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Uimari and Hoeschele
• Bayesian method for mapping linked QTL using multiple 

linked genetic markers.
• Uses MCMC.
• Parameters included allele frequencies and substitution 

effects for two biallelic QTL, map positions of the QTL and 
markers, allele frequencies of the markers, and polygenic 
and residual variances.

• Missing data were polygenic effects and multi-locus 
marker-QTL genotypes.

• Three different MCMC schemes for testing presence of a 
single or two linked QTL on the chromosome. All methods 
performed well.

Adapted from summaries produced by Emily Anderson (UNcle)



George, Mengersen, Davis

• Direct mapping of a QTL, with full use of 
information from multiple linked gene markers.

• Estimation of QTL genotype probabilities for sires 
and offspring; allele frequencies for the QTL; the 
position and additive and dominance effects of the 
QTL. 

• The ability of the technique used in the paper to 
estimate the parameters accurately is examined for 
a variety of scenarios.



Bink and Arendonk
• Augmentation of marker genotypes for ungenotyped 

individuals, implemented in a Bayesian approach via MCMC.
• Marker data on relatives and phenotypes are combined to 

compute conditional posterior probabilities for marker 
genotypes of ungenotyped individuals to detect segregating 
QTL.

• Allelic effects at the QTL assumed normal, with covariance 
matrix based on known QTL position and IBD probabilities 
derived from flanking markers.

• Tested on complex granddaughter design: significant increase 
in power when ungenotyped dams were included in the 
analysis.



Yi and Xu
• Focus on complex binary traits, aiming to demonstrate that 

Bayesian methods are helpful in the mapping of QTLs for 
complex binary traits. 

• Linear model: 
• Initial modeling of a complex binary trait using the typical 

threshold model. 
• Use Bayesian methods to find the liability (hypothesized variable 

which underlies the phenotype), and a threshold. 
• Posterior samples of the unknowns produced using RJMCMC. 
• Estimate joint posterior distribution of number of QTLs, the

localization, and the effect of the identified QTLs.
βcovariates, X known incidence matrix, 
Z indicators for 4 possible ordered genotypes; Zijk=1 if kth genotype is observed
H matrix of linear contrasts converting 3 genetic effects into genotypic values

of 4 genotypes



MCMC algorithm



Comments
• Need to be careful in the interpretation of categorical data 

with a threshold model since the liability is a hypothesised
variable.

• Caution about choice of proposal distribution for the QTL 
effect: it strongly affects mixing when a new QTL has been 
added to the model.

• Issue of determining effective sampling sizes in MCMC and 
assessment of convergence: difficult to ascertain serial 
correlation due to changing dimension of each cycle.

• In general, the single-site updating (updating the genoytpe
individual by individual and locus by locus) does not always 
lead to an irreducible sample, due to the strong dependency 
of adjacent loci.

• Epistatic effects not included, but conceptually easy to do so.



Yi and Xu
• Mixed model analysis for mapping of QTLs for a hybrid 

population derived from two or more distinct outbred 
populations being crossed. 

• The mean allelic value of each of the source populations is 
treated as the fixed effect and the allelic deviations from 
the mean are treated as the random effects in the mixed 
model approach. 

• Allows partition of the total genetic variance into between-
population variance and within-population variance.

• Bayesian techniques are used in statistical inference of the 
QTL parameters via Markov chain Monte Carlo.



Yi, Xu and Allison
• Use Bayesian model and variable selection to 

develop strategies for identifying multiple QTL 
with complex epistatic patterns in experimental 
designs with two segregating genotypes.

• RJMCMC to determine number of QTL and to 
select main and epistatic effects.

• Method can map a large number of QTL with any 
combination of main and epistatic effects.

• Sensitivity of posterior inference to prior 
specifications of the number and genetic effects of 
QTL is investigated



Yi, George and Allison
• Stochastic search variable selection methodology for 

identifying QTL for complex traits in experimental 
designs.

• Embed multiple regression in a hierarchical normal 
mixture model, where latent indicators for all markers are 
used to identify the multiple markers. The markers with 
significant effects can be identified as those with higher 
posterior probability included in the model.

• Simple Gibbs sampler employed.
• Results show that the method works well under typical 

situations of most QTL studies in terms of number of 
markers and marker density.



Sen and Churchill
• General framework for statistically analysing quantitative 

trait data in inbred line crosses. 
• By conditioning on the unknown QTL genotypes, the 

framework is based on splitting the analysis apart into two 
sections 
– the relationship between the QTL and the phenotype
– the location of the QTL in the genome. 

• A basic Monte Carlo algorithm is presented to apply the 
Bayesian analysis used. 

• To obtain information in the phenotype data, weights are 
given to genotypes simulated in the Monte Carlo 
algorithm.



• Factorise the joint distribution:

the quantitative trait measurements
the genetic model parameters 

the marker data
the QTL locations

the QTL genotypes

• Posterior distribution of the QTL genotypes is obtained: 
after integrating out the genetic parameters and QTL 
locations, express it as the product of two terms: 
• Compatibility between a phenotype and the QTL genotypes p(y|g)
• Compatibility between the QTL genotypes and the known marker 

data p(g|m). 

Solve independently, 
given

So: sample from p(g|m), weight by p(y|g)



Ball
• An approximate method for QTL mapping analysis. 
• The methods basis is model selection from multiple regression 

models with trait values regressed on marker genotypes. 
• This uses a modified Bayesian information criterion to 

approximate the posterior probability of models using a range 
of subsets of markers as variables. The BIC-δ criterion is also 
modified to include prior information; missing values dealt 
with using multiple imputation. 

• Paper gives marginal probabilities for the different model sizes
• Marginal probability of a QTL being in a region is estimated 

by the probability that one or more markers in that region are 
selected: found using the BIC by summing the posterior 
probabilities for models containing one or more of the 
markers.



Sisson and Hurn
• Paper focuses on the locations of positions of the best candidate 

markers segregating for the trait, and introduces a loss function for 
estimating the number of QTLs and their locations.

• Think of the (countable) union of spaces corresponding to no QTL, 
one QTL etc. Let φ, φ* be two such spaces. The loss function 
L(φ,φ*) is the loss or error made when estimating φ using φ*.

• Bayes estimates by definition minimise the expected posterior loss. 
Difficult over varying dimensionality.

• Sisson and Hurn argue that commonly used loss functions are 
unsuitable for estimating QTL position because the loss function: 
(i) should hold QTL locations in greater importance than the order 
in which the points occur, and 
(ii) should be able to handle varying dimensionality.



• Adapt a loss function proposed by Celeux, Hurn and Robert 
(2000) for estimation of parameters of unlabelled mixture 
distributions.

• Begin by defining a large number of “control points” t1,..,tT, 
belonging to the same space as the components of the mixture. 
The loss function is then given as



• Adapt this for a single chromosome scenario:



Perez-Enciso
• Bayesian method that combines linkage and linkage 

disequilibrium (LDL) information.
• Method uses jointly all marker information (haplotypes) and all 

available pedigree information, ie not restricted to any specific 
experimental design and known phases not required.

• A diallelic QTL is assumed and both additive and dominant 
effects can be estimated.

• Also implemented a Bayesian variant of the usual 
disequilibrium measures like D´ and r2 between QTL and 
markers.

• Using LD information resulted in much better estimates of QTL 
position when there was complete disequilibrium between 
mutant QTL allele and the marker; advantage decreased when 
the association was only partial.
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