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INTRODUCTION TO 
BAYESIAN COMPUTATION

• Markov chain Monte Carlo
• Introduction to BUGS
• Convergence diagnostics



Markov chain Monte Carlo
• “Decompose” joint posterior distribution into a 

sequence of conditional distributions – these are often 
much simpler (eg, simple univariate normals, etc)

• Simulate from each conditional distribution in turn. We 
use a simulation method that resembles a Markov chain 
(so that the new simulated value relies only on the 
previous value), giving a set of simulated values

θ (1), θ (2), …, θ (i) , ...
which converges to the required conditional, 
The resulting simulations will come from the required 
joint distribution

• We can use Markov chain theory to make statements 
about behaviour and convergence of the chain



MCMC Algorithms
• Gibbs sampling: sample from full conditionals

• Metropolis-Hastings: sample from an “easy” 
distribution and accept only some of the values

• Lots of variations: reversible jump, slice sampling, 
particle filters, perfect sampling, adaptive rejection 
sampling, etc

• Need to ensure conditions, eg detailed balance, 
reversibility 



Gibbs sampling
Joint posterior p(θ1 , θ2 ,..., θk | y )
1. Choose starting values θ1

(0), θ2
(0),…, θk

(0)

At ith iteration (i+1)

2. Sample θ1
(i+1) from p(θ1

(i) | θ2
(i), θ3

(i), … , θk
(i) ,y)

Sample θ2
(i+1) from p(θ2

(i) | θ1
(i+1), θ3

(i), … , θk
(i) ,y)

…
Sample θk

(i+1) from p(θk
(i) | θ1

(i+1), θ2
(i+1), … , θk-

1
(i+1) ,y)

3. Repeat step 2 many times



Estimation using MCMC 
Have simulations:

θ1
(0) θ2

(0) … θk
(0)

θ1
(1) θ2

(1) … θk
(1)

θ1
(2) θ2

(2) … θk
(2)

…

θ1
(l) θ2

(l) … θk
(l)

Easy to estimate expected values:

Easy to estimate quantiles (credible intervals)
Easy to estimate densities.
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Metropolis sampling
• Often we can’t simulate from conditional dist’n.
• Instead, simulate from “easy” (proposal) 

distribution and accept only some of the values.
– Conditional distribution p(θ |...)
– Proposal distribution q(θ )
– Suppose we have θ (i-1) and we want θ (i)

– Simulate possible θ (i) (θ* say) from q(θ ) centred on θ (i)

– Accept θ* with probability:
α = min { 1,   p(θ* |... ) / p(θ (i-1) |...) }

– If θ* is accepted, θ (i) = θ* ; otherwise θ (i) = θ (i-1)



Hastings sampler
• If the proposal q(θ) is not symmetric, the 

acceptance probability becomes:
– Accept θ* with probability:
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Graphical Representation
(conditional independence graphs)

• Concentrate on structural relationships
• Directed, undirected and chain graphs

– nodes represent random quantities
– links represent relationships
– missing links represent conditional independence

• Use graphs to:
– break complex models into simple components
– communicate essential structure
– provide basis for computation



Example: Binomial model
• Model

yi ~ Binomial (θi, ni)
θi ~ Beta (a,b)  

a b

θi

yi

ni



Explanation of Graph
3 types of node:

– Constants: double edged boxes
no parents

– Stochastic: circles
variables (data or parameters)
given a probability distribution
have solid arrows pointing to them

– Deterministic: circles
logical functions of other nodes
have dashed arrows pointing to them



Example: Logistic model
• Model: 

yi ~ Binomial (pi, ni)
logit(pi) = bi

bi ~ Normal (µ,τ)  , τ = 1/ σ 2

• Priors
µ ~ Normal (0, 1E-6 )
τ ~ Gamma (1E-3, 1E-3 )



DAG for logistic model

τ µ

yi

ni

pi

bi
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Example: More rats
• Explanation

30 rats, weighed weekly for 5 weeks.
Model as random effects linear growth curve.

Weights Yij of rat i on day xj
xj = 8 15 22 29 36

Rat 1 151 199 246 283 320
Rat 2 145 199 249 293 354
…
Rat 30 153 200 244 286 324



Model for Rats
• Model

yij ~ Normal (αi +βi (xj - x), τC )
• Priors

αi ~ Normal ( αC , rα ) 
βi ~ Normal ( βC , rβ )

αC ~ Normal ( 0 , 1E-4 )
βC ~ Normal ( 0 , 1E-4 )
τC ~ Gamma ( 1Ε−3, 1Ε−3 )
τα ~ Gamma ( 1Ε−3, 1Ε−3 )
τβ ~ Gamma ( 1Ε−3, 1Ε−3 )



DAG for rats Logistic model

Yij

xj-xµij

αi

F
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BUGS
Three current trends:
• Complex hierarchical (random-effects) models 

being analysed using S-plus, SAS etc
• Graphical models used in multivariate analysis
• Markov chain Monte Carlo (MCMC) methods

turning Bayesian into mainstream statistics

Brought together in BUGS:
Bayesian Inference Using Gibbs Sampling



The BUGS Program

• Language for specifying complex directed 
graphical models

• Constructs graph by identifying parents and 
children

• Simulates via Gibbs and Metropolis-Hastings 
algorithms

• Currently restricted to particular distributions
(discrete, conjugate, log-concave)



Example: probability of (death) 
after cardiac surgery?

• 12 hospitals
• Sample size (n) , deaths (y):

n 47 148 119 810 211 196
y 0 18 8 46 8 13

n 148 215 207 97 256 360
y 9 31 14 8 29 24



PGM for Hospitals

θi

xi

ni

i=1,...,k

α β

platestochastic

constant



BUGS code
model surgical;
const

N = 12 ; # number of hospitals
var

r[N], p[N], n[N], b[N], mu, tau, sigma, pop.mean;
data r, n in “surgical.dat”
inits in “surgical.in”
{

for (i in 1:N)  {
r[i] ~ dbin( p[i], n[i] );
logit(p[i]) <- b[i];
b[i] ~ dnorm( mu, tau);

}
# Priors:
mu ~ dnorm(0.0, 1.0E-6)
pop.mean <- exp(mu) / (1 + exp(mu)); # population mean
tau ~ dgamma (1.0E-3, 1.0E-3); # 1/sigma^2
sigma <- 1/sqrt(tau)
}



Related BUGS files

• “surgical.dat” (BUGS data file)
r n
0 47

…
24 360

• “surgical.init” (BUGS initial value file)
list ( tau=1, mu = 0)



Running BUGS: log file
Bugs> compile (“surgical.bug”)
Bugs> update(500)

500 updates took 00:00:04
Bugs> monitor (p)
Bugs> monitor (pop.mean)
Bugs> monitor (sigma)
Bugs> update (1000)

1000 updates took 00:00:08
Bugs> stats (p)

mean sd 2.5%  : 97.5% CI      median sample
[1] 5.17E-2 2.08E-2 1.50E-2 9.42E-2 5.01E-2 1000
…
[12]  6.81E-2 1.20E-2 4.62E-2 9.33E-2 6.72E-2 1000
Bugs> stats (pop.mean)

mean sd 2.5%  : 97.5% CI      median sample
7.30E-2 1.07E-2 5.17E-2 9.49E-2 7.29E-2 1000

Bugs> q( )





Example: BUGS code for rats
model rats;
const

N = 30 ; # number of rats
T = 5; # number of time points

var
tau.c, alpha0, alpha.c, beta.c, x[T], mu[N,T], Y[N,T], alpha[N], beta[N], tau.alpha, tau.beta, x.bar;

data Y in “rats_y.dat”, x in “rats_x.dat”;
inits in “rats.in”
{

for (i in 1:N)  {
for (j in 1:T) {

mu[i,j] <- alpha[i] + beta[i] * (x[j] - x.bar);
Y[i,j] ~ dnorm(mu[i,j], tau.c)

}
alpha[i] ~ dnorm(alpha.c, tau.alpha);
beta[i] ~ dnorm(beta.c, tau.beta);

}
alpha.c ~ dnorm(0, 1.0E-4);
beta.c ~ dnorm(0, 1.0E-4);
tau.c ~ dgamma(1.0E-3, 1.0E-3);
tau.alpha ~ dgamma(1.0E-3, 1.0E-3);
tau.beta ~ dgamma(1.0E-3, 1.0E-3);
sigma <- 1.0 / sqrt(tau.c);
x.bar <- mean( x[] );
alpha0 <- alpha.c - beta.c * x.bar;
}



beta[2]

iteration
295029002850

    6.0
    6.5
    7.0
    7.5
    8.0

beta[3]

iteration
295029002850

    5.5
    6.0
    6.5
    7.0
    7.5

beta[4]

iteration
295029002850

    4.5
    5.0
    5.5
    6.0
    6.5



beta[2] sample: 3000

    6.0     6.5    7.0    7.5    8.0

    0.0
    0.5
    1.0
    1.5

beta[3] sample: 3000

    5.5     6.0     6.5     7.0

    0.0
    0.5
    1.0
    1.5
    2.0



 node  mean  sd  MC error 2.5% median 97.5% start sample
beta[1] 6.063 0.2411 0.004325 5.595 6.065 6.521 1
 3000 
beta[2] 7.048 0.257 0.005173 6.563 7.049 7.548 1 3000 
beta[3] 6.48 0.2471 0.004511 5.994 6.48 6.968 1
 3000 
beta[4] 5.345 0.2576 0.005856 4.851 5.345 5.864 1
 3000 
beta[5] 6.565 0.2532 0.005627 6.058 6.569 7.053 1
 3000 
beta[6] 6.178 0.2384 0.003631 5.72 6.174 6.65 1
 3000 
beta[7] 5.972 0.2469 0.005217 5.484 5.971 6.46 1
 3000 
beta[8] 6.413 0.2452 0.004439 5.919 6.414 6.889 1
 3000 
beta[9] 7.055 0.2542 0.005396 6.564 7.051 7.553 1
 3000 
beta[10] 5.848 0.2464 0.004784 5.353 5.85 6.34 1
 3000 



Example: regression
Consider a set of 5 observed (x, Y) pairs (1, 1), (2, 3), (3, 3), (4, 3), (5, 5).   We shall fit a 
simple linear regression of Y on x, using the notation 
 
     Yi ~ Normal(µi, τ)             
      
     µi = α + β(xi - x.bar)          
      
where x.bar represents the mean of the x's.  Note that we parameterise the normal 
distribution in terms of its precision τ,  which is 1/variance.   

  model 
  { 
   for(i in 1:N){ 
    Y[i] ~ dnorm(mu[i], tau) 
    mu[i] <- alpha + beta * (x[i] - 
mean(x[])) 
   } 
   sigma <- 1/sqrt(tau) 
   alpha ~ dnorm(0, 1.0E-6) 
   beta ~ dnorm(0, 1.0E-6) 
   tau ~ dgamma(1.0E-3, 1.0E-3) 
  } 
 



What about convergence?
• Theoretical

• Diagnostics

supx∈C|Pn(x,C)-P∞(C)|≤Mρn
C

 ∫P(x,dy)V(y) ≤(1-β)V(x)+IC(x)



CODA
• Output processor for BUGS
• Menu-driven set of S-Plus functions for:
• Convergence diagnosis

- specific methods
- autocorrelations and cross-correlations

• Summary statistics
- empirical mean, sd, quantiles
- standard error of the mean

• Graphical
- sample trace for each variable
- kernel density
- plots of some convergence diagnostics



Convergence: Geweke (1992)
• Look at a single long run
• Test for equal mean for “early” part (1st 

quarter) and “late” part (second half) of the 
chain.

• Test statistic is Z~N(0,1) if the sample is all 
from the same distribution.

• Careful: this is only a test of “non-
convergence” and can be misleading.



Convergence: Gelman & Rubin (1992)
• Many long runs
• Widely different starting points
• Convergence assessed via an “analysis of 

variance” between and within the chains.
• Monitor convergence by R: a conservative estimate of 

how much extra information about the variable that we could 
expect to gain by running the chains indefinitely

R tends to 1 as n tends to infinity
R is subject to sampling variation so monitor 

R and is upper 97.5% confidence limit

• Works best when posterior is approx. normal 
(may need to transform some variables, eg probs, variances)



Convergence: Raftery & Lewis (1992)
• Look at a single long run
• Diagnostic estimates:

n0: length of burnin
N = no. additional iterations needed to estimate a 

posterior quantile adequately
• Chain must be run for at least Nmin iterations before 

computing diagnostic
• Can give radically different estimates depending on 

starting values and required accuracy of estimation
• Can under-estimate n0 for extreme quantiles
• Must re-diagnose convergence for each quantile.
• Based on 2-state Markov chain theory.



Convergence: Heidelberger & Welch (1983)
• Look at a single long run
• Hypothesis test based on Brownian bridge theory 

and spectral density estimation
• Iterative procedure:

- test H0: entire sample of values for a given variable 
form a stationary process

- if H0 rejected, discard first 10% and repeat test
- continue discarding until H0 accepted or 50% 

samples are discarded (need to run chain for longer)
• Also estimates numerical S.E. of mean and tests 

size of C.I.
• Test has very low power to detect lack of 

convergence for small sample size.



CODA Menus
• CODA Main Menu:

– Output Analysis - Diagnostics
– List/Change Defaults - Quit

• CODA Output Analysis Menu
– Plots - Statistics
– List/Change Defaults - Return to Main

• CODA Diagnostics Menu
– Geweke, Gelman and Rubin, Raftery and Lewis, 

Heidelberger and Welch, Autocorrelations, Cross-
Correlations

– List/Change Defaults - Return to Main



CODA Output: Surgical Eg

• Trace plot, Kernel density plot
• Summary statistics
• Quantiles for each variable
• Autocorrelations
• Cross-correlations



Geweke Z-score

Iterations used = 501:1500

Thinning interval = 1

Sample size per chain = 1000

Fraction in 1st window = 0.1

Fraction in 2nd window = 0.5

Var: mu p[1] p[2] sigma

Z: 0.372 1.650 -2.550 -1.150



Geweke z-plots
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Gelman and Rubin 50% and 
97.5% shrink factors

Variable Point est. 97.5% quantile

mu 1.0 1.01

p[1] 1.02 1.10

p[2] 1.00 1.00

sigma 1.02 1.10

Trace plots, shrink factor plots



BOA





A new diagnostic: phase 
randomisation

0.0

0.2

0.4

0.6

0.8

1.0
Proportion component 1

6000 6020 6040 6060 6080 6100

•Run a single chain
•Take Fourier transform
•Randomise phase
•Backtransform
(Phase scrambling,
Fourier bootstrap)
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Cumulant tells us about:
Linearity
Stationarity

of the original series 



Imagine

Imagine you're a Bayesian

It's easy if you try,

You just adopt a prior,

And the data updates $\pi$.

Statistics is so simple

With subjective probabilityyyyy -- ah-ah! ah ah...

Now imagine you're a frequentist,

Worrying about what might have been,

Spending your whole lifetime

Analyzing data you've never seen.

And if you want an interval,

You'll need a pivotal quantityyyyy -- ah-ah! ah ah...

You may say I sound like Nozer --

But I'm not the only one:

Every four years we all get together,

To talk, drink beer, and lie in the sun.
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