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Plan: Day 1

1. Review of Bayesian modelling, MCMC 
and mixtures

2. Bayesian QTL mapping: overview

3. Workshop: estimating mixtures

4. Bayesian QTL mapping: examples



Plan: Day 2

1. Bayesian QTL mapping: examples

2. Literature review

3. Workshop: Up close to the literature

4. Software for Bayesian QTL analysis 



General Bayesian approach

Data y Info. about parameters θ
likelihood L(y|θ) prior p(θ)

eg, y ~ N(µ,σ) µ~N(a,b) or µ~U(a,b), 
σ−2~Ga(c,d)

or y ~ Bin(n,p) p ~ Beta(0,1)



General Bayesian approach
Data y Info. about parameters θ

likelihood L(y|θ) prior p(θ)
eg, y ~ N(µ,σ) eg, µ~N(a,b) or µ~U(a,b), 
or y ~ Bin(n,p) σ−2~Ga(c,d)

Posterior dist’n of θ ∝ likelihood * prior
p(θ|y) ∝ L(y|θ) p(θ)

Joint posterior: p(µ, σ,...|y) ∝ L(y| µ, σ) p(µ) p(σ)...



Bayesian Computation
• We want to estimate the expected value of 

some function of our parameters θ
(eg means of µ, σ)

• When the modelling becomes more complex 
or the distributions are not ‘easy’ or we want 
more complicated expectations we can use 
simulation: simulate each parameter given
the other parameters and the data

MCMC
Markov chain Monte Carlo



MCMC Algorithms

•Need to ensure conditions, eg detailed balance, reversibility 



BUGS
Three current trends:
• Complex hierarchical (random-effects) models 

being analysed using S-plus, SAS etc
• Graphical models used in multivariate analysis
• Markov chain Monte Carlo (MCMC) methods

turning Bayesian into mainstream statistics

Brought together in BUGS:
Bayesian Inference Using Gibbs Sampling



CODA
• Output processor for BUGS
• Menu-driven set of S-Plus functions for:
• Convergence diagnosis

- specific methods
- autocorrelations and cross-correlations

• Summary statistics
- empirical mean, sd, quantiles
- standard error of the mean

• Graphical
- sample trace for each variable
- kernel density
- plots of some convergence diagnostics



Bayesian Mixed Models
y = Xβ + Zu + e

β is a fixed vector 
u~N(0,G), e~N(0,R) are uncorrelated random 
vectors
X, Z are incidence matrices
G, R are variance-covariance matrices, which are 
functions of (known) dispersion parameters.
The vector of random effects u can include herd 
effects, breeding values, permanent environmental 
deviations common to all records of the same (or 
of a set) of animals etc.

Source: D. Gianola, Inferences about Breeding Values. In Balding
et al (eds) Handbook of Statistical Genetics, 2001.



Joint density

p(u,y|β,G,R)  ∝ p(y|u,β,R) p(u|G)

 ∝ exp{-½[(y-Xβ-Zu)´R-1(y-Xβ-Zu)+u´G-1u]}

Clear link between mixed models and 
hierarchical Bayesian models!
Connections between BLUP and Bayes.



Bayesian view of BLUP

• Assume G and R are known.
• Uniform prior for β over p-dimensional 

space (p is the order of β)

→ Joint posterior is Gaussian, so marginals
and conditional distributions are Gaussian.

→ Any linear combination of β and u also 
have a Gaussian posterior distribution.



Example
• Suppose we want to infer a vector of merits 

or ‘aggregate genetic values h=Mu, of a set 
of candidates.
M is a constant matrix reflecting the relative 
economic importance of traits
u is a vector of multitrait genetic values.

• Posterior distribution of h is Gaussian, with 
mean vector h=Mu and covariance 
MCuM´, where Cu is a submatrix of u.



Example

• Infer nonlinear merit, eg
h=m´u + u´Qu

m and Q known.
• Now the posterior distribution of h does not 

have a closed form, but we can estimate it 
via MCMC.

(Dan’s course: Animal Breeding Summer School)



Estimating Mixtures
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Bayesian mixture representation

yy ~ ~ ΣΣjj=1:k=1:k ppjj N( N( µµjj , , ττjj ))

pp ~ ~ DirichletDirichlet
µµ ~ Normal~ Normal
τ τ ~ Gamma~ Gamma

Introduce Introduce z for (unobserved) component groupz for (unobserved) component group
1. Given z, estimate p, 1. Given z, estimate p, µ, τµ, τ
2. Given p, 2. Given p, µ, τ,µ, τ, estimate zestimate z



Normal mixture example
p unknown



Gibbs for Normal mixture



BUGS code
model

{
for( i in 1 : N ) {

y[i] ~ dnorm(mu[i], tau[T[i]])
mu[i] <- lambda[T[i]]
T[i] ~ dcat(P[])

}
P[1:3] ~ ddirch(alpha[])
lambda[3] ~ dnorm(0.0, 1.0E-6)I(lambda[2], )
lambda[2] ~ dnorm(0.0, 1.0E-6)I(lambda[1], )
lambda[1] ~ dnorm(0.0, 1.0E-6)
tau[3] ~ dgamma(0.001, 0.001)  sigma[3] <- 1 / sqrt(tau[3])
tau[2] ~ dgamma(0.001, 0.001) sigma[2] <- 1 / sqrt(tau[2])
tau[1] ~ dgamma(0.001, 0.001) sigma[1] <- 1 / sqrt(tau[1])

}



BUGS Results

A 1000 update burn in followed by a further 20000 updates using 3 chains 
gave the parameter estimates

Param Mean SD Actual
λ1 0.18 0.053 0.18
λ2 0.57 0.068 0.55
λ3 0.25 0.042 0.27
µ1 34.8 1.333 35.6
µ2 45.9 0.699 45.8
µ3 63.3 2.263 61.7
σ1 4.03 0.683 4.59
σ2 5.32 0.535 5.93
σ3 11.34 1.106 11.89



Trace Plots for some parameters

0.0

0.2

0.4

0.6

0.8

1.0
Proportion component 1

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0
Proportion component 2

0.0

0.2

0.4

0.6

0.8

1.0
Proportion component 3

Iteration number

E
st

im
at

e



How many components?

Separate model estimation: Bayes factors, Separate model estimation: Bayes factors, 
posterior odds, BIC, DIC, …posterior odds, BIC, DIC, …

Simultaneous model estimation: Carlin Simultaneous model estimation: Carlin 
and and ChibChib,, reversible jump MCMC, birthreversible jump MCMC, birth--
andand--deathdeath

“Distance” measures, loss functions, etc“Distance” measures, loss functions, etc



Marginal likelihood

• Marginal likelihood p(y|Mk) is probability of data 
given model Mk, averaged over the priors assigned 
to the parameters in that model.
p(y|Mk) = ∫ P(y|Mk,θk)p(θk|Mk)dθk,  k=1, 2, …, K

• Bayes formula: p(θ|y) = p(y|θ)p(θ)/p(y)
ie log[p(y)] = log[p(y|θ)]+log[p(θ)]-log[p(θ|y)]

Marginal likelihood conditional likelihood penalty favours parsimony



Bayes factors
• Consider models M1, …, MK

(not necessarily nested)
• The Bayes factor for model 2 compared to 

model 1 is the ratio of marginal likelihoods
B21 = p(y|M2) / P(y|M1)

• 2log(B21) gives same scale as usual deviance 
and LR statistics.



Guidelines for Bayes Factors
(arbitrary!)

B21 2log(B21) Interpretation
<1 Negative Supports M1

1 to 3 0 to 2 Weak support for M2

3-20 2-6 Supports M2

20-150 6-10 Strong evidence for M2

>150 >10 Very strong support
for M2



Posterior odds
• Posterior probability of a model:

P(Mk|y) =  P(Mk) P(y|Mk) / P(y)
• Posterior odds of model 1 compared 

to model 2:

ie, the ratio of the prior probabilities for each model, 
multiplied by the Bayes factor.

(BF is only defined when the marginal density of y
under each model is proper.)
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Posterior odds
• Posterior probability of a model:

P(Mk|y) =  P(Mk) P(y|Mk) / P(y)
• Posterior odds of model 1 compared 

to model 2:

• To estimate θ, we can ‘model-average’:
E(θ|y) = Σ wk µk

Var(θ|y) = Σk [ var(θk|y,Mk) + µk
2] – {E(θ|y)}2
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µk = E(θk|y,Mk) (posterior mean for θ under model k)
wk = Pr(y|Mk)/ ΣkPr(y|Mk)  (weight for model k)



Example
Human chromosomes: males XY, females XX
Haemophilia exhibits X-chromosome-linked recessive 

inheritance, so a male who inherits the gene on the X 
chromosome is affected but a female who carries the 
gene on only one  of the two X chromosomes is 
unaffected. The disease is usually fatal for women who 
inherit two such genes, and this is very rare, since the 
frequency of occurrence of the gene is low in human 
populations.

Source: Gelman et al (1995) Bayesian Data Analysis



Example: the prior distribution
A woman has an affected brother, which implies that her 

mother must be a carrier of the haemophilia gene with 
one ‘good’ and one ‘bad’ haemophilia gene. 

Her father is not affected.
Thus the woman has a 50-50 chance of having the gene.
Unknown quantity of interest: whether the woman is a 

carrier of the gene (θ=1) or not (θ=0).
Based on the information provided so far, the prior 

distribution for the unknown θ is
Pr(θ=1) = Pr(θ=1) = 1/2



Example: model and likelihood
We need some data: the woman has two sons, neither 

of whom is affected.
Let yi=1 or 0 denote affected/unaffected son.
The outcomes of the two sons are exchangeable and, 

conditional on the unknown θ, are independent: we 
assume the sons are not identical twins.

→likelihood function 
Pr(y1=0, y2=0|θ=1) = (0.5)(0.5) = 0.25

Pr(y1=0, y2=0|θ=0) = (1)(1) = 1
(OK, there is a nonzero probability due to mutation but 

we will ignore this)



Example: posterior distribution
Pr(θ=1|y)  = p(y|θ=1)p(θ=1) / p(y)

p(y) = p(y|θ=1)p(θ=1) + p(y|θ=0)p(θ=0)
= Σ p(y|θ)p(θ)

So:
Pr(θ=1|y) = (0.25)(0.5) / {(0.25)(0.5)+(1.0)(0.5)}

= 0.125 / 0.625 = 0.20
In terms of odds:
Prior odds of woman being a carrier is 0.5/0.5=1.
Likelihood ratio based on information about unaffected sons is 

0.25/1 = 0.25
So posterior odds are 0.25 × 1 = 0.25.
Converting back to a probability: 0.25/(1+0.25) = 0.2



Example: Bayes factor
• Models: M1: woman is affected (θ=1)

M2: woman is unaffected (θ=0)
• Prior odds: P(M2)/p(M1) = 1
• Bayes factor of the data that the woman has two 

unaffected sons is
p(y|M2) /p(y|M1) = 1.0 / 0.25

• Posterior odds are
p(M2|y) /p(M1|y) = 4

• Clear accumulation of evidence supporting M2.
• Note: BF make sense in this example because each of the 

discrete alternatives makes sense and the marginal distributions
of the data under each model, p(y|Mi) are proper.



Bayesian Information Criterion 
(BIC)

• Approximate the Bayes factor by a Laplace
approximation to exploit standard output 
from GLIM, SAS etc

• Assume the prior p(θ|M) is MVN(θ*,I) (I=expected 
information matrix for a single observation, so the 
prior is equivalent to a single extra observation). 
Then if p is the dimension of the model and with n 
observations (or an appropriate definition of n):

BIC = log P(y|θ*,M) – p/2log n



Bayesian Information Criterion 
as described by Ball (2002?)



Discussion of BIC
• BIC penalises models which improve fit at the 

expense of more parameters (encourages 
parsimony). 

• Problem is that the true dimensionality (number of 
parameters p) of the model is not known, and also 
that the number of parameters may increase with 
sample size n.

• Can approximate using the effective number of 
parameters (Speigelhalter et al, 1999).

• Alternatives are DIC (deviance information 
criterion), conditional posterior predictive 
probabilities, etc.



Carlin and Chib (1995)
Problem:

– several models M1,…, Mk with dimensions d1,..,dk

– Prior probability p(j) that model j is the true one
– We want best model index M and posterior densities 

of θ1,…,θk

Solution:
At each iteration, estimate superparameter θ.S={θ1,.., 
θk} and ‘best model’ index M=j



Carlin and Chib (1995)

Joint density: P(y,θ.S,j) = p(y|θ.S,j)p(θ,S|j)P(j)
- P(j) is prior probability that model j is the true one. 

Typically we might take P(1)=P(2)=…=P(K)=1
- Given non-overlapping parameters, 

P(y|θ.S,j)=p(y|θj,j),
and if the parameters of different models are 
conditionally independent given one of them is 
selected, then P(θ.S|j)=Πi=1,..,KP(θi|j), so 
P(θ.S|j)=Πp(θi|j) (pseudo-prior). (Usually, take 
common pseudo-priors for all models or use pilot 
runs to provide parameters.)



Example
• Onion bulb growth data (Gelfand et al, 1992): choose 

between a Gompertz and logistic growth model for the 
onion bulb evolution through time. 

• Carry out separate pilot runs with a nonlinear regression to 
estimate Gompertz growth curve parameters θG and 
another to estimate logistic parameters θL with estimated 
precisions TG, TL.

• Use an informative prior based on these estimates as the 
pseudo-prior and a (considerably) less prior centred on 
these estimates as the true prior. Thus the true prior for the 
Gompertz (when the Gompertz model is selected) might be 
θ~N(θG,C/TG), C=1000 (say), and the pseudo prior for the 
Gompertz parameters when the logistic model is selected is 
θ~N(θG,1/TG).

• With equal prior model odds, the BF is 0.957/0.043=22.2, 
in favour of the logistic model.

Congdon, pp.482-4)



RJMCMC
• RJMCMC (Green 1995): called reversible jump because 

it is based on a reversibility constraint on the dimension-
changing moves that bridge the different spaces.

• The only real difficulty compared with previous 
algorithms is to construct moves between the dimensions.

• Reversibility can be processed at a local level: since the 
model indicator µ is an integer-valued random variable, 
we can impose reversibility for each pair (k1,k2) of the 
model space.

• Core idea: supplement each of the spaces 1 and 2 with 
adequate artifical spaces in order to create a bijection
(“bridge”) Tk1→k2 between them.



Example: Mixture of normals
Start with jth component in a model with k components
Split a component, to give a model with k+1 components

C.P. Robert



Example (cont)



Example: Change-point analysis



Example: Change-point analysis

• Observations (y1, y2, …, yn) at time periods 
t=1,..,n.
We want a ‘step function’ to represent the 
intensity of the cyclone.
The step function will comprise a set of step 
heights h and step positions s.

• Likelihood: Poisson process p(y|t).
• Prior for step function: x(t) = flat?
• Prior for the number of steps k: Poisson(λ)



MCMC algorithm
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