The University of Newcastle

Kerrie Mengersen

Introduction to Bayesian Modelling - 2

Armidale 2004

INTRODUCTION TO BAYESIAN COMPUTATION

- Markov chain Monte Carlo
- Introduction to BUGS
- Convergence diagnostics

Markov chain Monte Carlo

- "Decompose" joint posterior distribution into a sequence of conditional distributions these are often much simpler (eg, simple univariate normals, etc)
- Simulate from each conditional distribution in turn. We use a simulation method that resembles a Markov chain (so that the new simulated value relies only on the previous value), giving a set of simulated values $\theta^{(0)}, \theta^{(2)}, \dots, \theta^{(0)}, \dots$

which converges to the required conditional, The resulting simulations will come from the required joint distribution

• We can use Markov chain theory to make statements about behaviour and convergence of the chain

MCMC Algorithms

- **Gibbs sampling**: sample from full conditionals
- **Metropolis-Hastings**: sample from an "easy" distribution and accept only some of the values
- Lots of variations: reversible jump, slice sampling, particle filters, perfect sampling, adaptive rejection sampling, etc
- Need to ensure conditions, eg detailed balance, reversibility

Gibbs sampling

- **Joint posterior p**($\theta_1, \theta_2, ..., \theta_k | y$)
- 1. Choose starting values $\theta_1^{(0)}$, $\theta_2^{(0)}$, ..., $\theta_k^{(0)}$

At *i*th iteration (*i*+1)

. . .

2. Sample $\theta_1^{(i+1)}$ from $p(\theta_1^{(i)} \mid \theta_2^{(i)}, \theta_3^{(i)}, \dots, \theta_k^{(i)}, y)$ Sample $\theta_2^{(i+1)}$ from $p(\theta_2^{(i)} \mid \theta_1^{(i+1)}, \theta_3^{(i)}, \dots, \theta_k^{(i)}, y)$

Sample $\theta_k^{(i+1)}$ from $p(\theta_k^{(i)} \mid \theta_1^{(i+1)}, \theta_2^{(i+1)}, \dots, \theta_{k-1}^{(i+1)}, y)$

3. Repeat step 2 many times

Estimation using MCMC

Have simulations:

Easy to estimate expected values:

$$E_{\underline{\theta}|Y}\left(\frac{\theta_{1}}{\theta_{2}}\right) \approx \frac{1}{n} \sum_{i=1}^{n} \left(\frac{\theta_{1}^{(i)}}{\theta_{2}^{(i)}}\right)$$

Easy to estimate quantiles (credible intervals) Easy to estimate densities.

Metropolis sampling

- Often we can't simulate from conditional dist'n.
- Instead, simulate from "easy" (proposal) distribution and accept only some of the values.
 - Conditional distribution $p(\theta|...)$
 - Proposal distribution $q(\theta)$
 - Suppose we have $\theta^{(i-1)}$ and we want $\theta^{(i)}$
 - Simulate possible $\theta^{(i)}$ (θ^* say) from $q(\theta)$ centred on $\theta^{(i)}$
 - Accept θ^* with probability:

 $\alpha = \min \left\{ 1, p(\theta^* \mid \dots) / p(\theta^{(i-1)} \mid \dots) \right\}$

- If θ^* is accepted, $\theta^{(i)} = \theta^*$; otherwise $\theta^{(i)} = \theta^{(i-1)}$

Hastings sampler

If the proposal q(θ) is not symmetric, the acceptance probability becomes:
 Accept θ* with probability:

$$\alpha = \min(1, \frac{q(\theta^{(i-1)})}{q(\theta^*)} \frac{p(\theta^* | \dots)}{p(\theta^{(i-1)} | \dots)}$$

Graphical Representation (conditional independence graphs)

- Concentrate on structural relationships
- Directed, undirected and chain graphs
 - nodes represent random quantities
 - links represent relationships
 - missing links represent conditional independence
- Use graphs to:
 - break complex models into simple components
 - communicate essential structure
 - provide basis for computation

Example: Binomial model

• Model

 $y_i \sim Binomial (\theta_i, n_i)$ $\theta_i \sim Beta (a,b)$

Explanation of Graph

3 types of node:

- Constants: double edged boxes no parents
- Stochastic: circles variables (data or parameters) given a probability distribution have solid arrows pointing to them
- Deterministic: circles
 logical functions of other nodes
 have dashed arrows pointing to them

Example: Logistic model

• Model:

 $y_i \sim Binomial (p_i, n_i)$ $logit(p_i) = b_i$ $b_i \sim Normal (\mu, \tau) , \tau = 1/\sigma^2$

Priors

μ~Normal (0, 1E-6) τ~Gamma (1E-3, 1E-3)

DAG for logistic model

Example: More rats

Explanation

30 rats, weighed weekly for 5 weeks.Model as random effects linear growth curve.

Weights Y _{ij} of rat <i>i</i> on day x _j							
	$x_i = $	<mark>′8</mark>	15	<mark>22</mark> ′	<mark>29</mark>	36	
Rat 1	2	151	199	246	283	320	
Rat 2		145	199	249	293	354	
•••							
Rat 3	0	153	200	244	286	324	

Model for Rats

• Model

$$y_{ij} \sim Normal (\alpha_i + \beta_i (x_j - x), \tau_c)$$

Priors

 $\alpha_{i} \sim Normal (\alpha_{C}, r_{\alpha})$ $\beta_{i} \sim Normal (\beta_{C}, r_{\beta})$

 $\alpha_{C} \sim Normal (0, 1E-4)$ $\beta_{C} \sim Normal (0, 1E-4)$ $\tau_{C} \sim Gamma (1E-3, 1E-3)$ $\tau_{\alpha} \sim Gamma (1E-3, 1E-3)$ $\tau_{\beta} \sim Gamma (1E-3, 1E-3)$

DAG for rats Logistic model

BUGS

Three current trends:

- Complex hierarchical (random-effects) models being analysed using S-plus, SAS etc
- Graphical models used in multivariate analysis
- Markov chain Monte Carlo (MCMC) methods turning Bayesian into mainstream statistics

Brought together in BUGS: Bayesian Inference Using Gibbs Sampling

The BUGS Program

- Language for specifying complex directed graphical models
- Constructs graph by identifying parents and children
- Simulates via Gibbs and Metropolis-Hastings algorithms
- Currently restricted to particular distributions (discrete, conjugate, log-concave)

Example: probability of (death) after cardiac surgery?

- 12 hospitals
- Sample size (n), deaths (y):

n	47	148	119	810	211	196
y	0	18	8	46	8	13
n	148	215	207	97	256	360
V	9	31	14	8	29	24

PGM for Hospitals

BUGS code

model surgical;

const

```
N = 12; # number of hospitals
var
   r[N], p[N], n[N], b[N], mu, tau, sigma, pop.mean;
data r, n in "surgical.dat"
inits in "surgical.in"
   for (i in 1:N) {
   r[i] ~ dbin( p[i], n[i] );
   logit(p[i]) \leq b[i];
   b[i] \sim dnorm(mu, tau);
# Priors:
mu ~ dnorm(0.0, 1.0E-6)
pop.mean \leq \exp(mu) / (1 + \exp(mu)); # population mean
tau ~ dgamma (1.0E-3, 1.0E-3); # 1/sigma^2
sigma <- 1/sqrt(tau)</pre>
```

Related BUGS files

• "surgical.dat"

(BUGS data file) ^r n 0 47 ... 24 360

• "surgical.init"

(BUGS initial value file)

list (tau=1, mu = 0)

Running BUGS: log file

Bugs> compile ("surgical.bug") Bugs> update(500) 500 updates took 00:00:04 Bugs> monitor (p) Bugs> monitor (pop.mean) Bugs> monitor (sigma) Bugs> update (1000) 1000 updates took 00:00:08							
Bugs> stats (p)							
mean	sd	2.5% : 97.5% CI	median	sample			
[1] 5.17E-2	2.08E-2	1.50E-2 9.42E-2	5.01E-2	1000			
[12] 6.81E-2	1.20E-2	4.62E-2 9.33E-2	6.72E-2	1000			
Bugs> stats (pop.mean)							
mean	sd	2.5% : 97.5% CI	median	sample			
7.30E-2	1.07E-2	5.17E-2 9.49E-2	7.29E-2	1000			
Bugs> q()							

Example: BUGS code for rats

model rats;

const

N = 30; # number of rats

T = 5; # number of time points

var

```
tau.c, alpha0, alpha.c, beta.c, x[T], mu[N,T], Y[N,T], alpha[N], beta[N], tau.alpha, tau.beta, x.bar; data Y in "rats_y.dat", x in "rats_x.dat"; inits in "rats.in"
```

```
{
    for (i in 1:N) \{
            for (j \text{ in } 1:T) {
                        mu[i,j] \leq alpha[i] + beta[i] * (x[j] - x.bar);
                        Y[i,j] \sim dnorm(mu[i,j], tau.c)
            alpha[i] ~ dnorm(alpha.c, tau.alpha);
            beta[i] ~ dnorm(beta.c, tau.beta);
alpha.c \sim dnorm(0, 1.0E-4);
beta.c \sim dnorm(0, 1.0E-4);
tau.c ~ dgamma(1.0E-3, 1.0E-3);
tau.alpha ~ dgamma(1.0E-3, 1.0E-3);
tau.beta ~ dgamma(1.0E-3, 1.0E-3);
sigma \leq 1.0 / sqrt(tau.c);
x.bar <- mean( x[] );
alpha0 <- alpha.c - beta.c * x.bar;
```


node mean	sd	MC error	2.5%	media	n	97.5%	start	sample
beta[1]	6.063	0.2411	0.0043	25	5.595	6.065	6.521	1
3000								
		0.257 0.005						
beta[3] 3000	6.48	0.2471	0.0045	11	5.994	6.48	6.968	1
beta[4] 3000	5.345	0.2576	0.0058	56	4.851	5.345	5.864	1
beta[5] 3000	6.565	0.2532	0.0056	27	6.058	6.569	7.053	1
beta[6] 3000	6.178	0.2384	0.0036	31	5.72	6.174	6.65	1
beta[7] 3000	5.972	0.2469	0.0052	17	5.484	5.971	6.46	1
beta[8] 3000	6.413	0.2452	0.0044	39	5.919	6.414	6.889	1
beta[9] 3000	7.055	0.2542	0.0053	96	6.564	7.051	7.553	1
beta[10] 3000	5.848	0.2464	0.0047	84	5.353	5.85	6.34	1

Example: regression

Consider a set of 5 observed (*x*, *Y*) pairs (1, 1), (2, 3), (3, 3), (4, 3), (5, 5). We shall fit a simple linear regression of *Y* on *x*, using the notation

 $Y_i \sim Normal(\mu_i, \tau)$

 $\mu_{j} = \alpha + \beta(x_{j} - x.bar)$

where *x*.bar represents the mean of the *x*'s. Note that we parameterise the normal distribution in terms of its precision τ , which is 1/variance.

```
model
{
    for(i in 1:N){
            Y[i] ~ dnorm(mu[i], tau)
            mu[i] <- alpha + beta * (x[i] -
            mean(x[]))
            }
            sigma <- 1/sqrt(tau)
            alpha ~ dnorm(0, 1.0E-6)
            beta ~ dnorm(0, 1.0E-6)
            tau ~ dgamma(1.0E-3, 1.0E-3)
}</pre>
```

What about convergence?

• Theoretical

$$\sup_{x \in C} |P^{n}(x,C) - P^{\infty}(C)| \le M\rho^{n}_{C}$$
$$\int P(x,dy)V(y) \le (1-\beta)V(x) + I_{C}(x)$$

• Diagnostics

CODA

- Output processor for BUGS
- Menu-driven set of S-Plus functions for:
- Convergence diagnosis
 - specific methods
 - autocorrelations and cross-correlations
- Summary statistics
 - empirical mean, sd, quantiles
 - standard error of the mean
- Graphical
 - sample trace for each variable
 - kernel density
 - plots of some convergence diagnostics

Convergence: Geweke (1992)

- Look at a single long run
- Test for equal mean for "early" part (1st quarter) and "late" part (second half) of the chain.
- Test statistic is Z~N(0,1) if the sample is all from the same distribution.
- Careful: this is only a test of "nonconvergence" and can be misleading.

Convergence: Gelman & Rubin (1992)

- Many long runs
- Widely different starting points
- Convergence assessed via an "analysis of variance" between and within the chains.
- Monitor convergence by R: a conservative estimate of how much extra information about the variable that we could expect to gain by running the chains indefinitely R tends to 1 as n tends to infinity R is subject to sampling variation so monitor R and is upper 97.5% confidence limit
- Works best when posterior is approx. normal (may need to transform some variables, eg probs, variances)

Convergence: Raftery & Lewis (1992)

- Look at a single long run
- Diagnostic estimates: n0: length of burnin N = no. additional iterations needed to estimate a posterior quantile adequately
- Chain must be run for at least Nmin iterations before computing diagnostic
- Can give radically different estimates depending on starting values and required accuracy of estimation
- Can *under-estimate* n0 for extreme quantiles
- Must re-diagnose convergence for each quantile.
- Based on 2-state Markov chain theory.

Convergence: Heidelberger & Welch (1983)

- Look at a single long run
- Hypothesis test based on Brownian bridge theory and spectral density estimation
- Iterative procedure:
 - test H0: entire sample of values for a given variable form a stationary process
 - if H0 rejected, discard first 10% and repeat test
 - continue discarding until H0 accepted or 50% samples are discarded (need to run chain for longer)
- Also estimates numerical S.E. of mean and tests size of C.I.
- Test has *very low power* to detect lack of convergence for small sample size.

CODA Menus

- CODA Main Menu:
 - Output Analysis
 Diagnostics
 - List/Change Defaults Quit
- CODA Output Analysis Menu
 - Plots Statistics
 - List/Change Defaults Return to Main
- CODA Diagnostics Menu
 - Geweke, Gelman and Rubin, Raftery and Lewis, Heidelberger and Welch, Autocorrelations, Cross-Correlations
 - List/Change Defaults

- Return to Main

CODA Output: Surgical Eg

- Trace plot, Kernel density plot
- Summary statistics
- Quantiles for each variable
- Autocorrelations
- Cross-correlations

Geweke Z-score

Iterations used = 501:1500Thinning interval = 1 Sample size per chain = 1000Fraction in 1st window = 0.1Fraction in 2nd window = 0.5Var: mu p[1] p[2] sigma Z: 0.372 1.650 -2.550 -1.150

Geweke z-plots

Gelman and Rubin 50% and 97.5% shrink factors Variable Point est. 97.5% quantile 1.0 1.01 mu p[1] 1.02 1.10 p[2] 1.00 1.00 1.02 1.10 sigma

Trace plots, shrink factor plots

	S-PLUS - [Commands]	- 🗆 ×
A MARKET AND A MARKET	Eile Edit View Insert Data Statistics Graph Options Window Help	- 8 ×
My Network Computer Neighbor		- 14
Computer Neighbor		
RGui - [R Console]	> boa.menu()	
Eile Edit Misc Windows Help		-
	Bayesian Output Analysis Program (BOA)	-
🛸 🖆 🖬 🖻 🚭 👄	Version 0.4.2 for Windows S-PLUS	
125 (1-136	Copywrite (c) 1999 Brian J. Smith <brian-j-smith@uiowa.edu></brian-j-smith@uiowa.edu>	
Selection: 1	This program is free software; you can redistribute it and/or	
DTI D WOMIT	modify it under the terms of the GNU General Public License	
FILE MENU	as published by the Free Software Foundation; either version 2	
1: Import Data >>	of the License or any later version.	
2:Load Session		
3:Save Session	This program is distributed in the hope that it will be useful,	
4:Return to Main Menu	but WITHOUT ANY WARRANTY; without even the implied warranty of	
5:Exit BOA	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the	
Selection: 1	GNU General Public License for more details.	
IMPORT DATA MENU	For a copy of the GNU General Public License write to the Free	
	Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,	
1:BUGS Output File	MA 02111-1307, USA, or visit their web site at	
2:Flat ASCII File	http://www.gnu.org/copyleft/gpl.html	
3:Data Matrix Object		
4:View Format Specifications	NOTE: if the menu unexpectedly terminates, type "boa.menu(recover = TRUE)" to r	esta
5:Back	rt and recover your work	
6:Return to Main Menu		
Selection: 4	BOA MAIN MENU	
BUGS	1: File >>	
- Bayesian inference Using Gibbs Sampling output f	2: Data >> 3: Analysis >>	
	4: Plot >>	
ASCII	5: Options >>	
- ASCII file designated with a .txt extension	6: Window >>	
 monitored parameters are stored in space, comma, iteration numbers may be given in a column label 		-
- iteration numbers may be given in a column label		- Č
Matrix Object		
- S or R numeric matrix whose columns contain the m	Ready	10
- iteration numbers and parameter names must be con		*
Breast (ENTER) to continue		Q
Press <enter> to continue</enter>		ecycle
R 0.64.1 - A Language and Environment		Bin

A new diagnostic: phase randomisation

Modality and scale of 3rd Cumulant tells us about:

- Linearity
- Stationarity

of the original series

- •Run a single chain
- Take Fourier transform
- Randomise phase
- •Backtransform (*Phase scrambling, Fourier bootstrap*)

Imagine you're a Bayesian It's easy if you try, You just adopt a prior, And the data updates \$\pi\$. Statistics is so simple With subjective probabilityyyyy -- ah-ah! ah ah...

Now imagine you're a frequentist, Worrying about what might have been, Spending your whole lifetime Analyzing data you've never seen. And if you want an interval, You'll need a pivotal quantityyyyy -- ah-ah! ah ah...

You may say I sound like Nozer --But I'm not the only one: Every four years we all get together, To talk, drink beer, and lie in the sun.