animal with one record
. =(1=w)PA+w(adjusted _y)
Nonparent animal with no record
A, —Au. —Au, =0

animal sire

l;\l | :A’(Aswe_l_udam):(Aszre_l_udam):PA

animal A 2 2

Va\




Reliability of nonparents

. n . var(u
Property of BLP/BLUP is cov(u, 1) = var(it) so r* = (1)
var(u)
» I;\tsire l:\tdam .
but U pomparent = + , for nonparent without a record
2 2
2 2
r r 1
SO I.Z _ _sire 4+ dam <

nonparent 4 4 2

Finally AG = ”Onp“L”em 2, limiting selection response

when candidates at puberty lack phenotypic information



An option to do better



Solution

 We need a different representation of the
covariance between relatives, that allows
relatives other than parents to directly

contribute to the prediction of nonparents
without records

* The NRM or A-matrix is an expectation of
relationships in the context of repeated
sampling of the pedigree (conditional on
pedigree)



A-matrix

Relationship with self is 1+F (noninbred F=0)

(Additive) relationship of 2 between non-inbred
full-sibs and between parents and non-inbred
offspring

Relationship of 7 between non-inbred half-sibs
and between grandparents and offspring

But particular individuals can have greater or
lesser values
— If we know their genotype we can compute

relationships conditional on the chromosome regions
they inherited



W b © =

W b — O

2
3

A matrix
S 5 5
S 5 5
1 5 5
S 1 5
S 5 1
S 5 5

1 -1 -1 -1

A-inverse matrix

— b e

Relationship matrix

-1 -1 -1 -1

2

0
0
0

0 O

2 0
0 2
0 O

0

0
0
2

Consider a sire, dam and 4 full sibs



W b © =

W b — O

Relationship matrix

A matrix
S 5 5 5
S 5 5 5
1 5 5 5
S 1 5 5
S 5 1 5
S 5 5 1

A-inverse matrix

2
3

-1 -1 -1 -1
-1 -1 -1 -1
2 0 0 O

0O 2 0 O
0O 0 2 O
0O 0 0 2

3.5
2.5
-1.25
-1.25
-1.25

125

2.5
3.5
—1.25
-1.25
—1.25
-1.25

G matrix
1 0 5 5 5 5
O 1 5 5 5 5
S 5|1 6/ 4 4
S 516 1 4 4
S 5 4 411 6
i S 5 4 416 1

G-inverse matrix

-1.25 —-1.25 -1.25

-1.25 -1.25 -1.25

21875 03125 0.3125
-0.3125 21875 0.3125
03125 03125 2.1875
03125 03125 -0.3125

-1.25
-1.25
0.3125
0.3125
—0.3125
2.1875




Predict the last animal with no data

[—1.25%6 -125a,,, 31254, 31254,, -31250,, 218750, }:[o]

1.25(u,,, + iy, ) —0.3125(i,, + i, )+ 031250, ,
candidate ~ 21875

u

But to form G, we needed to know which loci/QTL
contribute to variation in performance



Fixed effects models
to predict SNP effects



Genomic Prediction

* Two-step process
— Training population

e Predict the breeding value of (every) (small) genomic
region (to find the informative regions ie QTL)

— Target population
* Predict the breeding value of the selection candidates

by summing up the breeding values of all the genomic
regions they inherited



Performance

Data on some locus

YVBB.

How do we model it?
(ie What are our expectations?)

AA

lllumina notation
AB BB Genotype



Performance

Model the data as genotypic effects

y=1u+Qg+e

Yaar
Yaaz
Yaas
Yapi

Yag2

YVBa1

O i W W W i O ey

oE | |

Data on some locus

OoE B |

) SE[yBB.]:uu
(1 0 0 | E v — )
Lo o, : E[yAB.]_:u_l_gAB t 855
AA 7]
B b
010 gBB
00 1|

Four Unknowns

Three pieces of information
(or less if a genotype is

not represented)

AA

AB BB Genotype



Parameters and Information Content

 The information content (in fixed effects
model) is partly reflected in the degrees of
freedom

— Some degrees of freedom are available to
estimate functions of fitted parameters

— The remainder, if any, contribute to the error sum
of squares

* Overparameterized models have more
parameters than estimable functions



Fixed Effects Model for Genotypes
y=Xb+Wq+e

b contains the usual fixed effects

"
q=| 4. |, defines a class effect

4 s

W is the incidence matrix for AA, AB, BB genotypes

and has 3 columns — one for each genotype class
and N rows — one for each animal with exactly one

1 in each row according to the genotype of the animal



Fixed Effects Model for Genotypes

y=Xb+Wq+e
E[y] = Xb + Wq

var[y] = var[e] = Io?



Least Squares Equations

L X'y _
W'y

=

WX W'W

X'X X'W }

o>

For |b|=[u],X=1

N n, n, ng ..
n n 0 0 .
LHS=| *“ ™ RHS=| ™
ng 0 ny, O Yap-
i g 0 0 ng | i VB - |

Equations have order equal to number of fixed effects plus genotypes



=

LHS =

No unique solution

U+ qay
U+ g,
U+ gpp

Hoax—"xg—"gp Y

n 0 0 .
A RHS =| ™
0O n, O Vag-
0 0 ng i VBB

, 1S one possible solution




No unique solution

M+ qpp
b=| 94~ s , Is another possible solution
dap ~— 4B

L O —
N ny, R N y
n n 0 0

LHS=| ™ M RHS=|
ng 0 ng 0 YA
y/al O O y/al 1)

| "'BB "“BB ] |7 BB”




Different Solutions have same
Estimable Functions

U+ gpp 0
_l_
f) _ | 49aa — 4ps f) _ HT G
1 T | u+g
448 — 4B A8
0 i U+ qgp |

Interesting contrasts

k'=| 1 1 0 0 |thenk'b,=k'b,=p+q,,

k'=: O 1 -1 0 }thenk‘ﬁlzk'l;2:QAA_QAB



Estimable Functions

* |n fixed effects models, many model
parameters or functions of model parameters
are not estimable, even though a numeric
value can be obtained by solving the least
squares equations (eg by generalized inverse)

|X'X]" is any generalized inverse of X'X if (X'X)[X'X] (X'X) =X'X
Define H = [ X'X| (X'X)
A linear function k'b° is estimable if kK'H = k'

var(k'b”) = k'[X'X]| k {or k'[X'X]| ko’ (if R was not explicitly fitted)}



Performance

Data on some locus

Model the data as additive and dominance effects

y=1u+Ff+e
Yaar i 1 ]

Yaaz 1

Yaas 1

Yapi 1

1

1

U+

O = = O O O
L ]

i B OyDoE |8 |

u+d

E[yBB.] =H
+a

Three Unknowns
Three pieces of information

AA

AB

BB

Genotype



Genotypic vs genetic effects

_ 8B~ 844

-1 1

2 2
-1 -
2 2

, genotypic class effects a=

,and d=g,, —

, additive and dominance effects

8an T 855
2

,K'q=a, columns of K are othogonal kk, =0

but note g itself is not estimable, but functions like g,, — g,, are



Equivalent Models
_E_ME_

H+Ean 10=13-3
AB H+8g 14 u+d 14=13+1
BB H+8gp 16 L+a 16=13+3
A
r |
u=0 u=10 n=16 n=13
8an= 10 8an= 0 Ban~ -6 a=3
gAB= 14 gAB= 4 gAB= -2 d=1

8= 16 8= 6  8g=0
Both models have the same expectation

Both models have the same variance

Therefore the models are equivalent
(I can fit either model and migrate from one to the other)



Performance

Suppose | ignore dominance (d=0)

Model the data as an intercept and allele dosage

y=1u+Ff+e E[yAB] =+ 2ﬁ i Slope=f
-yAAl-_l_ o :_ EXt-rj|
- : 0 T)}BB.reSI ua
i/:j = i o+ ? [B]+e v
IRE |=a+1p
Represents lack of linear fit




Performance

Suppose | ignore dominance (d=0)

Model the data as a mean and substitution effect

y=1u+T7+e

Yaal i 1 ] _1

Yaa2 1 -1 ]

Yaas _ 1 0+ -1 [T]+e Z

Va1 1 0

Van: ! 0 :t .
1 1 =

YBB1 - -

E[?AB.]:M_FT E

Extra
Ly residual
L BB.

Represents lack of linear fit

AA

AB

BB Genotype



Performance

Suppose | ignore dominance (d=0)

Model the data as an intercept and allele dosage

y=1p+Bb+e E[yM]ZOﬁI +2ﬁa
] - i ' s Extra
a 0 2 il y residual
Yaaz 0 2 " BB.
Yaaz _ 0 2 B, te —
Yap1 11 B,
11
Yo 2 0 — 1ﬁ1 T 1ﬁ2
i YaB1 1 - -
Represents lack of linear fit




Equivalent Models

Slope & Mean & Two allelic
intercept Substitution effects

a+0pB 23,+0B, 10=2x5
AB  o+1f 13 13 1B,+1B, 13=5+8
BB  a+2f 16 +T 16  0B,+2B, 16=2x8
a=10 n=13 B,=5
B:3 T=3 8228
NB B,-B,=3

All models have the same expectation
All models have the same variance

Therefore the models are equivalent
(I can fit any of the models and migrate from one to the other)



Summary Fixed Effects Models

dominance d=0 dominance d=0 d=0
Model df 3 2
Genotypic yes no
All alleles yes yes
Substitution yes yest
Animals n/a n/a

Equivalent models



Summary Fixed Effects Models

dominance d=0 dominance d=0 d=0
Model df 3 2
Genotypic yes no
All alleles yes yes
Substitution yes yest
Animals n/a n/a

>

Equivalent models Non equivalent models



Fitting SNPs as random effects



Fixed or Random

e Reasonable to consider animal effects as
random in the usual context

— Variation in alleles (ie genotype) between animals
that contributes to the genetic variance

* Not variation in allelic value at a particular locus

* Not so clear that an individual locus (or every
loci) should be treated as random

— Especially when the genotypes are observed and
treated as known in the incidence matrix



Suppose we have many loci

The obvious solution is to fit the a effects jointly for every locus

y=Xb+Ma+e

I =nmarkers

=Xb+ ) maq +e
=1

a; is the substitution effect for the ith locus



Singular Coefficient Matrix

The incidence matrix of genotypes, M, has n rows
(= number of genotyped animals) and p columns
(= number of loci/markers/haplotypes)

Typically using Illlumina livestock chips
(cattle, horses, pigs, sheep, chickens, dogs)
n < 10,000 and p > 40,000

If no 2 animals have the same p genotypes, then
M has full row rank

The M’M component of the coefficient matrix
cannot be full rank (rank M’M is n<<p)

— Rank(AB) is at most the lesser of rank(A) and rank(B)




Practical Consequence

* |tis not possible using ordinary least squares
to simultaneously estimate more than n
effects of loci plus other fixed effects
— Can use stepwise approaches to successively add

loci and determine a subset of markers that are
informative in the training data

* But least squares tend to produce upwards biased
estimates of effects (especially when power is limiting)

— Cannot use all markers to predict genomic merit



Alternative Approaches

 Modifications to Least Squares
— Ridge Regression, Partial Least Squares etc

* Treat g effects as random rather than fixed

— We routinely fit single and multi-trait animal models
with many more effects than observations

— Provides opportunities for many mixed model
procedures, such as BLUP, REML, Bayesian analyses

— These methods will also “shrink” estimates



Summary Fixed Effects Models

Natural (but incorrect) progression to fitting loci as random
Simply augment the coefficient matrix with a variance ratio

dominance d=0 dominance d=0 d=0
Model df 3 2 \(\Qo
Genotypic yes no Q} ((\
S 0 ¢
All alleles yes yes o ((\,80
‘ o
Substitution yes yes @6’0
Animals n/a n/a

The random models for substitution effects are NOT equivalent to the
other random models unless you are very careful



Random locus effects

* Following the treatment of locus effects as
fixed, we could consider the following possible
models for random locus effects
— A) fitting every genotype at a locus

* This would require us to describe the variance-
covariance matrix between the alternative genotypes

* That matrix is singular in the absence of dominance

— B) fitting every allele at a locus
— C) fitting substitution effect at each locus



Mixed Model Theory

* Prediction and estimation follow logically once
we define relevant variance-covariance matrices

— All effects are estimable (unlike least squares)

var(g) =G var(g)=G - Cc* var(g-g) = c* ’"g%é = var(s) var(g)

var(k'g)=k'Gk var(k'g)=k'(G-C” )k
 The analogous terms in routinely applied animal

models are the numerator relationship matrix,
genetic and residual variances

— Random effects might be interpreted in the context of
resampling in repeat experiments



Summary of Model Alternatives

dominance
Model df 3
Genotypic yes
All alleles yes
Substitution yes

Animals n/a

d=0

2
no
yes
yes

n/a

dominance d=0 d=0

Not Relevant

Not
considered

in this R#D R=D

This model follows

course



Fit all allelic effects as random

* Assuming no dominance we could fit effects of
two (or more) individual alleles

y=Xb+Ma+e

* M is a matrix of covariates, one column for each
allele (or haplotype), that counts the number of
copies — each row sums to two

0 2 | ; Yaa
rows of M areoneof | 1 1 |, a= ol Jor | Y
a
i 2.0 | ’ i VBB |




Estimable Functions in Fixed Models

e Class variables of fixed effects are not estimable

— Differences between levels in the same class are
estimable

— The sum of any one level and the mean are estimable
(in a 1-way model)

— Fitting a fixed class variable is typically done by

* deleting the row and column of the coefficient matrix for any
one level of the class

* Introducing a lagrange multiplier to fit a sigma constraint



Sum to Zero in Random Models

e Class variables of random effects (e.g. sire or
animal) are all estimable

— Typically all levels are fitted, even though interest may
be focused on differences between levels
(eg one sire compared to another)

e A feature of BLUP(u) is that certain sums of the
elements are zero

— A biallelic factor fitting say a, and a, will have
solutions that sum to zero (ie a-hat, = - a-hat,)

— In a model fitting many biallelic loci as random effects,
the number of equations can be halved



Var(a) (ie allelic effects)

a 1 O
A 2 2
var(a)= A = var = o, =10
a, 0 1
For the 3 possible
biallelic genotypes _ _ _ _
0 2 0 1 2 4 2 0
var(MMA)=MAM'=| | | A[ 5 1o }z 2 2 2 |od
i 2 0 | i 0O 2 4 |

Note this A is the variance-covariance matrix of allelic effects, not the NRM



Peculiar Feature of this Model

y=1lu+ma +m,a, +e but m,=21-m,
=1/,L+m1a1+(2 l-ml)a2+e
=1lu+ma -ma, +21a, +e

but 2a, = k, = constant

=1(u k2)+mla1 -m,a, +e



Peculiar Feature (cont)

y =1u*+m,a, -ma, +e (last slide)

N

m, 1

-m, 1

!
1'm,
mm, + 1

—In, 1,

!
—1'm,
—Imn,m,

mm, + A

Now add equations 2 and 3
Aa, +Aa, =0
/l(ﬁl + 52) =0

A

d, =

and therefore a, —a, =2a,

—2a,

1'y
m,y

—m,y

This “sum to zero” feature is common to all mixed models with factors




Extension to multiple loci

Allellic effects

y=1u+Ma+e (1locus)
i=ploci

y=1u+ 2 Ma +e (ploci)
i=1

MME for two uncorrelated loci (order is 1+ 2 x 2 = 4 allelic effects)

N 1'M, 1'M, h 1'y
M1 MM, +4 MM, a, |=| My
M1 MM, MM, +4, || 3 | | My
n - | - 62
Order of MME is number of fixed effects plus twice number loci (if biallelic) ﬂ,l_ — ;
O

Consider the implications for 100-1,000 animals with 50,000 loci ai



Summary of Model Alternatives

dominance
Model df 3
Genotypic yes
All alleles yes
Substitution yes
Animals n/a

d=0

2
no
yes
yes

n/a

dominance d=0 d=0

Not Relevant

Not
considered
in this R#D
course

This model
follows



An equivalent (animal) model
for genomic prediction



More loci than animals

Allellic effects — but for selection we are more interested in animal (not allelic) merit

i=ploci

y=1u+ Z M, +e

(i=ploci
y=1u+1- 2 Ma. :+e

\.

y =1u+"ZHHuH+e

Order of MME is number of fixed effects plus number of animals
Consider the implications for 100-1,000 animals with 50,000 loci



Mixed Model Equations

y=1'u+Zu+e
N 1z a1y
721 27 +5°G" . = Z'y , for full rank G = var(u)
y=1',u+Ile.al.+e
N 1' ‘a — l'y _

1 I+0’ [Var(ZMiai )T ZMiai y

Order of MME is number of fixed effects plus number of animals
Consider the implications for 100-1,000 animals with 50,000 loci



Mixed Model Equations

y=1'u +IZMiai +e

N 1' ‘il — l'y -

1 I+o0; [Var(ZMiai )T ZMiai y

var(Y Mia, )= Y var{Ma, } = Y M\AM, =) MM,c_, = like AC_

numerator relationship matrix=A

A — —

N 1' ‘LL l'y
1 140 [YMMoA] | SMa, y




An Equivalent Animal Model

MM. G’ contains elements like 20

ai

S =N
—
o = O

M ;M. has order equal to number of animals (N)

ZMiMi' 1s summed over p loci
A diagonal element for a totally heterozygous animal 1s 1 X 22 o
Therefore ¢ in a typical animal model is (at least) 22 o’

A diagonal element for a totally homozygous animals is (1+F)=2 X 22 o’

A typical offdiagonal element is a weighted function of 0, 1 or 2
The number of 0's is the number of loci that the 2 animals are alternate homozygotes
The number of 2's is the number of loci that the 2 animals are the same homozygote

The number of 1's is N minus the number of O's and 2's



Non-inbred animal

* |In the usual context, a non-inbred animal is
IBS but not IBD (with a,=1)

* The fraction of homozygosity across loci is
expected to be the sum over all loci of p2+g? in
the absence of inbreeding

* Such an animal would have an average
diagonal of the genomic matrix >> 1



Summary of Model Alternatives

dominance
Model df 3
Genotypic yes
All alleles yes
Substitution yes

Animals n/a

d=0

2
no
yes

yes

dominance d=0 d=0

Not Relevant

Not
considered
in this R=D

course This model
follows




Some alternative computing
strategies that are not equivalent
models



Reconsider a single locus

y=lu+Ma+e or y=1lu+ma +m,a, +e

N 1m,  I'm, i 'y
ml mm+1 mm, a, |=| my
m,d1 mm mm,+1 | a, m,y
F_ or A= Z—g, these MME have the same Solu;ion for a, — &;(bm not ,LAL; as
N 1'm, | [* 1T 1'y )
m,1 mm, + % a, —a, B m,y

As if we fitted y =1U+m,a, +e with different A



Proof of Identical Solutions
y=1u+Ma+e (ModelI), with M'l1=21

2
Elyl= . varly]=MM'c; +10; 1, = %

y=1lu+ma, +mya,+e but m,=21-m,
=1y +m,aq, +(2 l-ml)a2 +e but 2a, =k, = constant
=1(,u+k2)+m1a1-m1a2+e
=1(u+k,)+m,(a —a,)+e (Model I)
E[y]z(,u+k2), varly]=mm, 20’ +1o’ A, = 6622 ) = )L%
o

a

Clearly the first and second moments are different in models I and II



More Alternatives

Previously y=1(u+k2)+m1(a1—a2)+e

Note m, (and mz) contain covariate values of 0, 1 or 2
another model with k,, = (a1 — az) 1S

y =1(,Lt+k2 +k12)+m1(a1—az)-l(al—a2)+e

y =1(,u+k2 + k12)+(m1 -1)(a1 —a2)+e

whereby the covariate values are now -1,0 and 1



Computational Alternatives

covariates
y=1lu+Ma+e 0,1,2and 2,1,0
y=1(,u+k2) +m1(a1—a2) +e (0,1,2
y=1(,u+k2+k12)+(m1-1)(a1—a2)+e -1,0,1
y=1(u+k) +m,(a,-a,) +e 21,0
y=1(u+k +ky,)+(m,-1)(a,-a)+e 1,0,-1

All these models have different E[y]
All these models have identical predictions of random effects
Only the first model has the correct PEV for the random effect if e assumed diagonal



Consider the genetic part of var[y]

2 0
covariate genetic variance (ZGZ.'") M=[ m;, m, }={ 1 1 }
M 4 20 0 2

var[Ma]=MAM'=| 2 2 2 |o}
m, 02 4
m, -1
4 20
m, var[m,(a,-a,)|=20mm =| 2 1 0 |20}
000
m, -1 1 0 -1
var[(m, —1)(¢, —a,)|=20. (m, - 1)(m,-1)'=| 0 0 0 |20,
10 1
00 0
var[m,(a,-a,)|=20imm =| 0 1 2 |20}
02 4
1 0 -l
var[ (m, ~1)(a, a,)]= 202 (m, ~1)(m, - 1) =| 0 0 0 |20
10 1

These are typically singular, unless there are more loci than animals



Animal Model Counterpart

Any full rank inverse of the following
can be used in place of Ao’ in MME

to predict animal merit

Y MM, 0., =Y (m,m, +m,m, o
> mym, 20,

2. mymy, 20,

E(mu ~1)(m, —1)"20,,

Z(mzi —~1)(m,, —1)'20;,

Only the first can be used for PEV or r’



Summary of Model Alternatives

dominance
Model df 3
Genotypic yes
All alleles yes
Substitution yes

Animals n/a

d=0

2
no
yes

yes

dominance d=0 d=0

Not Relevant

Not
considered
in this R#D

course This model
follows




Correct handling of the model
y=1lu+Ma+e with M'1=21

Elyl=u, var[y]=MM'c’ +1I6. A, = C%z

y=1ly+m,a +m,a,+e but m,=21-m,
=1u+m,q, +(2 l-ml)a2 +e
=1lu+m,a -ma, + (12az2 + e)
=1,LL+m1(a1—a2)+e*

with var(e”) = var(12a, + €)= 411'0, + 0.

but cov[(a1 — az),e* '} =—21'vara, # 0 = no MME, GLS OK



Summary of Model Alternatives

dominance d=0 dominance d=0 d=0
Model df 3 2 Not Relevant
Genotypic yes no
Not
All alleles yes yes o T
Substitution yes yes in this R#D R=D
colloz Not MME (2)
Animals n/a n/a (1) (2)

Models (1) are equivalent
Models (2) are equivalent (if both use 1t allele, or 2" allele, or -1,0,1 etc)
Models (1) and (2) give the same BLUP solutions, but not PEV or r?



Equivalent “Animal” Model

* Any of these models with equivalent
computations for loci effects, can be
formulated to solve for animal effects rather
than locus effects

— Give identical estimates for every animal

— Will not all give the same PEV for animal (or locus)
effects

* This has implications in quantifying accuracy/reliability



Two practical problems in high-
density genomic prediction



The Genomic Selection Problem

e Estimating SNP effects using BLUP and predicting
the merit of new animals is straightforward
— Given the correct model equation

* That is, knowledge of informative/uninformative loci
* Given SNPs in perfect LD with QTL

— Given the second moments

* That is known variance of informative SNP loci (assuming
they really are random effects) and known residual variance

* Real life neither of these requisites are known



SNPs not in perfect LD with QTL

* Ability of the SNP to act as a surrogate (or
marker) for the QTL will erode as you use the
SNP to compute covariances between relatives
separated by a greater number of meioses

— Hope that genomic training will identify the SNPs
in highest LD with (and closest) to the QTL



Simplest genomic selection model

e Partition genetic variance “equally” among all loci

e MHG (sadly) referred to this method as BLUP

— Sometimes called GBLUP or RR-BLUP (for random
regression or ridge regression)



More complex model

e Partition variance unequally among every locus
(Bayes A)
— Practical impact of this will depend upon shrinkage
e Partition variance unequally among a subset of
the loci (Bayes B)

— But which subset?

— And how do you assume the size of the subset,
a parameter they referred to as i



The variance component problem

 We need to jointly estimate the residual and
genetic variances for perhaps tens of
thousands of loci, simultaneously considering
model selection criteria to discard models
with low levels of support
— 50k 1-locus additive models

— About 50k? 2-locus models and so on

— Little knowledge of how many loci might be
needed but it could be hundreds



Fitted Model

 We will use the model that fits a substitution
effect for each locus, recognizing that we
cannot use the equations for estimating
reliabilities
— Equations are too big anyway

— Bayesian posteriors can be used for reliability of
SNP effects






