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1.  Linkage disequilibrium in livestock populations  
 

1.1 A brief history of QTL mapping 

The vast majority of economically important traits in livestock and aquaculture 

production systems are quantitative, that is they show continuous distributions.  In 

attempting to explain the genetic variation observed in such traits, two models have 

been proposed, the infinitesimal model and the finite loci model.  The infinitesimal 

model assumes that traits are determined by an infinite number of unlinked and 

additive loci, each with an infinitesimally small effect (Fischer 1918).  This model has 

been exceptionally valuable for animal breeding, and forms the basis for breeding 

value estimation theory (eg Henderson 1984).   

 

However, the existence of a finite amount of genetically inherited material (the 

genome) and the revelation that there are perhaps a total of only around 20 000 genes 

or loci in the genome (Ewing and Green 2000), means that there is must be some 

finite number of loci underlying the variation in quantitative traits.  In fact there is 

increasing evidence that the distribution of the effect of these loci on quantitative 

traits is such that there are a few genes with large effect, and a many of small effect 

(Shrimpton and Robertson 1998, Hayes and Goddard 2001).  In Figure 1.1, the size of 

quantitative trait loci (QTL) reported in QTL mapping experiments in both pigs and 

dairy cattle is shown.  These histograms are not the true distribution of QTL effects 

however, they are only able to observe effects above a certain size determined by the 

amount of environmental noise, and the effects are estimated with error.  In Figure 

1.1. B, the distribution of effects adjusted for both these factors is displayed.  The 

distributions in Figure 1.1 B indicate there are many genes of small effect, and few of 

large effect.  The search for these loci, particularly those of moderate to large effect, 

and the use of this information to increase the accuracy of selecting genetically 

superior animals, has been the motivation for intensive research efforts in the last two 

decades.  Note that in this course any locus with an effect on the quantitative trait is a 

called a QTL, not just the loci of large effect.  
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Figure 1.1  A.  Distribution of additive (QTL) effects from pig experiments, 

scaled by the standard deviation of the relevant trait, and distribution of gene 

substitution (QTL) effects from dairy experiments scaled by the standard 

deviation of the relevant trait.  B. Gamma Distribution of QTL effect from pig 

and dairy experiments, fitted with maximum likelihood.   

 

Two approaches have been used to uncover QTL.  The candidate gene approach 

assumes that a gene involved in the physiology of the trait could harbour a mutation 

causing variation in that trait.  The gene, or parts of the gene, are sequenced in a 

number of different animals, and any variations in the DNA sequences, that are found, 

are tested for association with variation in the phenotypic trait.  This approach has had 

some successes – for example a mutation was discovered in the oestrogen receptor 

locus (ESR) which results in increased litter size in pigs (Rothschild et al. 1991).  For 

a review of mutations which have been discovered in candidate genes see Andersson 

and Georges (2004).  There are two problems with the candidate gene approach, 

however. Firstly, there are usually a large number of candidate genes affecting a trait, 

so many genes must be sequenced in several animals and many association studies 

carried out in a large sample of animals (the likelihood that the mutation may occur in 

non-coding DNA further increases the amount of sequencing required and the cost). 

Secondly, the causative mutation may lie in a gene that would not have been regarded 

a priori as an obvious candidate for this particular trait.  

 

An alternative is the QTL mapping approach, in which chromosome regions 

associated with variation in phenotypic traits are identified.  QTL mapping assumes 

the actual genes which affect a quantitative trait are not known.  Instead, this approach 
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uses neutral DNA markers and looks for associations between allele variation at the 

marker and variation in quantitative traits.  A DNA marker is an identifiable physical 

location on a chromosome whose inheritance can be monitored. Markers can be 

expressed regions of DNA (genes) or more often some segment of DNA with no 

known coding function but whose pattern of inheritance can be determined 

(Hyperdictionary, 2003). 

 

When DNA markers are available, they can be used to determine if variation at the 

molecular level (allelic variation at marker loci along the linkage map) is linked to 

variation in the quantitative trait.  If this is the case, then the marker is linked to, or on 

the same chromosome as, a quantitative trait locus or QTL which has allelic variants 

causing variation in the quantitative trait.   

 

Until recently, the number of DNA markers identified in livestock genome was 

comparatively limited, and the cost of genotyping the markers was high.  This 

constrained experiments designed to detect QTL to using a linkage mapping 

approach.  If a limited number of markers per chromosome are available, then the 

association between the markers and the QTL will persist only within families and 

only for a limited number of generations, due to recombination.  For example in one 

sire, the A allele at a particular marker may be associated with the increasing allele of 

the QTL, while in another sire, the a allele at the same marker may be associated with 

the increasing allele at the QTL, due to historical recombination between the marker 

and the QTL in the ancestors of the two sires.   

 

To illustrate the principle of QTL mapping exploiting linkage, consider an example 

where a particular sire has a large number of progeny. The parent and the progeny are 

genotyped for a particular marker. At this marker, the sire carries the marker alleles 

172 and 184, Figure 1.2. The progeny can then be sorted into two groups, those that 

receive allele 172 and those that receive allele 184 from the parent. If there is a 

significant difference between the two groups of progeny, then this is evidence that 

there is a QTL linked to that marker. 
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Figure 1.2.  Principle of quantitative trait loci (QTL) detection, illustrated using 

an abalone example.  A sire is heterozygous for a marker locus, and carries the 

alleles 172 and 184 at this locus.  The sire has a large number of progeny.  The 

progeny are separated into two groups, those that receive allele 172 and those 

that receive allele 184. The significant difference in the trait of average size 

between the two groups of progeny indicates a QTL linked to the marker.  In 

this case, the QTL allele increasing size is linked to the 172 allele and the QTL 

allele decreasing size is linked to the 184 allele (Figure courtesy of Nick 

Robinson). 

 

QTL mapping exploiting linkage has been performed in all nearly livestock species 

for a huge range of traits (for a review see Andersson and Georges 2004).  The 

problem with mapping QTL exploiting linkage is that, unless a huge number of 

progeny per family or half sib family are used, the QTL are mapped to very large 

confidence intervals on the chromosome.  To illustrate this, consider the formula that 

Darvasi and Soller (1997) gave for estimating the 95% CI for QTL location for simple 

QTL mapping designs under the assumption of a high density genetic map.  The 

formula was CI=3000/(kNδ2
), where N is the number of individuals genotyped, δ  

allele substitution effect (the effect of getting an extra copy of the increasing QTL 

allele) in units of the residual standard deviation, k the number of informative parents 

per individual, which is equal 1 for half-sibs and backcross designs and 2 for F2 
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progeny, and 3000 is about the size of the cattle genome in centi-Morgans.  For 

example, given a QTL segregates on a particular chromosome within a half sib family 

of 1000 individuals, for a QTL with an allele substitution effect of 0.5 residual 

standard deviations the 95% CI would be 12 cM.  Such large confidence intervals 

have two problems.  Firstly if the aim of the QTL mapping experiment is to identify 

the mutation underlying the QTL effect, in a such a large interval there are a large 

number of genes to be investigated (80 on average with 20 000 genes and a genome of 

3000cM).  Secondly, use of the QTL in marker assisted selection is complicated by 

the fact that the linkage between the markers and QTL is not sufficiently close to 

ensure that marker-QTL allele relationships persist across the population, rather 

marker-QTL phase within each family must be established to implement marker 

assisted selection.   

 

An alternative, if dense markers were available, would be to exploit linkage 

disequilibrium (LD) to map QTL.  Performing experiments to map QTL in genome 

wide scans using LD has recently become possible due to the availability of 10s of 

thousands of single nucleotide polymorphism (SNP markers) in cattle, pigs, chickens 

and sheep in the near future (eg.  

(ftp://ftp.hgsc.bcm.tmc.edu/pub/data/Btaurus/snp/Btau20040927/bovine-snp.txt).  A 

SNP marker is a difference in nucleotide between animals (or an animals pair of 

chromosomes), at a defined position in the genome, eg. 

Animal 1.   ACTCGGGC 

Animal 2.   ACTTGGGC 

Rapid developments in SNP genotyping technology now allow genotyping of a SNP 

marker in an individual for as little as 1c US.              

 

1.2 Definitions and measures of linkage disequilibrium. 

 

The classical definition of linkage disequilibrium (LD) refers to the non-random 

association of alleles between two loci.  Consider two markers, A and B, that are on 

the same chromosome.  A has alleles A1 and A2, and B has alleles B1 and B2.  Four 

haplotypes of markers are possible A1_B1, A1_B2, A2_B1 and A2_B2.  If the 

frequencies of alleles A1, A2, B1 and B2 in the population are all 0.5, then we would 
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expect the frequencies of each of the four haplotypes in the population to be 0.25.  

Any deviation of the haplotype frequencies from 0.25 is linkage disequilibrium (LD), 

ie the genes are not in random association.  As an aside, this definition serves to 

illustrate that the distinction between linkage and linkage disequilibrium mapping is 

somewhat artificial – in fact linkage disequilibrium between a marker and a QTL is 

required if the QTL is to be detected in either sort of analysis.  The difference is: 

 

linkage analysis only considers the linkage disequilibrium that exists within 

families, which can extend for 10s of cM, and is broken down by 

recombination after only a few generations. 

 

linkage disequilibrium mapping requires a marker to be in LD with a QTL 

across the entire population.  To be a property of the whole population, the 

association must have persisted for a considerable number of generations, so 

the marker(s) and QTL must therefore be closely linked. 

  

One measure of LD is D, calculated as (Hill 1981) 

 

D = freq(A1_B1)*freq(A2_B2)-freq(A1_B2)*freq(A2_B1) 

 

where freq (A1_B1) is the frequency of the A1_B1 haplotype in the population, and 

likewise for the other haplotypes.  The D statistic is very dependent on the frequencies 

of the individual alleles, and so is not particularly useful for comparing the extent of 

LD among multiple pairs of loci (eg. at different points along the genome).  Hill and 

Robertson (1968) proposed a statistic, r2, which was less dependent on allele 

frequencies, 

)2(*)1(*)2(*)1(

2
2

BfreqBfreqAfreqAfreq

D
r =  

 

Where freq(A1) is the frequency of the A1 allele in the population, and likewise for 

the other alleles in the population.  Values of r2 range from 0, for a pair of loci with no 

linkage disequilibrium between them, to 1 for a pair of loci in complete LD.     

 

As an example, consider a situation where the allele frequencies are 
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freq(A1) = freq(A2) = freq (B1) = freq (B2) = 0.5 

The haplotype frequencies are: 

freq(A1_B1) = 0.1 

freq(A1_B2) = 0.4 

freq(A2_B1) = 0.4 

freq(A2_B2) = 0.1 

The D = 0.1*0.1-0.4*0.4 = -0.15 

And D2
 = 0.0225. 

The value of r2 is then 0.0225/(0.5*0.5*0.5*0.5) = 0.36.  This is a moderate level of 

r2.   

 

Another commonly used pair-wise measure of LD is D’ (Lewontin 1964).  To 

calculate D’, the value of D is standardized by the maximum value it can obtain: 

 

='D  |D|/Dmax 

 

Where Dmax= min[freq(A1)*freq(B2), -1*freq(A2)*freq(B1)] if D>0, else 

= min[freq(A1)*freq(B1),--1*freq(A2)*freq*B2)] if D<0.   

 

The statistic r2 is preferred over D’ as a measure of the extent of LD for two reasons.    

If we consider the r2 between a marker and an (unobserved) QTL, r2
 is the proportion 

of variation caused by the alleles at a QTL which is explained by the markers.  The 

decline in r2 with distance actually indicates how many markers or phenotypes are 

required in initial genome scan exploiting LD are required to detect QTL.  

Specifically, sample size must be increased by a factor of 1/r2 to detect an 

ungenotyped QTL, compared with the sample size for testing the QTL itself 

(Pritchard and Przeworski 2001).  D’ on the other hand does a rather poor job of 

predicting required marker density for a genome scan exploiting LD, as we shall see 

in Section 2.  The second reason for using r2 rather than D’ to measure the extent of 

LD is that D’ tends to be inflated with small sample sizes or at low allele frequencies 

(McRae et al. 2002).   
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The above measures of LD are for bi-allelic markers.  While they can be extended to 

multi-allelic markers such as microsatellites, Zhao et al. (2005) recommended the 

'2χ measure of LD for multi-allelic markers, where 

∑∑
= =−

=
k

i

m

j ji

ij

BfreqAfreq

D

l 1 1

2

'2

)()()1(

1
χ , 

and )()()_( jijiij BfreqAfreqBAfreqD −= , freq(Ai) is the frequency of the ith allele 

at marker A, freq(Bj) is the frequency of the jth allele at marker B, and l is the 

minimum of the number of alleles at marker A and marker B.  Note that for bi-allelic 

markers, 2'2
r=χ .    

    

Their investigations using simulation showed out of a number of multi-allelic pair-

wise measures of LD  '2χ was the best predictor of useable marker-QTL LD (eg. the 

proportion of QTL variance explained by the marker).   

  

While pair-wise measures of LD are important and widely used, are not particularly 

illuminating with respect to the causes of LD.  For example, statistics such as r2 

consider only two loci at a time, whereas we may wish to calculate the extent of LD 

across a chromosome segment that contains multiple markers.   An alternate multi-

locus definition of LD is the chromosome segment homozygosity (CSH) (Hayes et 

al. 2003).  Consider an ancestral animal many generations ago, with descendants in 

the current population.  Each generation, the ancestor’s chromosome is broken down, 

until only small regions of chromosome which trace back to the common ancestor 

remain.  These chromosome regions are identical by descent (IBD).  Figure 1.3 

demonstrates this concept.   

 

The CSH then is the probability that two chromosome segments of the same size and 

location drawn at random from the population are from a common ancestor (ie IBD), 

without intervening recombination.  CSH is defined for a specific chromosome 

segment, up to the full length of the chromosome.  The CSH cannot be directly 

observed from marker data but has to be inferred from marker haplotypes for 

segments of the chromosome. Consider a segment of chromosome with marker locus 

A at the left hand end of the segment and marker locus B at the other end of the 
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segment (as in the classical definition above).  The alleles at A and B define a 

haplotype. Two such segments are chosen at random from the population.  The 

probability that the two haplotypes are identical by state (IBS) is the haplotype 

homozygosity (HH).  The two haplotypes can be IBS in two ways,   

i. The two segments are descended from a common ancestor without intervening 

recombination, so are identical by descent (IBD), or  

ii. the two haplotypes are identical by state but not IBD 

The probability of i. is CSH.  The probability of ii. is a function of the marker 

homozygosities, given the segment is not IBD.  The probabilities of i. and ii. are 

added together to give the haplotype homozygosity (HH):       

 

CSH

CSHHomCSHHom
CSHHH BA

−

−−
+=

1

))((
 

 

Where HomA and HomB are the individual marker homozygosities of marker A and 

marker B.  This equation can be solved for CSH when the haplotype homozygosities 

and individual marker homozygosities are observed from the data.  For more than two 

markers, the predicted haplotype homozygosity can be calculated in an analogous but 

more complex manner. 

 

1.

2. 2.

2. 2.

3.

 

Figure 1.3 An ancestor many generations ago (1) leaves descendants (2).  Each 

generation, the ancestors chromosome is broken down by recombination, until 

all that remains in the current generation are small conserved segments of the 

ancestor’s chromosome (3).  The chromosome segment homozygosity (CSH) is 

the probability that two chromosome segments of the same size and location 

drawn at random from the population are from a common ancestor.  
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Another justification for using multi-locus measures of LD is that they can be less 

variable than pair-wise measures.  The variation in LD arises from two sampling 

processes (Weir and Hill 1980). The first sampling process reflects the sampling of 

gametes to form successive generations, and is dependent on finite population size. 

The second sampling process is the sampling of individuals to be genotyped from the 

population, and is dependent on the sample size, n.  The first sampling process 

contributes to the high variability of LD measures.  Marker pairs at different points in 

the genome, but a similar distance apart, can have very different r2 values, particularly 

if the marker distance is small, Figure 1.4.  This is because by chance there may have 

been an ancestral recombination between one pair of markers, but not the other. 
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Figure 1.4.  r
2
 values against distance in bases between pairs of markers from 0 

000 genome wide SNPs genotyped in a population of Holstein Friesian cattle.  

1000000 bases is approximately 1cM.   

 

Multi-locus measures of LD can have reduced variability because they accumulate 

information across multiple loci in an interval, thus averaging some of the effects of 

chance recombinations.  Hayes et al. (2003) investigated the variability of r2 and CSH 

using simulation.  They simulated a chromosome segment of 10 cM containing 11 

markers was simulated with a mutation-drift model, with a constant N of 1000.  They 
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found CSH was less variable than r2 provided at least four loci were included in the 

calculation of CSH, Figure 1.5.   

  

 

Figure 1.5 Coefficient of variation of r
2
 and CSH in a simulated populations, over 

haplotype regions of the same length, across 200 replicates.  There one marker 

per 0.01M (Hayes et al. 2003).   

 

1.3 Causes of linkage disequilibrium in livestock populations 

 
LD can arise due to migration, mutation, selection, small finite population size or 

other genetic events which the population experiences (eg. Lander and Schork 1994).  

LD can also be deliberately created in livestock populations;  in an F2 QTL mapping 

experiment LD is created between marker and QTL alleles by crossing two inbred 

lines. 

 

In livestock populations, finite population size is generally implicated as the key 

cause of LD.  This is because  

- effective population sizes for most livestock populations are relatively small, 

generating relatively large amounts of LD 

- LD due to crossbreeding (migration) is large when crossing inbred lines but 

small when crossing breeds that do not differ as markedly in gene frequencies, 
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and it disappears after only a limited number of generations (eg. Goddard 

1991) 

- mutations are likely to have occurred many generations ago.   

- while selection is probably a very important cause of LD, it’s effect is likely to 

be localised around specific genes, and so has relatively little effect on the 

amount of LD ‘averaged’ over the genome.  The use of LD measures to detect 

selected areas of the genome will be discussed briefly in section 1.8.  

1.3.1  Predicting the extent of LD with finite population size 

If we accept finite population size as the key driver of LD in livestock populations, it 

is possible to derive a simple expectation for the amount of LD for a given size of 

chromosome segment.  This expectation is (Sved 1971) 

)14/(1)( 2 += NcrE  

where N is the finite population size, and c is the length of the chromosome segment 

in Morgans.  The CSH has the same expectation (Hayes et al. 2003).  This equation 

predicts rapid decline in LD as genetic distance increases, and this decrease will be 

larger with large effective population sizes, Figure 1.6.  
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Figure 1.6. The extent of LD (as measured by chromosome segment 

homozygosity, CSH) for increasing chromosome segment length, for Ne=100 and 

Ne=1000.  Note that r
2
 has the same expectation as CSH. 

 

As the extent of LD that is observed depends both on recent and historical 

recombinations, not only the current effective population size, but also the past 

effective population size are important.  Effective population size for livestock species 

may have been much larger in the past than they are today.  For example in dairy 
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cattle the widespread use of artificial insemination and a few elite sires has greatly 

reduced effective population size in the recent past.  In humans, the story is the 

opposite; improved agricultural productivity and industrialisation have led to dramatic 

increases in population size.  How does changing population size affect the extent of 

LD?  To investigate this, we simulated a population which either expanded or 

contracted after a 6000 generation period of stability.  The LD, as measured by CSH, 

was measured for different lengths of chromosome segment, Figure 1.7.  Results for r2 

would look very similar. 

A 
B 

Figure 1.7. Chromosomal homozygosity for different lengths of chromosome 

(given the recombination rate) for populations: A.  Linearly increasing 

population size, from N=1000 to N=5000 over 100 generations, following 6000 

generations at N=1000.  B.  Linearly decreasing population size, from N=1000 to 

N=100 over 100 generations, following 6000 generations at N=1000.   

 

The conclusion is that LD at short distances is a function of effective population size 

many generations ago, while LD at long distances reflects more recent population 

history.  In fact, provided simplifying assumptions such as linear change in population 

size are made, it can be shown that the r2 or CSH reflects the effective population size 

1/(2c) generations ago, where c is the length of the chromosome segment in Morgans. 

So the expectation for r2 with changing effective population size can be written as 

)14/(1)( 2 += cNrE t where ct 2/1= .    
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1.4 The extent of LD in livestock and human populations 

 
If LD is a predominantly result of finite population size, then the extent of LD should 

be less in humans than in cattle, as in humans the effective population size is ~ 10000 

(Kruglyak 1999) whereas in livestock where effective population sizes can be as low 

as 100 (Riquet et al. 1999).  The picture is somewhat complicated by the fact that 

livestock populations have been very much larger, while the Caucasian effective 

population size has been very much smaller (following the out of Africa hypothesis).  

So what we could expect to see is that at long distances between markers, the r2 

values in livestock are much larger than in humans, while at short distances, the level 

of LD is more similar.  This is in fact what is observed.  Moderate LD (eg. 2.02 ≥r in 

humans typically extends less than 5kb (~0.005cM), depending on the population 

studied (Dunning et al. 2000, Reich et al. 2001, Tenesa et al. 2007), Figure 1.8.  In 

cattle moderate LD extends up to 100kb, Figure 1.8.  However, very high levels of 

LD (eg. 8.02 ≥r only extend very short distances in both humans and cattle.   

 

It is interesting to compare the extent of LD in the different cattle populations.  The 

Dutch and Australian Holstein populations had a very similar decline of LD, probably 

because these populations are highly related (eg. Zenger et al. 2007) and are similar in 

effective population size and history.  The decline of LD in the Norwegian Reds was 

more rapid than in the Holstein populations.  One explanation for this could be that 

the effective population size in Norwegian Red is higher than in Holstein, even 

though the global population is much smaller.  Effective population size in Norwegian 

Reds is approximately 400 (Meuwissen et al. 2002), while for the global Holstein 

population effective population size is close to 150 (Zenger et al 2007), and a more 

limited extent of LD is expected with larger effective population size.   
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r2 decay against recombination distance
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Figure 1.8.  A.  Average r
2
 with distance in Caucasian humans (from Tenesa et 

al. 2007).  1cM is approximately 1000kb.  B.  Average r
2
 value according to the 

distance between SNP markers in different cattle populations.  Results are from 

9918 SNPs distributed across the genome genotyped in 384 Holstein cattle or 384 

Angus cattle, 403 SNPs genotyped in 783 Norwegian Red cattle, 3072 SNPs 

genotyped in 2430 Dutch Holstein cattle, or 351 SNPs genotyped in Jersey cattle.  

Norwegian red data kindly supplied by Prof. Sigbjorn Lien, Norwegian 

University of Life Sciences, New Zealand Jersey data kindly supplied by Dr. 

Richard Spelman, Livestock Improvement Co-operative.     
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Figure 1.8 implies that for the Holstein populations at least, there must be a marker 

approximately every 100kb (kilo bases) or less to achieve an average r2 of 0.2.  This 

level of LD between markers and QTL would allow a genome wide association study 

of reasonable size to detect QTL of moderate effect.  As the bovine genome is 

approximately 3,000,000kb, this implies that in order of 30,000 evenly spaced 

markers are necessary in order that every QTL in the genome can be captured in a 

genome scan using LD to detect QTL.  In Jerseys and Norwegian Reds, a larger 

number of markers would be required.   

 

Du et al. (2007) assessed the extent of LD in pigs using 4500 SNP markers genotyped 

in six lines of commercial pigs.  Only maternal haplotypes of the commercial pigs 

were used to evaluate r2 between the SNPs, as the paternal haplotypes were over-

represented in the population.  The results from their study indicate there may be 

considerably more LD in pigs than in cattle.  For SNPs separate by 1cM, the average 

value of r2 was approximately of 0.2.  LD of this magnitude only extends 100kb in 

cattle.  In pigs at a 100kb the average r2 was 0.371. 

 

Heifetz et al. (2005) evaluated the extent of LD in a number of populations of 

breeding chickens.  They used microsatellite markers and evaluated the extent of LD 

with the '2χ statistic.  In their populations, they found significant LD extended long 

distances.  For example 57% of marker pairs separated by 5-10cM had an 2.0'2 ≥χ in 

one line of chickens and 28% in the other.  Heifetz et al. (2005) pointed out that the 

lines they investigated had relatively small effective population sizes and were partly 

inbred, so the extent of LD in other chicken populations with larger effective 

population sizes may be substantially different. 

 

McRae et al. (2002) evaluated the extent of LD in domestic sheep.  They used the D’ 

parameter rather than r2, so comparison with results for other species given here is 

difficult.  They found that high levels of LD extended for tens of centimorgans and 

declined with increasing marker distance.  They also thoroughly investigated bias in 

D’ under different conditions, and found that D' may be skewed when rare alleles are 
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present.  They therefore recommended that the statistical significance of LD is used in 

conjunction with coefficients such as D' to determine the true extent of LD. 

 

1.5  Extent of LD between populations and breeds. 

Marker assisted selection exploiting LD relies on the phase of LD between markers 

and QTL being the same in the selection candidates as in the reference population 

where the QTL marker associations were detected.  However as the reference 

population and the population in which MAS is applied become more and more 

diverged, for example different breeds, the phase is less and less likely to be 

conserved.  The statistic r is a measure for LD between two markers in a population, 

but can also be used to measure the persistence of the LD phases between 

populations.  While the r2 statistic between two SNP markers at the same distance in 

different breeds or populations can be the same value even if the phases of the 

haplotypes are reversed, they will only have the same value and sign for the r statistic 

if the phase is the same in both breeds or populations.  For marker pairs of a given 

distance, the correlation between r in two populations, corr(r1,r2), is equal to the 

correlation of the effects of the marker between both populations, for markers that 

have that same distance to a QTL (De Roos et al. 2007).  If this correlation is 1, the 

marker effects are equal in both populations.  If this correlation is zero, a marker in 

population 1 is useless in population 2. A high correlation between r values means 

that the marker effect persists across the populations.  Calculating the correlation of r 

values across different breeds and populations as an indicator of how far the same 

marker phase is likely to persist between these breeds and populations (Goddard et al. 

2006).  This information can in turn be used to give an indication of marker density 

required to ensure marker-QTL phase persists across populations and or breeds, which 

would be necessary for the application LD-MAS or Genomic selection using the same 

marker set and SNP effects across the breeds or populations.   

 

In Figure 1.9, the correlation of r values is given for a number of different cattle 

populations.  The correlation of r values for Dutch Red-and-white bulls and Dutch 

Black-and-white bulls was 0.9 at 30kb.  This indicates at this distance r2 is high in 

both populations and the sign of r is the same in both populations, so the LD phase is 

the same in both populations. If one of these SNPs was actually an unknown mutation 
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affecting a quantitative trait, the other SNP could be used in MAS and the favourable 

SNP allele would be the same in both breeds.  For Holstein and Angus breeds, the 

correlation of r is above 0.9 only at 10kb or less.  For Australian Holsteins and Dutch 

Holsteins, the correlation of r values was above 0.9 up to 100kb, reflecting the fact 

that there are common bulls used in the two populations (eg. Zenger et al. 2007).   
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Figure 1.9.  Correlation between r values for various cattle populations or sub-

populations, as a function of marker distance (from De Roos et al. 2007).  

  

1.6  Haplotype blocks and recombination hotspots 

Recent studies of human populations using very high marker densities (eg. 7 million 

SNPs) suggest that there is an LD pattern of small segments of chromosome which 

have very high levels of LD between the markers defining the end of the segment, 

interspersed with boundaries where the markers across the boundary have very little 

LD.  These chromosome segments have been termed haplotype blocks, and the 

boundaries are defined by recombination hot spots (for a review see Wall and 

Pritchard 2003).  The requirement of recombination hot spots to define haplotype 

blocks was questioned by Phillips et al. (2003).  They used evolutionary modelling of 

the data to demonstrate that recombination hot spots are not required to explain most 

of the observed blocks, providing that marker ascertainment and the observed marker 
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spacing are considered.  In other words a proposed recombination hotspot could arise 

just due to an ancestral recombination.  Whatever their origin, haplotype blocks have 

proved to be a useful concept in human genetics, as they allow tagging SNPs, that is a 

single SNP that identifies a haplotype block, to be identified, greatly reducing the 

total number of SNPs required for genome wide association studies.   

 

In dairy cattle, Khatkar et al. (2007) investigated the number of SNPs that would be 

required to define haplotype blocks given the extent of LD.  They concluded in the 

order of 250 000 SNPs would be required to elucidate haplotype block structures.         

 

1.7 Optional topic 1.  Brief note on haplotyping strategies 

Calculations of LD parameters like r2 and CSH assume that the genotypes of 

individuals can be phased into haplotypes (ie. which marker alleles belong on the 

paternally inherited chromosome and which marker alleles belong on the maternally 

inherited chromosome).  If large half sib families are available, the sires haplotypes 

can fairly readily be reconstructed by determining which alleles are most often co-

inherited from the sire.  The haplotypes which the dam passed on the to the progeny 

can then be inferred by ‘subtracting’ the alleles transmitted from the sire from the 

progeny genotypes.  Inferring haplotypes becomes more difficult in complex 

pedigrees, with missing marker information, or when there is very little pedigree 

information at all. 

 

One method of inferring haplotypes in complex pedigrees is to run a Markov Chain 

on a set of genetic descent graphs.  A genetic descent graph specifies the paths of 

gene flow (parents to offspring), but not the particular founder alleles travelling down 

the paths.  See Sobel and Lange (1996) for more details on this procedure.  This 

method is implemented in a freeware program called SimWalk 

(http://www.genetics.ucla.edu/software/simwalk_doc/). 

 

In some cases, the individuals that are genotyped may be randomly sampled from the 

population, with no pedigree information available.  Provided the markers which have 

been genotyped are closely spaced, it can be possible to estimate haplotypes based on 

linkage disequilibrium and allele frequency information alone.  One such method was 
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proposed by Stephens et al. (2001).  Suppose we have a sample of n diploid 

individuals from a population (these individuals are assumed to be unrelated).  Let G 

= (G1,….Gn) denote the (known) genotyped for the individuals, let H = (H1,…,Hn) 

denote the (unknown) corresponding haplotype pairs, let F = (F1,….,FM) denote the 

set of unknown population haplotype frequencies, and let f = (f1,….,fM) denote the set 

of unknown sample haplotype frequencies (the M possible haplotypes are labelled 

1,…,M).  The haplotype reconstruction method of Stephens et al. (2001) regards the 

unknown haplotypes as unobserved random quantities and aims to evaluate their 

conditional distribution in light of the genotype data.  To do this, they used MCMC, to 

obtain an approximate sample from the posterior distribution of H given G, eg. 

Pr(H|G).  The steps in the algorithm are: 

 

1.   Start with an initial guess for H (the haplotype pairs of all individuals), H0.  

This begins by listing all haplotypes that must be present unambiguously in the 

sample, that is those individuals who are homozygous at every locus or are 

heterozygous at only one locus.  For the other individuals, who have ambiguous 

haplotypes, the haplotypes can be allocated at random from the genotypes.  

2.   Choose an individual, i, at random from all the ambiguous genotypes.  Sample 

the haplotypes for this individual for the next iteration ( 1+t

iH ).  These haplotypes are 

sampled from a distribution which assumes that the haplotypes in the haplotype pair 

Hi are likely to look either exactly the same or similar to a haplotype that has already 

been observed.  This assumption is based on the existence of both LD and mutation – 

if the chromosome segment carrying the haplotypes is short enough, there will be 

considerable LD, greatly restricting the number of haplotypes.  New haplotypes can 

be generated either by recombination or mutation at one of the markers.  Formally, the 

distribution from which the new haplotypes are sampled is: 
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where αr is the number of haplotypes of type α in the set H, r is the total number of 

haplotypes in H, θ is a scaled mutation rate (based on assumptions about population 

size, mutation rates at individual loci and length of the haplotype, relating to the 

expectation of LD described above), and P is mutation matrix (mapping the mutations 

onto markers in the haplotype).  This corresponds to the next sampled haplotype, h, 
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being obtained by applying a random number of mutations, s, to a randomly chosen 

existing haplotype, α, where s is sampled from a geometric distribution.  

 

The above algorithm is implemented in a program (again free) called PHASE.  At 

least for short haplotypes (< 1cM) it appears to construct haplotypes very accurately.  

A nice feature of the algorithm is that an approximate probability of each haplotype 

for each animal being correct can be obtained from the posterior distribution.  These 

probabilities could potentially be used in the QTL mapping procedure.  The PHASE 

program is now widely used in human genetics, and is likely to be used to construct 

the bovine haplotype map as part of the bovine genome sequencing activity.        

 

 

1.8 Optional topic 2: Identifying selected areas of the genome 
by linkage disequilibrium patterns. 

 
While the average extent of linkage disequilibrium (LD) between closely spaced 

markers contains information about population history, including past population size, 

the extent of LD among markers within a given interval also reflects selection on 

genes within the interval.  This is because selected alleles will increase the frequency 

in the population of a surrounding segment of chromosome as they are driven toward 

fixation, in selective sweeps (Maynard-Smith and Haigh 1967).  However comparing 

the extent of LD between intervals is unlikely to be particularly informative with 

regard to selection history due to the extremely variable nature of LD (Hill 1980, Hill 

and Weir 1994).  Another approach is to compare the LD surrounding the selected 

allele to the non-selected allele, as proposed by Voight et al. 2006.  The LD 

surrounding the non-selected allele then acts as in internal control for the level of LD 

expected in the region.  The measure that Voight et al. (2006) proposed for the 

detection of selection signatures was the standardized integrated extended haplotype 

homozygosity (iHS).   

 

The next section describing how iHS is calculated is taken from Voight et al. (2006) 

“Our new test begins with the EHH (extended haplotype homozygosity) statistic 

proposed by Sabeti et al. (2002). The EHH measures the decay of identity, as a 
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function of distance, of haplotypes that carry a specified “core” allele at one end. For 

each allele, haplotype homozygosity starts at 1, and decays to 0 with increasing 

distance from the core site. When an allele rises rapidly in frequency due to strong 

selection, it tends to have high levels of haplotype homozygosity extending much 

further than expected under a neutral model. Hence, in plots of EHH versus distance, 

the area under the EHH curve will usually be much greater for a selected allele than 

for a neutral allele. In order to capture this effect, we compute the integral of the 

observed decay of EHH away from a specified core allele until EHH reaches 0.05. 

This integrated EHH (iHH) (summed over both directions away from the core SNP) 

will be denoted iHHA or iHHD, depending on whether it is computed with respect to 

the ancestral or derived core allele. Finally, we obtain our test statistic iHS using 

 

When the rate of EHH decay is similar on the ancestral and derived alleles, 

iHHA/iHHD ≈ 1, and hence the unstandardized iHS is ≈ 0. Large negative values 

indicate unusually long haplotypes carrying the derived allele; large positive values 

indicate long haplotypes carrying the ancestral allele. Since in neutral models, low 

frequency alleles are generally younger and are associated with longer haplotypes 

than higher frequency alleles, we adjust the unstandardized iHS to obtain our final 

statistic which has mean 0 and variance 1 regardless of allele frequency at the core 

SNP: 

 

The expectation and standard deviation of ln(iHHA/iHHD) are estimated from the 

empirical distribution at SNPs whose derived allele frequency p matches the 

frequency at the core SNP. The iHS is constructed to have an approximately standard 

normal distribution and hence the sizes of iHS signals from different SNPs are 

directly comparable regardless of the allele frequencies at those SNPs. Since iHS is 

standardized using the genome-wide empirical distributions, it provides a measure of 

how unusual the haplotypes around a given SNP are, relative to the genome as a 

whole, and it does not provide a formal significance test”. 
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An experiment was conducted to investigate selection signatures of bovine 

chromosome six in Norwegian Red dairy cattle.  Four hundred and three SNPs were 

genotyped on BTA6 in 18 paternal half-sib families (18 sires and 716 sons).  Using 

the pedigree information, the genotypes were resolved into paternal and maternal 

haplotypes.  Both haplotypes of the sires and the maternal haplotypes of the progeny 

were retained for analysis.  iHS scores were then calculated for the BTA6 SNPs.  This 

required defining an ancestral allele at each SNP position.  This was done by 

extracting the allele in the assembled bovine genome sequence based on a Hereford 

cow (Genbank accession number CM000182).  The largest cluster of extreme iHS 

scores was in the interval 35-36.5Mb, Figure 1.10.  This interval contains a QTL with 

a large effect on protein %, as reported in a number of QTL mapping and fine 

mapping experiments (eg. Olsen et al. 2005).  Various mutations have been proposed 

as the mutation underlying the QTL effect, including a mutation in the ABCG2 gene 

(Cohen-Zindar et al. 2005).  
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Figure 1.10.  Value of |iHS| for individual SNPs across BTA6 in Norwegian Red 

cattle. 
 
The results indicate that selection signatures can be detected in cattle populations at 

least with a medium density of SNPs.  In highly selected livestock populations, 

detection of selection signatures may reveal QTL for selected traits.      
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2. Mapping QTL using Linkage Disequilibrium 
 

2.1 Introduction 

Linkage disequilibrium (LD) mapping of QTL exploits population level associations 

between markers and QTL.  These associations arise because there are small segments 

of chromosome in the current population which are descended from the same 

common ancestor.  These chromosome segments, which trace back to the same 

common ancestor without intervening recombination, will carry identical marker 

alleles or marker haplotypes, and if there is a QTL somewhere within the 

chromosome segment, they will also carry identical QTL alleles.  There are a number 

of QTL mapping strategies which exploit LD, the simplest of these is the genome 

wide association test using single marker regression.   

 

2.2 Genome wide association tests using single marker 
regression 

In a random mating population with no population structure the association between a 

marker and a trait can be tested with single marker regression as   

eXµ1y n ++= g  

Where y is a vector of phenotypes, 1n is a vector of 1s, X is a design matrix allocating 

records to the marker effect, g is the effect of the marker and e is a vector of random 

deviates 2,0(~ eij Ne σ ), where 2

eσ is the error variance.  In this model the effect of the 

marker is treated as a fixed effect.  Note that the g can actually be a vector of 2 times 

the number of marker alleles, if both additive and dominance effects are to be 

estimated.  The underlying assumption here is that the marker will only affect the trait 

if it is in linkage disequilibrium with an unobserved QTL.  This model ignores fixed 

effects other than the mean, however they can be easily included. 

 

The null hypothesis is that the marker has no effect on the trait, while the alternative 

hypothesis is that the marker does affect the trait (because it is in LD with a QTL).  

The null hypothesis is rejected if 2,1, vvFF α> , where F is the F statistic calculated 
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from the data for example by an analysis of variance (ANOVA), 2,1, vvFα is the value 

from an F distribution at α level of significance and v1, v2 degrees of freedom. 

 

Consider a small example of 10 animals genotyped for a single SNP.  The phenotypic 

and genotypic data is: 

 

Animal Phenotpe SNP allele 1 SNP allele 2 

1 2.030502 1 1 

2 3.542274 1 2 

3 3.834241 1 2 

4 4.871137 2 2 

5 3.407128 1 2 

6 2.335734 1 1 

7 2.646192 1 1 

8 3.762855 1 2 

9 3.689349 1 2 

10 3.685757 1 2 

 

We need a design matrix X to allocate both the mean and SNP alleles to phenotypes.  

In this case we will use an X matrix with number of rows is equal to the number of 

records, and one column for the SNP effect.  We will set the effect of the “1” allele to 

zero, so the SNP effect column in the X matrix is the number of copies of the “2” 

allele an animal carries (X matrix in bold): 

 

Animal 1n 

X, Number of “2” 

alleles  

1 1 0 

2 1 1 

3 1 1 

4 1 2 

5 1 1 

6 1 0 

7 1 0 

8 1 1 

9 1 1 

10 1 1 
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The mean and SNP effect can then be estimated as: 
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Where y is the (number of animals x 1) vector of phenotypes.   

In the above example the estimated of the mean and SNP effect are 
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This is not far from the real value of these parameters.  The data above was 

“simulated” with a mean of 2, a QTL  effect of 1, an r2 (a standard measure of LD) 

between the QTL and the SNP of 1, plus a normally distributed error term.   

 

The F-value can be calculated as:  
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Using the above values, the value of F is 4.56.  This can be compared to the tabulated 

F-value at a 5% significance value and 1 and 9 (number of records -1) degrees of 

freedom is 5.12.  So the SNP effect in this case is not significant (not surprisingly 

with only 10 records!).   

 

The power of the association test to detect a QTL by testing the marker effect depends 

on: 

1. The r2 between the marker and QTL.  Specifically, sample size must be 

increased by a factor of 1/r2 to detect an ungenotyped QTL, compared with the 

sample size for testing the QTL itself (Pritchard and Przeworski 2001).   

2. The proportion of total phenotypic variance explained by the QTL, termed 2

Qh . 

3. The number of phenotypic records n 

4. The allele frequency of the rare allele of the SNP or marker, p, which 

determines the minimum number of records used to estimate an allele effect.  

The power becomes particular sensitive to p when p is small (eg. <0.1). 

5. The significance level α set by the experimenter. 
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The power is the probability that the experiment will correctly reject the null 

hypothesis when a QTL of a given size of effect really does exist in the population. 

Figure 2.1 illustrates the power of an association test to detect a QTL with different 

levels of r2 between the QTL and the marker and with different numbers of 

phenotypic records (using the formula’s of Luo 1998).   

 

Using both this figure, and the extent of LD in our livestock species, we can make 

predictions of the number of markers required to detect QTL in a genome wide 

association study.  For example, an r2 of at least 0.2 is required to achieve power ≥ 0.8 

to detect a QTL of 05.02 =Qh with 1000 phenotypic records.  In dairy cattle, r2 ≈ 0.2 at 

100kb.  So assuming a genome length of 3000Mb in cattle, we would need at least 15 

000 markers in such an experiment to ensure there is a marker 100kb from every 

QTL.  However this assumes that the markers are evenly spaced, and all have a rare 

allele frequency above 0.2.  In practise, the markers may not be evenly spaced and the 

rare allele frequency of a reasonable proportion of the markers will be below 0.2.  

Taking these two factors into account, at least 30 000 markers would be required.  

 

To demonstrate the dependence of power on r2 between a QTL and SNP in another 

way, consider the results of Macleod et al. (2007).  They attempted to assess the 

power of whole genome association scans in outbred livestock with commercially 

available SNP panels.  In their study, 365 cattle were genotyped using a 10,000 SNP 

panel while QTL, polygenic and environmental effects were simulated for each 

animal, with QTL simulated on genotyped SNPs chosen at random.  The power to 

detect a QTL accounting for 5% of the phenotypic variance with 365 animals 

genotyped, was 37% (p<0.001).  There was a strong correlation between the F-value 

of significant SNPs and their r2 with the “QTL”, Figure 2.2.  The correlation of F-

values with D’ was almost zero.     
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Figure 2.1 A.  Power to detect a QTL explaining 5% of the phenotypic variance 

with a marker.  B.  Power to detect a QTL explaining 2.5% of the phenotypic 

variance with a marker, for different numbers of phenotypic records given in the 

legend and for different levels of r
2
 between the marker and the QTL, with a P 

value of 0.05.  Rare allele frequencies at the QTL and marker were both 0.2.    
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Figure 2.2  Plots of F-values of SNPs tested for association, against r
2
 and D’ of 

the tested SNP with the QTL.  The QTL accounted for 5% of the phenotypic 

variance.  From Macleod et al. 2007. 

2.2.1 Choice of significance level  

With such a large number of markers tested in genome wide association studies, an 

important question is what value of α to choose.  In a genome wide association study, 

we will be testing 10s or possibly 100s of thousands of markers.  A major issue in 

setting significance thresholds is the multiple testing problem.  In most QTL mapping 

experiments, many positions along the genome or a chromosome are analysed for the 

presence of a QTL.  As a result, when these multiple tests are performed the 

"nominal" significance levels of single test don't correspond to the actual significance 

levels in the whole experiment, eg. when considered across a chromosome or across 

the whole genome.  For example, if we set a point-wise significance threshold of 5%, 

we expect 5% of results to be false positives.  If we analyse 10 000 markers 

(assuming for the moment these points are independent), we would expect 

10000*0.05 = 500 false positive results!  Obviously more stringent thresholds need to 

be set.  One option would be to adjust the significance level for the number of 

markers tested using a Bonferoni correction to obtain an experiment wise P-value of 

0.05.  However such a correction does not take account of the fact that ‘tests’ on the 

same chromosome may not be independent, as the markers can be in linkage 

disequilibrium with each other as well as the QTL.  As a result, the Bonferoni 
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correction tends to be very conservative, and requires some decision to be made about 

how many independent regions of the genome were tested. 

 

Churchill and Doerge (1994) proposed the technique of permutation testing to 

overcome the problem of multiple testing in QTL mapping experiments. Permutation 

testing is a method to set appropriate significance thresholds with multiple testing (eg 

testing many locations along the genome for the presence of the QTL).  Permutation 

testing is performed by analysing a large number of simulated data sets that have been 

generated from the real one, by randomly shuffling the phenotypes across individuals 

in the mapping population. This removes any existing relationship between genotype 

and phenotype, and generates a series of data sets corresponding to the null 

hypothesis. Genome scans can then be performed on these simulated data-sets. For 

each simulated data the highest value for the test statistic is identified and stored.  The 

values obtained over a large number of such simulated data sets are ranked yielding 

an empirical distribution of the test statistic under the null hypothesis of no QTL.  The 

position of the test statistic obtained with the real data in this empirical distribution 

immediately measure the significance of the real dataset.  .  For example if we carry 

out 100 000 analyses of permuted data, the F value for the 5000th highest value will 

represent the cut off point for the 5% level of significance.  Significance thresholds 

can then be set corresponding to 5% false positives for the entire experiment, 5% false 

positives for a single chromosome, and so on.  Permutation testing is an excellent 

method of setting significance thresholds in a random mating population.  In 

populations with some pedigree structure however, randomly shuffling phenotypes 

across marker genotypes will not preserve any pedigree structure that exists in the 

data.   

 

An alternative to attempting to avoid false positives is to monitor the number of false 

positives relative to the number of positive results (Fernando et al. 2004).  The 

researcher can then set a significance level with an acceptable proportion of false 

positives.  The false discovery rate (FDR) is the expected proportion of detected QTL 

that are in fact false positives (Benjamini and Hochberg 1995, Weller 1998).  FDR 

can be calculated for a QTL mapping experiment as 

mPmax/n, 
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where Pmax is the largest P value of QTL which exceed the significance threshold, n is 

the number of QTL which exceed the significance threshold and m is the number of 

markers tested.  Figure 2.3 shows an example of the false discovery rate in an 

experiment where 9918 SNPs were tested for the effect on feed conversion efficiency 

in 384 Angus cattle.  As the significance threshold is relaxed, the number of 

significant SNPs increases.  However, the FDR also increases.         
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Figure 2.3 A.  Number of significant markers at different P values in a genome 

wide association study with 9918 SNPs, using 384 Angus cattle with phenotypes 

for feed conversion efficiency.  B.  False discovery rate at the different P-values.     
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In this experiment, a P-value of 0.001 was chosen as a criteria to select SNPs for 

further investigation.  At this P-value, there were 56 significant SNPs.  So the false 

discovery rate was 9918*0.001/56 = 0.18.  This level of false discovery was deemed 

acceptable by the researchers.     

 

A number of other statistics have been proposed to control the proportion of false 

positives, including the proportion of false positives (PRP Fernando et al. 2004), and 

the positive false discovery rate (pFDR Storey 2002).   

 

2.2.2 Confidence intervals. 

There are few reports in the literature on methods to estimate confidence intervals in 

genome wide association studies.  A method based on cross-validation is described 

here.  To calculate approximate 95% confidence intervals for the location of QTL 

underlying the significant SNPs, a genome wide association study is first conducted 

as above.  The data set is then split into two halves at random (eg. half the animals in 

the first data set, the other half in the second data set).  The genome wide association 

study is then re-run for each half of the data.  When each half of the data confirmed a 

significant SNP in the analysis of the full data (ie a significant SNP in almost the 

same location), the information is used in the following way.  The position of the 

most significant SNP from each split data set was designated x1i and x2i respectively, 

for the ith QTL position (taken as the most significant SNP in a region from the full 

data set). So for n pairs of such SNPs, the standard error of the underlying QTL is 

calculated as ∑
=

−=
n

i

ii xx
n

xse
1

21
4

1
)( .  The 95% confidence interval is then the 

position of the most significant SNP from the full data analysis ±1.96 )(xse .   

 

Using this approach in a data set with 9918 SNPs genotyped on 384 Holstein-Friesian 

cattle, and for the trait protein kg, there were 24 significant SNP clusters (clusters of 

SNP putatively marking the same QTL, a cluster consists of 1 or more SNPs) in the 

full data, and the confidence interval for the QTL was calculated as 2Mb.      
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2.2.3 Avoiding spurious false positives due to population structure 

The very simple model above for testing association of a marker to phenotype 

assumes there is no structure in the population, that is it assumes all animals are 

equally related.    In livestock populations, or any population for that matter, this is 

unlikely to be the case.  Multiple offspring per sire, selection for specific breeding 

goals and breeds or strains within the population all create population structure.  

Failure to account for population structure can cause spurious associations (false 

positives) in the genome wide association study (Pritchard 2000).  A simple example 

is where the population includes a sire with a large number of progeny in the 

population.  In this case the sire has a significantly higher estimated breeding value 

than other sires in the population.  If a rare allele at a marker any where on the 

genome is homozygous in the sire, the sub-population made up of his progeny will 

have a higher frequency of the allele than the rest of the population.  As the sires’ 

estimated breeding value is high, his progeny will also have higher than average 

estimated breeding values.  Then in the genome wide association study, if the number 

of progeny of the sire is not accounted for, the rare allele will appear to have a 

(perhaps significant) positive effect.             

 

Spielman et al. (1993) proposed the transmission disequilibrium test (TDT) which 

requires that parents of individuals in the genome wide association study are 

genotyped to ensure the association between a marker allele and phenotype is linked 

to the disease locus, as well as in linkage disequilibrium across the population with it.  

In this way the TDT test avoids spurious associations due to population structure.  

However the TDT test has a cost in that genotypes of both parents must be collected, 

and this is often not possible in livestock populations.     

    

An alternative is to remove the effect of population structure using a mixed model:   

eZuX'1y n +++= gµ  

Where u is a vector of polygenic effect in the model with a covariance structure 

),0(~ 2

ai Nu σA , where A is the average relationship matrix built from the pedigree of 

the population, and 2

aσ is the polygenic variance.  Z is a design matrix allocating 

animals to records.  In other words, the pedigree structure of the population is 
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accounted for in the model.  Note that this is BLUP, with the marker effect and the 

mean as fixed effects and the polygenic effects as random effects.   

 

In the study of Macleod (2007) described in section 2.2.1, they assessed the effect of 

including or omitting the pedigree on the number of QTL detected in the experiment, 

in a simulation where no QTL effects were simulated (so all QTL detected are false 

positives), Table  2.1.  They found a significant increase in the number of false 

positives, when the polygenic effects were not fully accounted for. 

 

Table 2.1  Detection of type I errors in data with no simulated QTL.   

Significance level Analysis model  

p<0.005 p<0.001 p<0.0005 

Expected type I errors 40 8 4 

1.  Full pedigree model 39 (SD=14) 9 (SD=5) 4 (SD=3) 

2.  Sire pedigree model 

 

46* (SD=21) 11* (SD=7) 6* (SD=5.5) 

3.  No pedigree model  68** (SD=31) 18** (SD=11) 10** (SD=7) 

4.  Selected 27% - full 

pedigree 

 
 

54** (SD=18) 12** (SD=6) 7** (SD=4) 

  

The results indicate that the number of type 1 errors (significant SNPs detected when 

no QTL exist) is significantly higher when no pedigree is fitted, and even fitting sire 

does not remove all spurious associations due to population structure.       

 

A problem arises if the pedigree of the population is not recorded, or is recorded with 

many errors.  One solution in this case is to use the markers themselves to infer the 

average relationship matrix (Hayes et al. 2007) or population structure (eg. Pritchard 

2000).   
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For a given marker single locus, a similarity index Sxy between two individuals x and y 

is calculated, where Sxy = 1 when genotype x = ii (i.e. both alleles at loci l are 

identical) and genotype y = ii, or when x = ij and y = ij. Sxy = 0.5 when x = ii and 

y = ij, or vice versa, Sxy = 0.25 when x = ij and y = ik, and Sxy = 0 when the two 

individuals have no alleles in common at the locus. The similarity as a result of 

chance alone was   where pi is the frequency of allele i in the (random 

mating) population, and a is the number of alleles at the locus. Then the relationship 

between individuals x and y at locus l is calculated as rl=(Sxy−s)/(1−s).  The average 

relationship between the individuals is calculated as the rl averaged over all loci.  

 

With large numbers of markers, average relationship matrices derived from markers 

can be very accurate, and can even capture mendelian sampling effects (eg. Two full 

sibs may be more or less related than 0.5 because they have more or less paternal and 

maternal chromosome segments than expected by chance.  This approach can also be 

used to correct for population structure across breeds or lines.  In Figure 2.4, the 

average relationship matrix derived from markers is shown for a combined Angus 

Holstein Population. 
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Figure 2.4.  Average-relationship matrix derived from 9323 SNP loci where the 

population consists of two breeds.  The diagonal element for the first Angus 

animal is in the bottom left hand corner and the element for the last Holstein 

animal in the top left hand corner.  
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There are a number of situations in which marker derived relationship matrices will 

be especially valuable.  When there is limited or no pedigree recorded in a population, 

marker genotypes may be the only source of information available to build 

relationship matrices.  For example, in livestock, there are many traits which can only 

be recorded in animals which are not candidates for selection, such as meat quality.  If 

there is no recorded pedigree linking selection candidates and commercial animals on 

which the trait is recorded, marker derived relationship matrices could be used in 

estimation of QTL effects for marker assisted selection.  Another example is 

populations where multiple sires are used in the same paddock of dams, such that 

recording pedigree is difficult.  Finally, in multi-breed populations including crosses 

between breeds, the marker derived relationship matrix offers a way to account for the 

different breed composition of the animals.   

 

2.3  Genome wide association experiments using haplotypes    

Rather than using single markers, haplotypes of markers could be used in the genome 

wide association.  The effect of haplotypes in windows across the genome would then 

be tested for their association with phenotype.  The justification for using haplotypes 

is that marker haplotypes may be in greater linkage disequilibrium with the QTL 

alleles than single markers.  If this is true, then the r2 between the QTL and the 

haplotypes is increased, thereby increasing the power of the experiment.   

 

To understand why marker haplotypes can have a higher r2 with a QTL than an 

individual marker, consider two chromosome segments containing a QTL drawn at 

random from the population, which happen to carry identical marker haplotypes for 

the markers on the chromosome segment.  There are two ways in which marker 

haplotypes can be identical, either they are derived from the same common ancestor 

so they are identical by descent (IBD), or the same marker haplotypes have been 

regenerated by chance recombination (identical by state IBS).  If the “haplotype” 

consists only of a single SNP the chance of being identical by state is a function of the 

marker homozygosity.  Now as more and more markers are added into the 

chromosome segment, the chance of regenerating identical marker haplotypes by 

chance recombination is reduced.  So the probability that identical haplotypes carried 
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by different animals are IBD is increased.  If the haplotypes are IBD, then the 

chromosome segments will also carry the same QTL alleles.  As the probability of 

two identical haplotypes being IBD increases, the proportion of QTL variance 

explained by the haplotypes will increase, as marker haplotypes are more and more 

likely to be associated with unique QTL alleles.     

 

Just as for single markers, the proportion of QTL variance explained by the markers 

can be calculated.  Let q1 be the frequency of the first QTL allele and q2 be the 

frequency of the second QTL allele.  The surrounding markers are classified into n 

haplotypes, with pi the frequency of the ith haplotype.  The results can be classified 

into a contingency table: 

 Haplotype  

 1 i N  

QTL allele 1 p1q1-D1 piq1-Di pnq1-Dn Q1 

QTL allele 2 p1q2+D1 p1q2+Di pnq2+Dn Q2 

 p1 pi pn 1 

 

For a particular haplotype i represented in the data, we calculated the disequilibrium 

as Di =pi(q1)-piq1, where pi(q1) is the proportion of haplotypes i in the data that carry 

QTL allele 1 (observed from the data), pi is the proportion of haplotypes i, and q1 is 

the frequency of QTL allele 1.  The proportion of the QTL variance explained by the 

haplotypes, and corrected for sampling effects was then calculated as  

21

1

2

2

qq

p

Dn

i
i

i

(h,q)r

∑
=

=  

For example, in a simulated population of Ne=100, and a chromosome segment of 

length 10cM, the proportion of the QTL variance accounted for by marker haplotypes 

when there were 11 markers in the haplotype was close to one, Figure 2.5.  [Note that 

if the effective population size was larger, the proportion of genetic variance 

explained by a 10cM haplotype would be reduced (Goddard 1991).]   
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Figure 2.5. Proportion of QTL variance explained by marker haplotypes with an 

increasing number of markers in a 10 cM interval 

 

A model for testing haplotypes in an association study could be similar to the model 

described above: 

eZuXg'1y n +++= µ  

 

However g is now a vector of haplotype effects rather than the effect of a single 

marker.  The haplotypes could be treated as random, as there are likely to be many of 

them and some haplotypes will occur only a small number of times.  The effect of 

treating the haplotypes as random is to “shrink” the estimates of the haplotypes with 

only a small number of observations.  This is desirable because it reflects the 

uncertainty of predicting these effects.  So ),0(~ 2

hi INg σ where I is an identity 

matrix and 2

hσ  the variance of the haplotype effects.  The g can be estimated from the 

equations:  
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Where 
2

2

1

a

e

σ

σ
λ = , and 

2

2

2

h

e

σ

σ
λ = .  Note that this model assumes no-covariance between 

haplotype effects.   In practise, the  haplotype variance is unlikely to be known, so 

will need to be estimated .  A REML program, such as ASREML (Gilmour et al 

2002), can be used to do this.      

   

2.4 IBD LD mapping  

The IBD model is quite different from that used in single marker regression in that 

now the effect of a putative QTL itself is fitted, rather than the marker: 

iiiii evmvpuy ++++= µ  

Where vpi and vmi are the effects of the QTL alleles carried on the ith animals paternal 

and maternal chromosome respectively.  In this model, the assumption is that each 

animal carries two unique QTL alleles, and so there are two QTL effects fitted for 

each animal.  

 

Then marker haplotype information is used to infer the probability that two 

individuals carry the same QTL allele at a putative QTL position.  The existence of 

LD implies there are small segments of chromosome in the current population which 

are descended from the same common ancestor.  These IBD chromosome segments 

will not only carry identical marker haplotypes; if there is a QTL somewhere within 

the chromosome segment, the IBD chromosome segments will also carry identical 

QTL alleles.  Therefore if two animals carry chromosomes which are likely to be IBD 

at a point of the chromosome carrying a QTL, then their phenotypes will be 

correlated.  We can calculate the probability the 2 chromosomes are IBD at a 

particular point based on the marker haplotypes and store these probabilities in an 

IBD matrix (G).  Then the v are distributed ),0(~ 2

QTLGNv σ , where 2

QTLσ is the QTL 

variance.  If the correlation between the animals is proportional to G there is evidence 

for a QTL at this position.  

2.4.1 Building the IBD matrix from marker haplotypes 

Consider a chromosome segment which carries 10 marker loci and a single central 

QTL locus.  Three chromosome segments were selected from the population at 

random, and were genotyped at the marker loci to give the marker haplotypes 
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11212Q11211, 22212Q11111 and 11212Q11211, where Q designates the position of 

the QTL.  The probability of being IBD at the QTL position is higher for the first and 

third chromosome segments than for the first and second or second and third 

chromosome segments, as the first and third chromosome segments have identical 

marker alleles for every marker locus. 

 

This type of information can be used, together with information on recombination rate 

of the chromosome segment and effective population size, for calculating an IBD 

matrix, G, for a putative QTL position from a sample of marker haplotypes.  Element 

Gij of this matrix is the probability that haplotype i and haplotype j carry the same 

QTL allele.  The dimensions of this matrix is (2 x the number of animals) x (2 x the 

number of animals), as each animal has two haplotypes.  

 

Meuwissen and Goddard (2001) described a method to calculate the IBD matrix based 

on deterministic predictions which took into account the number of markers flanking 

the putative QTL position which are identical by state, the extent of LD in the 

population based on the expectation under finite population size, and the number of 

generations ago that the mutation occurred. 

 

Now consider a population of effective population size 100, and a chromosome 

segment of 10cM with eight markers.  Two animals are drawn from this population.  

Their marker haplotypes are 12222111, 11122111 for the first animal, and 12222111 

and 11122211 for the second animal.  The putative QTL position is between markers 

4 and 5 (ie. in the middle of the haplotype).  The G matrix could look something like: 

 

   Animal 1 Animal 2 

   Hap 1 Hap 2 Hap 1 Hap 2 

   12222111 11122111 12222111 11122211 

Animal 1 Hap 1 12222111 1.00    

 Hap 2 11122111 0.30 1.00   

Animal 2 Hap 1 12222111 0.90 0.30 1.00  

 Hap 2 11122211 0.20 0.40 0.20 1.00 
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2.4.2 Estimation of the QTL variance and QTL mapping 

To estimate the additive genetic variance, we could calculate the extent of the 

correlation between animals with high additive genetic relationships Aij.  In practise, 

we fit a linear model which includes additive genetic value (u) with 2

aσAV(u) = , and 

then estimate 2

aσ .  In a similar way, to estimate the QTL variance at a putative QTL 

position we fit the following linear model:  

eWvZu1y n +++= µ , 

where W is a design matrix relating phenotypic records to QTL alleles, v is a vector of 

additive QTL effects, e the residual vector, where the random effects v are assumed to 

be distributed as v~(0, GσQTL
2). A REML program, such as ASREML (Gilmour et al. 

2002), can be used to estimate the QTL variance and the likelihood of the data given 

the QTL and polygenic parameters.         

    

QTL mapping then proceeds by proposing a putative QTL position at intervals along 

the chromosome.  At each point, the QTL variance is estimated and the likelihood of 

the data given the QTL and polygenic parameters is calculated.  The most likely 

position of the QTL is the position where this likelihood is a maximum. 

 

The significance of the QTL at it’s most likely position can then be tested using a 

likelihood ratio test by comparing the maximum likelihood of the model with the 

QTL fitted and without the QTL fitted: 

 

)(2 ___ fittedQTLfittedQTLno oodLogLikelihoodLogLikelihLRT −−=  

This test statistic has a 2

1χ distribution.  The QTL is significant at the 5% level if LR > 

3.84.    

 

A method to assign confidence intervals to the QTL location is based on the change in 

LRT values across the chromosome (Lander and Bostein, 1989; Zeng, 1994; Zou, 

2001).  The confidence interval (CI) is calculated by moving sideward (left and right) 

of the most likely position to the locations corresponding to a decrease in the LRT 

score of one or two units. The total width corresponding to a one- or two-LRT drop-

off is then considered as the 96.8 or 99.8%CI, respectively (Mangin et al., 1994). In 

the Lander and Bostein method, estimates of QTL position and its effects are 
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approximately unbiased if there is only one QTL segregating on a chromosome 

(Zeng, 1994). 

 

2.5  Comparisons with single markers 

While the use of haplotypes seems initially attractive, there are a number of factors 

which potentially limit there value over single markers.  These are: 

- The requirement that the genotypes must be sorted into haplotypes.  This may 

not be a trivial task, and is discussed briefly in section 1.7 

- The number of effects which must be estimated increases.  For a single marker 

there is one effect to estimate if an additive model is assumed, while for 

marker haplotypes there are potentially a large number of effects to estimate 

depending on the number of markers in the haplotype. 

- Some simulation results which show benefits of marker haplotypes rely on 

increasing the density of markers in a given chromosome segment to achieve 

this.  This may not be possible in practise. 

 

Grapes et al. (2004), Grapes et al (2006) and Zhao et al (2007) compared single 

marker regression, regression on marker haplotypes and the IBD mapping approach 

for the power and precision of QTL mapping.  Grapes et al (2004) and Grapes et al 

(2006) did this assuming a QTL had already been mapped to a chromosome region, 

Zhao et al (2007) did this in the context of a genome wide scan for QTL.  All three 

papers compared the approaches using simulated populations.  The conclusion from 

these papers was that single marker regression gives greater power and precision than 

regression on marker haplotypes, and was comparable to the IBD method.  However 

these results contradict those of Hayes et al. (2007), who found that in real data (9323 

SNPs genotyped in Angus cattle) using marker haplotypes would give greater 

accuracy of predicting QTL alleles than single markers.  They also contradict the 

results of Calus et al (2007), who found that in genomic selection, use of the IBD 

approach gave greater accuracies of breeding values than using either single marker 

regression or regression on haplotypes, particularly at low marker densities (discussed 

further in section 4).  The explanation for the contradictory results may be that Zhao 

et al (2007), Grapes et al. (2004) and Grapes et al. (2004) were simulating a situation 

where single markers had very high r2 values with the QTL, in which case using 
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marker haplotypes would only add noise to the estimation of the QTL effect.  

Densities of markers required to give these high levels of r2 may be obtainable in the 

near future in most livestock species, in which case the single marker approach 

becomes very attractive.  Further work is needed in this area.                

2.6 Combined LD-LA mapping 

Authors investigating the extent of LD in both cattle and sheep were somewhat 

surprised/alarmed to find not only was LD highly variable across any particular 

chromosome, but there was even significant LD between markers which were not 

even on the same chromosome! (Farnir et al 2002, McRae et al. 2002).  These authors 

(and others) have suggested that LD information be combined with linkage 

information to filter away any spurious LD likelihood peaks.  This type of QTL 

mapping is referred to as LDLA, for linkage disequilibrium linkage analysis. 

2.6.1  IBD matrix for LDLA mapping  

The IBD matrix for LDLA mapping will have two parts, a sub-matrix describing IBD 

coefficients between the haplotypes of founder animals, and a second matrix 

describing the transmission of QTL alleles from the founders to later generations of 

genotyped animals.  

 

So for example, if we have a half sib design, we will have two haplotypes per sire, a 

paternal haplotype for each progeny (the one he or she inherited from dad) and a 

maternal haplotype from each progeny (the marker alleles the progeny did not get 

from dad, so must have received from mum).  The sire haplotypes and the maternal 

haplotypes of progeny provide the LD information, and the paternal haplotypes of 

progeny provide the linkage information.  Table 2.2, from Meuwissen et al. (2002), 

describes the IBD matrix for LDLA for a half-sib design.   

 

The calculation of blocks [a] is described in Meuwissen and Goddard (2001) (and 

above).  The calculation of blocks [b] was described in Meuwissen et al. (2002), and 

are very similar to the standard linkage analysis calculations (eg. Fernando and 

Grossman 1989). Briefly, element of blocks [b] are PIBD(X(p);Y) = r×PIBD(S(p);Y) + 

(1-r)×PIBD(S(m);Y), where  

PIBD(X(p);Y) is the IBD probability of the paternal QTL allele of progeny X, X(p), 

with any other QTL allele, Y.  
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S(p) and S(m) are the paternal and maternal alleles of sire S, respectively. 

r or (1-r) is the probability that the progeny inherited the paternal or maternal QTL 

allele of the sire. 

 

Table 2.2. The IBD matrix 

 SH MHP PHP 

SH [a] [a] [b] 

MHP [a] [a] [b] 

PHP [b] [b] [b] 

SH: sire haplotypes; MHP: maternal haplotypes of progeny; PHP: paternal haplotypes of 

progeny; [a] is calculated by the method of Meuwissen and Goddard (2001); [b] is calculated by 

the method of Meuwissen et al. (2002). 

 

A variance component model similar to the one above can then be fitted.    

 

2.6.2 Example of the twinning QTL  

The power of combining LD and LA information to filter both spurious LD and 

spurious LA likelihood peaks was demonstrated in a study designed to map QTL for 

twinning rate in Norwegian dairy cattle (Meuwissen et al 2002).  Figure 2.6A is the 

likelihood profile from linkage only, Figure 2.6B the likelihood profile from LD 

analysis only, and Figure 2.6C the likelihood profile from combined LDLA.    

 

When LDLA is performed, both linkage and linkage disequilibrium information 

contribute to the likelihood profile.  Any peaks due to LD or linkage alone are filtered 

from the profile.  Using LDLA, Meuwissen et al. (2002) were able to map the QTL 

for twinning rate to a 1cM region. 
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A B 

 

C 

Figure 2.6.  Likelihood profile from linkage analysis (A), Linkage disequilibrium 

analysis (B) and combined linkage disequilibrium linkage analysis (C) of marker 

data on chromosome 5 and twinning rate phenotypes in Norwegian dairy cattle.  

Meuwissen et al. (2002).  Reproduced with permission from the authors. 

 

2.6.3 Design of LD-LA experiments. 

There are two design issues with LD-LA analysis.  One is the density of markers 

required, which has already been discussed.  The other is the population structure and 

size of experiment that is appropriate for LDLA.   

 

An important question is ‘are the large half-sib families that are common in linkage 

analysis also suitable for LDLA analysis’?  Large half sib families are of course 

suitable for linkage studies.  LD on the other hand is a population based method (eg. 

the association between QTL and marker haplotype must persist across the population 

to be detected).  To maximise the LD information, a large number of different 
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haplotypes must be sampled, and there must be sufficient records per haplotype to 

estimate the effects of each haplotype accurately.  In a half sib design, the total 

number of founder haplotypes sampled from the population will be the number of 

dams (the maternal haplotype for each progeny) plus twice the number of sires (two 

haplotypes per sire).  The number of unique haplotypes in this sample will depend on 

the length of the chromosome segment and the number of markers.  If the markers are 

all in a small interval (say a few cM) the number of unique haplotypes may be small 

(due to LD), and there will be a considerable number of records per unique haplotype.  

If on the other hand the markers are widely spaced and cover the whole chromosome, 

there will be almost as many unique haplotypes as haplotypes sampled.  In this 

situation only the effect of haplotypes carried by the sires are estimated with any 

accuracy.    

 

Results from a simulation with Ne=100, 1 marker per cM, and varying number of half 

sib families, show the accuracy of LDLA (in positioning the QTL) is increased 

slightly by increasing the number of half sib families, Figure 2.7, but not by a great 

deal (Lee and van der Werf 2004). 

 

Figure 2.7  Accuracy of positioning a QTL (percentage of replicates positioning 

QTL in correct 1cM bracket) within a 10cM interval, with an increasing number 

of half sib families, 128 animals in each design.  Linkage, linkage disequilibrium 

or combined linkage disequilibrium linkage analysis were used to position the 

QTL (Figure kindly provided by S. Lee). 

 

An interpretation of this result is that the dam haplotypes are providing considerable 

LD information, in the designs with a small number of sires.  The implications are 

that the designs we currently use for linkage studies should also be suitable for LDLA 
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studies.  Of course, the marker density will have to be greatly increased for the LDLA 

studies.   

 

This of requires more genotyping.  Another good question is can we combine the 

advantages of LDLA analysis with selective genotyping, to come up with a relatively 

cheap but powerful experiment?  A simulation study was conducted, with Ne=100, 10 

markers in a 10cM interval containing a QTL, and either 15 sires mated to 200 dams, 

30 sires mated to 100 dams or 60 sires mated to 50 dams each, and 10 progeny per 

dam (so the total number of progeny in each design was 3000).  Selective genotyping 

was conducted such that 10% of the highest phenotype and 10% of the lowest 

phenotype progeny were genotyped in each family (600 progeny genotyped total).  

The results (Table 2.3) indicate some loss of power with selective genotyping, but still 

a relatively high probability of correctly positioning the QTL within a 3cM bracket.   

 

Table 2.3 Precision of QTL position estimates from LDLA.  For each strategy the 

first number is the proportion of the progeny genotyped (100 or 20, with the 

progeny with the highest 10% and lowest 10% of phenotypes genotyped within 

each family).  The second number is the number of sires used to breed the 

resource population (15, 30 or 60).  In each design there were 3000 progeny.  

 Deviation (in 1cM bracket) of estimated from correct position  

  0 1 2 3 4 

100%15 44 31 9 4 5 

100%30 46 32 7 3 5 

100%60 40 39 8 4 2 

20%15 35 36 14 7 1 

20%30 32 32 15 8 6 

20%60 33 37 11 8 4 

 

Without selective genotyping, there was not a great deal of difference in the accuracy 

of the three designs.  When selectively genotyping was implemented, only 20% of the 

progeny population, the 15-sire design was most accurate in estimating the QTL 

position. The 30-sire and 60-sire designs may have lost some linkage information 

during selective genotyping, resulting in less precise estimation of the QTL position.   
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This experiment illustrated that accurate positioning of QTL is possible with 

relatively few genotypings (600 progeny) by combining selective genotyping and 

LDLA analysis. 
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3.  Marker assisted selection with markers in linkage 
disequilibrium with QTL 
 

3.1 Introduction 

Traditionally selection of animals for breeding is based on two types of data – 

pedigrees and phenotypes. Best Linear Unbiased Prediction (BLUP) combines these 

to generate estimated breeding values (EBVs).  A third type of data is based on DNA 

markers. 

   

Marker assisted selection (MAS) can be based on DNA in linkage equilibrium with a 

quantitative trait locus (QTL) (LE-MAS), molecular markers in linkage 

disequilibrium with a QTL (LD-MAS), or based on selection of the actual mutation 

causing the QTL effect (Gene-MAS).  All three types of MAS are currently being 

used in the livestock industries (Dekkers 2004).  For example Plastow et al. (2003) 

report the use of LD-MAS and Gene-MAS for reproduction, feed intake, growth, 

body composition, meat quality in commercial lines of pigs and national genetic 

evaluation programs based on LE-MAS are available to dairy breeding organisations 

in both France (Boichard et al. 2002) and Germany (Bennewitz et al. 2003).  LE-MAS 

is the most difficult to implement.  With LE markers, the linkage between the markers 

and QTL is not sufficiently close to ensure that marker-QTL allele relationships 

persist across the population (as occurs with LD markers), rather marker-QTL phase 

within each family must be established before an increase in selection response can be 

realised. 

 

In this section we will concentrate on LD markers for the following reasons; the 

optimum use of LE markers has been extensively discussed previously (eg Spelman et 

al. 1999), LE markers are not readily adopted by industry for the reasons given above, 

and because, with genome sequencing efforts in a number of species, very large 

numbers of single nucleotide polymorphism (SNP) markers suitable for LD mapping 

have recently become available.    

 

In this section, we will describe the application of LD-MAS as a two step procedure.  

In Step 1, the effects of a marker or set of markers are estimated in a reference 
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population.  In Step 2, the breeding values of a group of selection candidates are 

calculated using the marker information.  In many cases, the selection candidates will 

have no phenotypic information of their own, eg young dairy bulls which are progeny 

test candidates.  In some cases step 1 and step 2 may actually occur simultaneously, 

for example when LD-MAS is implemented using the IBD approach.         

 

3.2 Applying LD-MAS with single markers 

In section 2.2, a mixed model for estimation of marker effects was described.  This 

results in the estimate of the effect of a marker 
∧

g , which is scalar if the marker is 

biallelelic and an additive model has been assumed, and a vector if otherwise.  Then 

the marker breeding value can be predicted for a group of selection candidates with 

genotypes but no phenotypes as: 

∧

= gXMEBV  

Where x is a design matrix allocating marker genotype to marker effects.  For 

example, Xi could be 0 if the SNP genotype of animal i is 11 for SNP1, 1 if the SNP 

genotype of the animal is 1 2 and 2 if the genotype is 2 2. 

 

In practise, a single marker is unlikely to account for a large proportion of the 

genotypic variance.  This means that the accuracy of the MEBV, the correlation 

between the MEBV and the unobserved true breeding value, will be low. 

 

There are two ways in which the proportion of the genetic variance captured in the 

MEBV can be increased.  These are including a polygenic effect (the genetic effect 

not accounted for by the marker) and using multiple markers.   

    

A polygenic effect can be included in the prediction of the MEBV: 

∧∧

+= gXuMEBV  

Where 
∧

u  is a vector of polygenic effects.  These should be calculated simultaneously 

with the prediction of the marker effects, provided the selection candidates are 

progeny of animals in the reference population.    
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If the selection candidates do have their own phenotypes, the procedure to calculate 

MEBV would happen in single step using the mixed model equations to include all 

the information and weight this information appropriately.     

 

Consider an example where we wish to calculate MEBV for a group of progeny 

which are the offspring of a group of phenotyped animals.  The data was “simulated” 

with a mean of 2, a SNP effect of 1 for allele 2 and 0 for allele 1, true polygenic 

breeding value for animal 1 of 3 and animal 5 0f -3, and true polygenic breeding 

values for animals 2,3,4,6,7,8,9 and 10 of zero.  Errors were randomly distributed 

with mean 0 and variance 1.   

 

The genotype and phenotype data is: 

Animal Sire Dam Phenotpe 
SNP 
allele 1 

SNP 
allele 2 

1 0 0 3.53 1 1 

2 0 0 3.54 1 2 

3 0 0 3.83 1 2 

4 0 0 4.87 2 2 

5 0 0 1.91 1 2 

6 0 0 2.34 1 1 

7 0 0 2.65 1 1 

8 0 0 3.76 1 2 

9 0 0 3.69 1 2 

10 0 0 3.69 1 2 

11 1 2 - 1 2 

12 1 4 - 2 1 

13 5 6 - 1 1 

14 5 7 - 2 1 

15 5 8 - 2 2 

 

We wish to calculate the MEBV for animals 11 to 15.  First we must calculate the 

SNP effect and the polygenic breeding values from the data using BLUP, eg. Fitting 

the model: 

eZuXg'1y n +++= µ  

To solve for the SNP effect and polygenic effects: 
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Where 1n and X are both of dimensions (number of records x 1): 
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record 1n X 

1 1 0 

2 1 1 

3 1 1 

4 1 2 

5 1 1 

6 1 0 

7 1 0 

8 1 1 

9 1 1 

10 1 1 

 

The Z matrix allocates records to phenotypes: 

        animal         

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

 4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

 5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

 6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

record 7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

 8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

 9 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

 10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

 

And the A matrix is the matrix of average additive relationships: 

        Animal         

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

 1 1 0 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0 

 2 0 1 0 0 0 0 0 0 0 0 0.5 0 0 0 0 

 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

 4 0 0 0 1 0 0 0 0 0 0 0 0.5 0 0 0 

 5 0 0 0 0 1 0 0 0 0 0 0 0 0.5 0.5 0.5 

 6 0 0 0 0 0 1 0 0 0 0 0 0 0.5 0 0 

animal 7 0 0 0 0 0 0 1 0 0 0 0 0 0 0.5 0 

 8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0.5 

 9 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

 10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

 11 0.5 0.5 0 0 0 0 0 0 0 0 1 0.25 0 0 0 

 12 0.5 0 0 0.5 0 0 0 0 0 0 0.25 1 0 0 0 

 13 0 0 0 0 0.5 0.5 0 0 0 0 0 0 1 0.25 0.25 

 14 0 0 0 0 0.5 0 0.5 0 0 0 0 0 0.25 1 0.25 

 15 0 0 0 0 0.5 0 0 0.5 0 0 0 0 0.25 0.25 1 

 

And the λ=1/2 (error variance divided by the polygenic variance). 

Solving the equation above gives: 
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∧

µ   2.69 
∧

g   0.87 

∧

u  1 0.56 

 2 -0.01 

 3 0.19 

 4 0.3 

 5 -1.1 

 6 -0.23 

 7 -0.03 

 8 0.14 

 9 0.09 

 10 0.09 

 11 0.28 

 12 0.43 

 13 -0.67 

 14 -0.56 

 15 -0.48 

   

Now to calculate MEBV for animals 11-15, we use the formula 

∧∧

+= gXuMEBV  

Where X in this case is the matrix allocating SNP genotypes to the 5 animals: 

Animal X 

11 1 

12 1 

13 0 

14 1 

15 2 

 

The MEBV are  

Animal MEBV TBV 

11 1.14 1.75 

12 0.99 1.75 

13 -0.67 -0.75 

14 -0.38 0.25 

15 0.12 1.25 

 

The true breeding values (TBV) from the simulation are also given (in this case just 

the number of 2 alleles at the SNP carried by the animal * the true SNP effect of 1, 

plus half the effect of the sire).  The accuracy of the MEBV can be calculated as the 

correlation of the MEBV with the TBV.    In this very simple example, the accuracy is 

very high, 0.93.      
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3.2 Applying MAS with multiple markers 

When multiple markers from a genome wide association study used in the prediction 

of MEBV, we must account for the fact that some of the markers may be detecting the 

same QTL.  If there are a number of markers in linkage disequilibrium with a large 

QTL, all these markers could have significant effects.  There are a number of ways of 

accounting for this.  The simplest is to use multiple regression, fitting all the markers 

simultaneously, eg fit the model:   

∑ ++=
p

i

ii eXuy g  

Where p is the number of significant markers from the genome wide association 

study, X is a column of the design matrix relating to the ith marker, and gi is the effect 

of the ith marker.  Before the estimates of g from the multiple regression can be used 

in LD_MAS, there are two problems which must be overcome.  The first is how many 

markers should be used, and the second is how to account for the over-estimation of 

the QTL effects?    

 

3.2.1 How many QTL to use? 

The advantage of MAS over non-MAS is approximately proportional to the 

percentage of the genetic variance accounted for by the marked QTL (Meuwissen and 

Goddard 1996, Spelman et al. 1999).  The key questions then are how many QTL 

underlie the variation in quantitative traits, and how many of these QTL are necessary 

to explain the majority of the genetic variance for a typical quantitative trait.  Results 

from powerful genome scans with thousands of SNP markers, exploiting linkage 

disequilibrium between the markers and the QTL, shed some light on these questions.  

In such a scan, as the significance threshold which QTL must exceed in the scan to be 

‘detected’ is reduced, larger numbers of QTL are detected.  However, an increasing 

proportion of these QTL will be false positive results.  Additionally, some SNPs will 

be very close to each other on the genome and will therefore be detecting the same 

QTL.  We can estimate the number of true QTL by correcting the number of 

significant SNPs for both these factors.  A method of doing this is given below.   

 

Let the number of QTL in one chunk of the genome, say 20 Mb long, be x, and 

assume x is Poisson distributed with mean µ.  Then the expectation of x, E(x) is equal 
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to the variance of x is equal to µ (from the properties of a Poisson distribution).  In the 

genome scan, each QTL is associated with m significant SNPs in one chunk.  Let y = 

the number of SNPs truly associated with the QTL in the chunk, and z = the number 

of false positive SNPs per chunk.  Then E(y)=mµ, Var(y)=m2µ, E(z)=fmµ/(1-f), 

where f is the false discovery rate, and assuming z has the same type of distribution as 

y, Var(z)=m2µf/(1-f).  Then  the number of significant SNPs observed per chunk is w 

=y + z, and E(w) = E(y)+E(z) = mµ/(1-f), and V(w) = V(y)+V(z)=m2µ (1-f).  Solving 

these equations, we can calculate the number of true QTL per genome chunk, say of 

20Mb, as µ=[E(w)]2(1-f)/V(w).  
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Figure 3.1.  Estimated number of real QTL detected at decreasingly stringent 

significance thresholds in two genome scans based on dense SNP markers.   

 

We have used this formula to calculate the estimated number of QTL from two 

genome scans (Figure 3.1). One experiment was conducted in beef cattle to detect 

QTL affecting net feed intake (NFI), and one experiment in dairy cattle to detect QTL 

affecting milk production traits.  In each experiment 384 animals with extreme 

phenotypes were genotyped for 10 000 SNP markers, using the ParalleleTM 

technology.  Distances between SNPs were estimated by mapping the SNPs to the 

human genome (Goddard et al. 2006).  The results indicate that as the stringency 

thresholds are relaxed, more QTL are detected, however the number of QTL appears 

to plateau at 145 and 188 for NFI and Protein kg respectively.  So if we wanted to 

capture all the genetic variance with marked QTL, we would need markers 

surrounding between 145 and 188 QTL.  However, given the distribution of QTL 

effects for a typical quantitative trait is likely to be such there are many QTL of small 
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effect, and few QTL of large effect (Hayes and Goddard 2001, Weller et al. 2005), it 

will only be necessary to consider a fraction of the QTL in MAS, as this fraction of 

the QTL will explain the majority of the genetic variance.  For example, based on a 

meta-analysis of QTL detection experiments in dairy cattle and pigs, Hayes and 

Goddard (2001) estimated  between 10 and 20% of the largest QTL would explain 

50% of the genetic variance for a typical quantitative trait, Figure 3.2.  The actual 

proportion of the genetic variation which should be captured by marked QTL can be 

determined by cost benefit analysis (Hayes and Goddard 2003).  Profitability of 

exploiting each additional QTL (ordered by size) actually decreases, as the additional 

QTL explain successively less of the genetic variation but the markers bracketing 

them cost the same to genotype.  With multiple trait breeding goals, more QTL will 

be needed to explain 50% of the genetic variance in the breeding goal, with the total 

number of QTL depending on extent of pleiotropy.  
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Figure 3.2.  Proportion of genetic variance explained by QTL ranked in order of 

size of effect from a meta-analysis of QTL mapping experiments (■=pigs, and 

∆=dairy cattle).  Hayes and Goddard (2001). 

 

So if we use 10-20 QTL per trait in our LD-MAS program, we will exploit a 

maximum of 50% of the genetic variance.  This assumes however that we have 

perfect knowledge of the QTL alleles.  This is only the case in Gene-MAS, while the 

proportion of genetic variance we can capture at each of the QTL in LD-MAS 

depends on the extent of linkage disequilibrium between the marker and the QTL. 
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3.2.2 Estimating the vector of marker effects 

LD-MAS can be implemented by using a linear model that includes, as well as fixed 

effects and polygenic breeding values, the effect of each marker or marked-QTL (g). 

The total breeding value is calculated by adding the effect of marked-QTL and 

polygenic breeding value as above. If the marked-QTL effects are treated as fixed 

effects there is a strong tendency to overestimate them, as these effects will only 

exceed significance thresholds if the estimate is larger than the actual effect due to a 

large positive error term (Georges et al. 1995, Weller et al. 2005).  This over-

estimation is more pronounced in genome scans of low power, as in this case the 

positive error term must be large to overcome the significance threshold.  If the QTL 

effect is over-estimated, the advantage of MAS can be eroded substantially (eg. 

Whittaker et al. 2000). 

 

The best method to estimate avoid over-estimation of the QTL effects is to estimate 

their effects in a population which is completely independent of the sample used in 

the original genome scan where the QTL were first detected.  This will also validate 

that the markers are not an artefact of the statistical model used in the genome scan or 

some unaccounted for population stratification.   

 

However validation of markers in this way is expensive, as a new population must be 

genotyped.  If it is not possible to estimate marker effects in a validation experiment, 

we must adjust the estimates of the marker effect from the original genome wide scan.  

Because such effects are overestimated in the original genome scan. strategies that 

shrink the estimate of g increase the accuracy of MAS.  We can shrink the estimate of 

g according to the amount of data used to estimate g by treating g as a random effect.  

The less data there is to estimate g, the more the estimate will be shrunk towards the 

mean.     

For example, yX'1
λI)X'(Xg −+=

∧
 will shrink the estimate of the g. In the absence 

of knowledge of λ (eg arbitrary choice of λ), this is ridge regression  (Whittaker et al. 

2000). Whittaker et al. (2000) found that response from MAS was improved by up to 

7% when QTL effects were estimated by ridge regression.  Alternatively if 

λ= 22
/ QTLe σσ , this is BLUP.  To investigate the effect of shrinkage, lets re-visit the 

effect of the marker we calculated in section 2.2. 
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The prediction of the mean and effect of the marker is now from the BLUP mixed 

model equations. 
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In the simulation, the QTL had a gene substitution effect of 1.  The frequency of the 2 

allele (p) in the data set was 0.4.  Therefore the variance due to the QTL is  

48.01*6.0*4.0*2)1(2 22 ==−= appQTLσ .  The environmental variance was 1.  This 

gives us λ=2.08.  Solving the equations gives 81.0=
∧

g .  This is closer to the true 

value of g (eg. 1) than the least squares estimate of 1.28 in section 2.2.  

 

However when many, many markers are tested in the genome wide association study, 

even with BLUP the QTL with the largest variance will tend to have it’s variance 

2
QTLσ overestimated, and this will still decrease the accuracy of MAS.  

 

Better estimates of breeding value can be obtained by methods that treat the QTL 

variance as sampled from a distribution.  Weller et al. (2005) suggested a maximum 

likelihood (ML) method for estimating QTL effects, where least squares estimates 

were regressed according to a assumed known distribution of QTL effects.  In 

simulations, their ML method estimated QTL effects that had a mean close to the 

mean simulated effect, while least squares estimates were more than twice the mean 

simulated effect.  Both Meuwissen et al. (2001) and Gianola et al. (2003) suggested 

similar approaches, though in a Bayesian framework, where prior distribution of QTL 

effects was used. Meuwissen et al. (2001) demonstrated greatly improved accuracy of 

prediction of breeding values using haplotype variances estimated by their Bayesian 

approach compared to breeding values predicted with least squares estimates of QTL 

effects. 

 

Figure 3.3 illustrates the shrinkage of QTL effects when the QTL effects are  

estimated using both the data and a prior distribution of QTL effects.  The prior 

distributions in this case were gamma distributions Hayes and Goddard (2001). 
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Figure 3.3  Expected true QTL effects given observed effect from a genome scan 

and the standard error of the QTL from a genome scan.  The underlying 

distribution of QTL effects is assumed to be a gamma distribution, as described 

by Hayes and Goddard (2001).   

 

When QTL effects are to be estimated from association studies with very large 

numbers of SNPs, another technique to correct for over-estimation of QTL effects is 

cross-validation.  Suggested by Whittaker et al (1997) for calculating the covariance 

between true and estimated marker effects, cross validation involves splitting the data 

set in two and comparing estimates of QTL effects to determine the extent of 

shrinkage that is required to arrive at the “true” value. 

 

If we let x1=the estimate from the first half sample, and x2=the estimate from the 

second half sample, and xt, the estimate from the full data set=the true value (u)+ 

error (e), then V(xt)=V(u)+V(e).  As bx1,x2 (the regression of solutions split 1 on split 

2 = V(u)/V(xt), then, following some algebra, we can calculate bu,xt, the regression of 

the true effects of the SNPs on the estimates from the full data set, as 2bx1x2/(1+bx1x2). 

 

We have attempted to determine the degree of over-estimation of QTL effects from 

the experiments described above (10,000 SNPs genotyped in 379 beef and 383 dairy 
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cattle).  In each experiment, the data set was randomly split in two, and the effect of 

each SNP on NFI (beef experiment) and protein kg (dairy experiment) was estimated, 

correcting for fixed effects and average relationship.  The results from both the dairy 

and beef experiments indicate the regression of solutions from one split of the data on 

another is about As bx1,x2 = 0.3.  So bu,xt from both the dairy and the beef data will be 

0.46, indicating the SNP solutions are over-estimated by a factor of two.  

Interestingly, this is the same answer to that obtained by Weller et al (2005) when 

using an ML approach to estimate QTL effects, assuming a known distribution of 

QTL effects.   

 

3.3 Applying LD-MAS with marker haplotypes 

An alternative to using single markers in LD-MAS is to use haplotypes of markers.  

The same models as described above can be used in the reference population to 

predict the haplotype effects, however the g (single marker effect) are replaced with g, 

a vector of haplotype effects.  The dimensions of the g are the (number of unique 

haplotypes observed in the data x 1).  The model described in section 2.3 can be used 

to estimate the haplotype effects. While the problems of over-estimation of haplotype 

effects when these effects are taken from a genome wide association study remains,  

treating the haplotypes as random effects would “shrink” the haplotype effect 

estimates.         

 

The justification for using marker haplotypes in LD-MAS is that the haplotypes could 

be in greater linkage disequilibrium with the QTL (higher r2), and therefore explain 

more of the QTL variance, as was discussed for QTL mapping.  The benefit of the 

increase in proportion of QTL variance explained by marker haplotypes is countered 

by two “costs”.  The first is that the haplotypes need to be inferred from the genotype 

data, as discussed in section 1.8.  The second is that when marker haplotypes are used 

there will generally be more than two haplotypes in the population, so a large number 

of effects need to be estimated than for single SNP markers. 

 

As an example, Hayes et al. (2007) ccompared the accuracy of MAS using either 

single markers or marker haplotypes in an Angus cattle data set consisting of 9323 

genome wide SNPs genotyped in 379 Angus cattle.  The extent of LD in the data set 
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was such that the average marker-marker r2 was 0.2 at 200kb.  A marker was chosen 

at random from the 9323 to be a surrogate QTL.  The single closest marker, and the 2, 

4 and 6  marker haplotypes surrounding the QTL were evaluated for the proportion of 

QTL variance explained, the number of haplotype effects to be estimated, and the 

accuracy of predicting the QTL effect.  The results are given in Table 3.1 and Figure 

3.4.     

 

Table 3.1.  Proportion of QTL variance explained by marker haplotypes and 

observed number of unique haplotypes in the Angus data set . 

 Proportion of 

QTL variance 

explained 

Maximum 

number of 

haplotypes 

Observed 

number of 

haplotypes 

Nearest marker 0.10 2 2 

Best marker 0.20 2 2 

2 Marker haplotypes 0.15 4 3.4 

4 Marker haplotypes 0.28 16 9.4 

6 Marker haplotypes 0.55 64 20.8 
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Figure 3.4.  Accuracy of predicting QTL effects with an increasing number of 

markers in the haplotype and an increasing number of phenotypic records. 
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The accuracy of predicting the QTL effect increased as the number of markers in the 

haplotype surrounding the QTL increased, although only when the number of markers 

in the haplotype was 4 or greater did the accuracy exceed that achieved when the SNP 

in the highest LD with the QTL was used. A large number of phenotypic records 

(>1000) were required to accurately estimate the effects of the haplotypes. 

 

3.4 Marker assisted selection with the IBD approach. 

Another alternative to using single marker regression of fitting haplotype effects is to 

use the IBD approach discussed in section 2.4.  In this approach the selection 

candidates would be included in the IBD matrix when it is built.  If the QTL variance 

and additive genetic variance have been estimated previously, then MEBV can be 

predicted, including selection candidates with no phenotypic records as: 

∧∧

+= vuMEBV  

Where 
∧

v  are the estimates of the QTL effects.  The BLUP equations are           
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Where W is a design matrix relating phenotypic records to QTL alleles,  

 

The IBD approach for MAS is especially attractive if the IBD matrix is calculated 

using both linkage and linkage disequilibrium information.  Particularly if there are 

large half sib families, and the density of markers is such that the average r2 between 

markers and QTL is < 0.2, the accuracy of such MEBVs may be substantially higher 

than using linkage disequilibrium alone.   

 

3.5 Gene assisted selection  

The greatest gains are achieved from use of marker information in breeding schemes 

if the causative mutation underlying the QTL effect is identified.  In this case, the 

following procedure could be used: 



 64 

1. Pre-correct the phenotypic record of each animal for the effect of the gene 

allele it carries. 

2. Subtract the genetic variance associated with the gene from the additive 

genetic variance. 

3. Solve the standard mixed model equations to predict EBVs.  

4. Add to the EBV for each animal the estimated effect of the gene allele it 

carries. 

 

Of course, the improvement in the rate of genetic gain of Gene-MAS compared with 

non-Gene-MAS will depend on how accurately the effect of the gene alleles are 

estimated – over-estimation of these effects will erode the advantage of Gene-MAS. 

 

One factor that considerable complicate the application of Gene-MAS is that once the 

causative mutation has been discovered, it some cases it could become clear that the 

effect of the mutation is not strictly additive.  For example, with mutations which only 

have an effect when they are inherited from the father, or mother.  The mutation in the 

IGF2 gene which affects fatness operates in this way (Jeon et al. 1999).  In this 

situation truncation selection (based on ranking the animals on their MEBVs and 

selecting the required proportion) may not be the optimum use of the QTL 

information.  Special mating schemes to optimally exploit the QTL may be required.   

   

3.6 Optimising the breeding scheme with marker information 

The formula for the response to selection is not changed by the availability of 

molecular data ie  , where G =genetic gain, i is the intensity of selection, r is the 

accuracy of selection,  is the genetic standard deviation and L is the generation length.  

The potential to improve accuracy with molecular data has already been discussed.   

 

The accuracy of traditional EBVs increase as an animal ages and it and its relatives 

acquire phenotypic data. However, animals can be typed for DNA markers at any age 

and so the gain in accuracy of EBV due to adding the marker data should be greatest 

at young ages. Consequently, if selection is optimised, marker data should lead to a 

decrease in generation length. This decrease might be limited by the minimum age of 

reproduction. However, if the reduction in generation length is biologically possible, 
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failure to implement it can reduce the gains from MAS. For instance, in dairy cattle 

selected for milk production, MAS leads to greater gains if selection of yearling bulls 

and cows is practiced than if a traditional progeny testing system is adhered to 

(Spelman et al., 1999). Technology that reduces the minimum age of reproduction 

increases the benefits from MAS leading to futuristic breeding schemes such as 

velogenetics (Georges and Massey, 1991) and whizzogenetics (Haley and Visscher, 

1998). 

 

3.6.1 Long term versus short term response from MAS 

Simulations of MAS find that the extra selection response due to markers declines 

with multiple generations of selection because the variance at the marked QTL 

declines as the frequency of the favourable allele increases towards fixation (eg 

Meuwissen and Goddard 1996, Gibson 1994). Gibson (1994) found that use of 

markers even reduced long term response below that obtained by selection on 

phenotype, as a result of reduced selection intensity on the polygenic component of 

breeding value. However this has not been an inevitable finding in simulation studies 

(Dekkers 1999). Henshall and Goddard (1997) found that MAS retained an advantage 

over traditional BLUP selection even in the long term. They based selection on a full 

BLUP analysis of the phenotypic and marker data rather than selecting on phenotype 

within QTL genotype. This leads to more accurate estimation of the polygenic BV 

and thus may help to maintain the advantage of MAS over conventional selection. 

 

Long term selection response may be maximised by giving less weight to the QTL 

than to the polygenic component of the EBV (Dekkers and van Arendonk, 1998) 

However an economic optimum also needs to consider short term gains and 

genotyping costs. 
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4.  Genomic selection 

4.1 Introduction to genomic selection 

One problem with LE-MAS, LD-MAS or Gene-MAS is that only a limited proportion 

of the total genetic variance is captured by the markers.  An alternative to tracing a 

limited number of QTL with markers is to trace all the QTL.  This can be done by 

dividing the entire genome up into chromosome segments, for example defined by 

adjacent markers, and then tracing all the chromosome segments.  This method was 

termed genomic selection by Meuwissen et al. (2001).  Genomic selection exploits 

linkage disequilibrium – the assumption is that the effects of the chromosome 

segments will be the same across the population because the markers are in LD with 

the QTL that they bracket.  Hence the marker density must be sufficiently high to 

ensure that all QTL are in LD with a marker or haplotype of markers.  Genomic 

selection has become possible very recently with the availability of 10s of thousands 

of markers and high throughput genotyping technology.       

 

Implementation of Genomic selection conceptually proceeds in two steps, 1.  

Estimation of the effects of chromosome segments in a reference population and 2.  

Prediction of genomic EBVs (GEBVs) for animals not in the reference population, for 

example selection candidates.  This second step is straightfoward:     To predict 

GEBVs for animals with genotypes but no phenotypes. the effect of the chromosome 

segments they carry can be summed across the genome: 

∑
∧

=
n

i

ii gXGEBV  

Where n is the number of chromosome segments across the genome, Xi  is a design 

matrix allocating animals to the haplotype effects at segment i, and 
∧

ig is the vector of 

effects of the haplotypes within chromosome segment i.   

   
The difficulty in step 1. is that a very large number of haplotype effects across the 

chromosome segments must be estimated (the 
∧

ig ), most likely from a data set where 

the number of phenotypic observations is less than the number of chromosome 

segment effects to be estimated.   
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It is important to note that genomic selection has the desirable property that because 

all chromosome segment effects are estimated simultaneously, the problem of over-

estimation of QTL effects due to multiple testing described in section 3.2.2 does not 

occur.   

 

Genomic selection can proceed using single markers, haplotypes of markers or using 

an IBD approach.  The methodologies that will be described in section 4.2 can be 

applied to either single markers or haplotypes.  The only difference will be in the 

number of effects to estimate per chromosome segment (ignoring the problems of 

inferring haplotypes).  In the case of single markers, there will be one effect per 

segment (eg. 
∧

ig are scalars).  In the case of marker haplotypes, there will be multiple 

effects per segment (eg. 
∧

ig are a vector).  We will describe the IBD approach 

separately.     

 

It is important to note that the following genomic selection procedures can be used to 

map QTL as well as predict GEBV.  Procedures such as the LDLA approach as 

described yesterday assume one QTL per chromosome.  Given the distribution of 

QTL effects, there are likely to be 100 or more QTL throughout the genome affecting 

a particular quantitative trait (eg. Hayes et al. 2006).  Therefore most chromosomes 

will carry at least two QTL affecting the trait, though one of these may have a very 

small effect.  Both estimates of effects and position of a QTL can be biased by other 

QTL on the same chromosome, especially if the QTL are closely linked.  The worst 

case scenario is that two linked QTL cancel each others effects, so none of the QTL 

are detected.  Alternatively, a ‘ghost’ QTL, with a very large confidence interval, can 

be positioned between two real QTL (Martinez and Curnow 1992).  Because genomic 

selection approaches can fit all QTL simultaneously, they can remove the effect of the 

QTL in brackets adjacent to the true QTL position, giving tighter confidence intervals.   

 

4.2 Methodologies for genomic selection  

 
A number of approaches have been proposed for estimating the single marker or 

haplotype effects across chromosome segment effects for genomic selection.  A key 
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difference between these approaches is the assumption they make about the variances 

of haplotype or single marker effects across chromosome segments.   

 

The simpler assumption is that the variance of haplotype effects is equal across all 

chromosome segments.  This is analogous to estimating breeding values where we 

assume that the breeding values are distributed ),0(~)( 2

aANV σu .  In the case of the 

chromosome segment effects, they would be distributed  ),0(~)( 2

gINV σg  where 

2

gσ is the variance of the effects across all segments.   

 

However this assumption does not capture our “prior” knowledge that some 

chromosome segments will contain QTL with large effects, some chromosome 

segments will contain QTL with small effects, and some chromosome segments will 

contain no QTL.  We can capture this prior knowledge by modelling the data at two 

levels.  The first level is at the level of the data including the overall mean, the error 

variance and the chromosome segment effects.  In this model, each chromosome 

segment has it’s own variance of haplotype or marker effects ),0(~)( 2

gii INV σg .  

The second model is at the level of the variance of chromosome segment effects, to 

allow these to be different for each approach. 

 

We shall consider genomic selection approaches with the simpler assumption of equal 

variances of effects across chromosome segments first.     

4.2.1.1 Least squares  

The first approach actually makes no assumptions regarding the distribution of 

chromosome segment effects, because it treats these effects as fixed in a least squares 

approach.  The approach is identical to that described for LD-MAS.  As described by 

Meuwissen et al. (2001) least squares genomic selection proceeds in two steps.   

1. Perform single segment regression analyses for every segment, i, using the 

model 

egX1y iin ++= µ  
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where y is the data vector; µ is the overall mean; 1n
 is a vector of 

n (n=number 

of records) ones; gi represents the genetic effects of the haplotypes at the ith 1-

cM segment (the vector of values of 
∧

ijg for the different j but at the same i) ; 

Xi is the design matrix for the ith segment; and e is the error deviation.  The 

dimensions of gi will be (number of haplotypes within chromosome segment i 

x 1), while the dimensions of Xi will be (number of records x number of 

haplotypes within chromosome segment i).   

• 2. Select the m most significant segments.  Estimate the effects of the 

haplotypes at these positions simultaneously using multiple regression 

egX1y iin ++= ∑
m

µ  where summation m is over all significant QTL 

positions.  All other haplotype effects are assumed to be zero.  

The least squares approach has two major problems.  One is the choice of significance 

level (arguments such as FDR could be used).  This can not be too lenient, or else the 

number of chromosome segment effects to estimate will be larger than the number of 

phenotypic records, in which case least squares cannot be used.  The other is that in 

the least squares approach, there is a selection of which chromosome segment effects 

to include in the estimation of breeding values based on the effect of the chromosome 

segment estimated from single segment regression.  As a result, the problem of over-

estimation of segment effects due to multiple testing will be incurred.  

4.2.2 Ridge regression and BLUP  

To overcome the problem of over-estimation of segment effects in the context of 

marker assisted selection, Whittaker et al. (2000) applied ridge regression.  In ridge 

regression, estimates of the gi are shrunk towards the mean, in an attempt to avoid the 

over-estimation of these effects.  This shrinkage can also allow all effects to be 

estimated simultaneously.  In ridge regression, all gi have a common variance.  Ridge 

regression can be applied to genomic selection: 

yX'
1

λI)X
'

(Xg −
+=

∧
 

where X is a matrix allocating all marker genotypes or haplotypes to phenotypes, and 

y is a vector of phenotypes.  The difficulty with ridge regression is that the choice of λ 

is arbitrary.  Further, if a very small value λ is chosen, there may not be a unique 
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solution for the model with the large number of gi fitted.  Methods for selecting values 

of λ are given in Xu (2003) and Whittaker et al. (2000).  Xu (2003) concluded that 

ridge regression was not a viable choice for QTL mapping if the model includes 

markers across the entire genome.  There reason was that ridge regression treats all 

effects equally across all loci, whereas in fact many markers have negligible effects.  

However ridge regression may still perform reasonably well in the context of 

estimating genomic breeding values, as the effects are accumulated across many 

segments.          

If λ= 22
/ ge σσ  in the equation for ridge regression, this is in fact BLUP as used by 

Meuwissen et al. (2001).  The BLUP assumes the variance of haplotype effects at 

each chromosome segment is the same.   

An important question is what value of 2
g should be used in the BLUP (eg. the 

variance of haplotype effects at a chromosome segment).   Meuwissen et al. (2001) 

dealt with this problem by calculating the genetic variance expected from a genetic 

drift-mutation model, and assuming the distribution of QTL effects was as given by 

Hayes and Goddard (2001).  See their paper in the appendix for details.   

Another way of estimating 2
g would be to first estimate the total additive genetic 

variance (using REML for example) then divide by the number of chromosome 

segments.   

An example of genomic selection using BLUP follows.  Consider the following data 

set for animals with a single chromosome, with 4 markers defining three chromosome 

segments.  The markers are SNPs, so there are 4 possible haplotypes per segment.  

Phenotypes were “simulated” with an overall mean of 2, an effect of haplotype 1 in 

the first segment of 1, an effect of haplotype 1 in the second segment of -0.5, and a 

normally distributed error term with mean 0 and variance 1.  The data is as follows: 
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 Haplotype segment 1 Haplotype segment 2 Haplotype segment 3 Phenotype 

Animal Paternal Maternal Paternal Maternal Paternal Maternal  

1 
1 1 2 2 1 1 3.41 

2 
1 2 1 2 1 1 2.47 

3 
2 2 1 1 1 2 2.32 

4 
1 3 2 3 2 1 2.32 

5 
1 4 1 3 2 1 1.75 

Note that there are 9 haplotypes observed in total (4 for the first segment, 3 for the 

second segment, and 2 for the third segment), while there are only 5 phenotypic 

records.     

The design matrix (X) for this data set is (in bold): 

 Segment 1 haplotypes Segment 2 haplotypes Segment 3 haplotypes 

Animal  1 2 3 4 1 2 3 1 2 

1 
2 0 0 0 0 2 0 2 0 

2 
1 1 0 0 2 0 0 2 0 

3 
0 2 0 0 0 2 0 1 1 

4 
1 0 1 0 0 1 1 1 1 

5 
1 0 0 1 1 0 1 1 1 

The vector 1n’ is [1 1 1 1 1]’ 

The mixed model equations are 









=
























+
∧

∧

yX'

y'1

g

µ

IλXX'X'1

X'1'11 n

n

nnn
 

Where 
2

2

g

e

σ

σ
λ = and I is an Identity matrix (total number of haplotypes x total number 

of haplotypes). 
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Assuming a value of 1 for λ, the mixed model equations with our data are: 

 
5 5 3 1 1 3 5 2 7 3 

  

 12.28 

5 8 1 1 1 3 5 2 8 2    13.37 

3 1 6 0 0 2 4 0 4 2 

 ∧

µ   7.12 

1 1 0 2 0 0 1 1 1 1    2.32 

1 1 0 0 2 1 0 1 1 1    1.75 

3 3 2 0 1 6 0 1 5 1 

 ∧

g   6.7 

5 5 4 1 0 0 10 1 7 3    13.79 

2 2 0 1 1 1 1 3 2 2    4.07 

7 8 4 1 1 5 7 2 12 3    18.17 

3 2 2 1 1 1 3 2 3 4    6.39 

 

Giving the following estimates of the mean and Haplotype effects: 

Effect Estimate 

Mean  
2.05 

Segment 1 Haplotype 1 
0.2 

 Haplotype 2 
-0.06 

 Haplotype 3 
0 

 Haplotype 4 
-0.14 

Segment 2 Haplotype 1 
-0.07 

 Haplotype 2 
0.21 

 Haplotype 3 
-0.14 

Segment 3 Haplotype 1 
0.19 

 Haplotype 2 
-0.19 

With so few records, the accuracy of estimating the haplotype effects is low. 

Now if we genotype a group of young animals we can estimate their GEBV from the 

haplotypes they carry:   

∧

= gXGEBV  
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Consider the following animals: 

 Haplotype segment 1 Haplotype segment 2 Haplotype segment 3 

Animal Paternal Maternal Paternal Maternal Paternal Maternal 

6 1 2 1 2 1 1 

7 1 1 2 2 1 2 

8 2 3 2 2 1 2 

9 1 4 3 1 1 2 

10 2 4 2 2 1 2 

The X matrix for the new animals is: 

 Segment 1 haplotypes Segment 2 haplotypes Segment 3 haplotypes 

Animal  1 2 3 4 1 2 3 1 2 

6 1 1 0 0 1 1 0 2 0 

7 2 0 0 0 0 2 0 1 1 

8 0 1 1 0 0 2 0 1 1 

9 1 0 0 1 1 0 1 1 1 

10 0 1 0 1 0 2 0 1 1 

Using the values of 
∧

µ and 
∧

g from above gives the following vector of GEBV 

Animal GEBV TBV 

6 
2.72 0.5 

7 
2.88 2 

8 
2.42 0 

9 
1.9 0.5 

10 
2.28 0 

As the data was simulated, we also have a true breeding value (TBV) for these 

animals (the sum of the true haplotype effects described above).  We can correlate the 

GEBV and TBV to get the accuracy of genomic selection in this case, which is 0.58 in 

this case. 

With BLUP the chromosome segment (or QTL) with the largest variance will tend to 

have it’s variance over-estimated, and this will still decrease the accuracy of genomic 

selection somewhat although much less than when the g are treated as a fixed effect. 

Better estimates of breeding value can be obtained by methods that allow the variance 

of the chromosome segment effects to vary between chromosome segments.   
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4.2.4 Bayesian methods 

If we adopt a Bayesian approach, we can capture our prior knowledge that there are 

some chromosome segments containing QTL of large effects, some segments with 

moderate to small effects, and some segments with no QTL at all when we estimate 

the effects of haplotypes (or single markers) within the chromosome segments.   

4.2.4.1 Optional topic: Bayesian statistics refresher 

Bayes theorem uses a simple rule about conditional probabilities 

)(/)()|()(/)()|( yPxPxyPyPxandyPyxP ==  

This can be understood with an example.  Suppose I have a jar of coins in which 99% 

are fair coins and 1% are double headed coins.  I take a coin at random and toss it 

three times and observe three heads.  What is the probability the coin is a double 

headed coin? Let y = the data, eg.  3 heads from 3 tosses, x is this is a double headed 

coin, x’ this is a fair coin. Then P(x)=0.01,P(x’)=0.99, P(y|x)=1.0 and P(y|x’) =0.125 

(eg. 0.5^3). Then the outcomes of the experiment can be represented in a table: 

 P(x or x’) P(y|x or x’) P(y|x)*P(x) 

Fair coin 0.99 0.125 0.124 

Double headed coin 0.01 1.0 0.01 

P(y)   0.134 

Therefore the probability that this is a double headed coin given I observed three 

heads from three tosses is )(/)()|()|( yPxPxyPyxP = =1.0*0.01/0.134 = 0.075.  

That is despite the outcome of three heads there is only a small probability of the coin 

being double headed because doubled headed coins are so rare.   

Bayes theorem is useful because often it is easy to calculate P(y|x), while it is more 

difficult to calculate P(x|y), as in the above example.   

After the experiment has been done, the P(y) will be a constant in all calculations we 

do.  So we can also write Bayes theorem as  

)()|()|( xPxyPyxP ∝  
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Where the symbol ∝ indicates is proportional to.  This is useful because the 

calculation of P(y) may be difficult. 

The probability P(x|y) is called the posterior probability because it is the probability 

after the experiment has been done.  It is calculated from two terms.  P(y|x) is the 

likelihood used by frequentists.  P(x) is called the prior probability because it is the 

probability of x before the experiment was conducted.  This allows us to incorporate 

prior knowledge into the estimate of x.    

In practise, calculating the posterior distribution (and integrating out nuisance 

parameters) may be difficult to do.  Often it is impossible to find a formula that gives 

the solution.  Bayesians have developed a number of approaches to overcome this 

problem. 

- Choose priors that make the algebra easy.  So called conjugate prior 

distributions have the property that, when combined with a particular 

distribution for the data, they yield a recognised distribution for the 

posterior.  For instance if the data are normally distributed, and a normal 

prior is used for a parameter affecting the data, then the posterior 

distribution of that parameter will be normally distributed. 

- Numerical integration.  If you can calculate the height of the posterior 

distribution at every point, you can integrate it over nascence parameters 

using numerical integration such as Simpsons rule.   

- Simulation.  If you can draw samples from the posterior distribution, you 

can use the samples to approximate the distribution.  For example the 

mean of many samples is a good approximation to the mean of the 

distribution. This is what Markov Chain Monte Carlo (MCMC) methods 

such as Gibbs sampling do.       

 

4.2.4.2 Bayesian method with a prior that assumes many QTL have a small effect 

and few have a large effect 

If we allow the variance of the effects across chromosome segments to vary, then the 

variances 2)( giV σ=ig  must be estimated.  Meuwissen et al. (2001) described a 
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Bayesian method they termed Bayes Method A to estimate chromosome segments 

effects and their variances simultaneously. 

The method modelled the data at two levels.  The first is at the level of the data as 

above: 

egX1y iin ++= µ  

The prior distribution of the error variance 2
e was -2(-2, 0), which yields an 

uninformative prior (eg the prior receives little or no weight in the calculation).  The 

prior distribution of the mean µ was uniform and uninformative, while the prior 

distribution of haplotype effects within chromosome segment i was ),0(~ 2

giN σig .  

Note that this is equal to BLUP estimation of the chromosome segment effects with 

different variances for each segment.     

The second level of model is at the variances of chromosome segment effects.  In 

Meuwissen et al (2001), the prior distribution of the variances of effects across 

chromosome segments was consistent with many QTL of small effect and few of 

large effect.  The prior distribution was the scaled inverted chi-square distribution, 

),(~)(Pr 22
Svior gi

−χσ , where S is a scale parameter and  is the number of degrees of 

freedom.  The values of v and S were chosen as v=4.012 and S =0.002.  These values 

were chosen to give a distribution similar to what would be expected from the 

distribution of QTL effects derived by Hayes and Goddard (2001) and the expected 

heterozygosity of QTL under the neutral model (see Appendix for details).     

The posterior distribution of 2

giσ  combines information from the prior and the data.  

Information from the data is included by conditioning on the chromosome segment 

effects, eg.  )|( 2

iggiP σ .  An advantage of using an inverted chi-square distribution as 

a prior for the variances is that with normally distributed data, the posterior is also 

inverted chi-squared.  In fact if the prior for our chromosome segment variances has 

the scale parameter S, and degrees of freedom v, then the posterior for 2

giσ   given the 

chromosome segment effects, )|( 2

iggiP σ is an inverted chi-squared scaled by S+gi’gi 

and v+ni degrees of freedom:  
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),()|( 22

iii g'gg ++= −
SnvP igi χσ  

 

where ni is the number of haplotype effects at segment i.   

We cannot use this posterior distribution directly for estimating the 2

giσ  because it is 

conditional on the unknown gi effects. Meuwissen et al. (2001) therefore used Gibbs 

sampling to estimate effects and variances.   

The Gibbs chain could proceed as follows: 

Step 1.  Initialise the vectors of haplotype effects for each vector of chromosome 

segment effects gi for j=1,ni where ni is the number of haplotypes at the chromosome 

segment, with a small positive number.  The overall mean µ must also be initialised.       

Step 2.  Update the  2
gi for the ith  chromosome segment by sampling it from the fully 

conditional distribution  ),(2

ii g'g++−
Snv iχ , where v is 4.012 and S is 0.002, and ni 

is the number of haplotype effects at the ith chromosome segment. 

Step 3.  Given the gi and µ calculate the values for e as µ'1n−−= Xgye , where X = 

[X1 X2 X3 ...] is the design matrix of all haplotype effects; and g is a vector of all 

haplotype effects across chromosome segments.  Then update the error variance, 2
e 

by drawing a single sample from ),2(2

ii e'e−− nχ   

Step 4.  Sample the overall mean µ given the updated error variance from a normal 

distribution with mean ( )Xg1y1 '

n

'

n −
n

1
and variance ne /2σ , where X = [X1 X2 X3 ...] 

is the design matrix of all haplotype effects; and g is a vector of all haplotype effects. 

Step 5.  Sample all the haplotype effects gij given the newly sampled µ, 2
e and 2

gi 

from a normal distribution with mean 
22 / ie σσ

µ

+

−− =

ij

'

ij

n

'

ij0)(ij

'

ij

'

ij

XX

1XXgXyX
 , where Xij is 

column of X of effect gij; g(ij=0) equals 
g except that the effect of gij is set to zero, and 

variance )/( 2

2
2

gi

e
e σ

σσ +ij

'

ijXX .   
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Step 6.  Repeat Step 2 (using the updated gi) to Step 5 for a large number of cycles.                  

Other authors have published similar methods but with different priors used for the 

variance of chromosome segment effects.  In Xu (2003) this was 1/ 2

1χ  (eg. an 

inverted chi-square distribution with 1 degree of freedom).  Xu (2003) also described 

their method for single SNP markers, rather than marker haplotypes.  Therefore the 

matricies Xi are the design matricies for the effect of a single marker, so Xij =1 if the 

ith SNP genotype for individual j is a1a1, Xij=0 if the ith SNP genotype for individual j 

is a1a2, and Xij=-1 if the ith SNP genotype for individual j is a2a2.  The implicit 

assumption in Xu (2003) is that the partial regression coefficient, gi, (the effect of 

marker i on the trait), will absorb partly the effects of all QTL located between 

markers i-1 and i+1.  The validity of this assumption will depend on the LD between 

the markers and the QTL.    

 

Ter Braak et al. (2005) argued that prior used by Xu (2003) would result in an 

improper posterior distribution, in particular a posterior of gi with infinite mass near 

zero.  To ensure a valid posterior, they altered the prior distribution of variance of 

chromosome segment effects to be 1/ 2

998.0χ .   

 

Xu (2003) actually proposed their method for QTL mapping rather than genomic 

selection, claiming that the method gave more precise estimates of QTL location than 

single QTL models.  This was because the effect of a QTL was removed in adjacent 

marker brackets so the QTL were mapped to a smaller interval.  The approach also 

gave more accurate estimates of QTL effect, as the problem of over-estimating the 

QTL effect due to multiple testing were avoided.  Xu (2003) describe applications for 

plant populations for QTL mapping such as backcross, double haploid, or F2.   

Meuwissen et al. (2001) pointed out that in reality, the distribution of genetic 

variances across chromosome segments is that there are many chromosome segments 

which contain no QTL, and relatively few chromosome segments which do contain 

QTL. However, the prior density of method BayesA does not actually reflect this, the 

prior does not have a density peak at 2
gi = 0; in fact its probability of 2

gi = 0 is 

infinitesimal.  Meuwissen et al. (2001) addressed this in their Method BayesB.  
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Method BayesB used a prior that has a high density, , at 2
gi = 0 and has an inverted 

chi-square distribution for 2
gi > 0; .  The prior distribution was  

 

 

where = 4.234 and S = 0.0429 yield the mean and variance of 2
gi given that 2

gi > 0 

(see Appendix for derivation of v and S values). 

Figure 4.1 Illustrates the difference between the prior distribution of variances of 

chromosome segment effects used in method Bayes B and that used in method 

BayesA.    
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Figure 4.1 A.  Prior distribution of variances of chromosome segment effects 

used in method BayesA, and B.  Prior distribution of variances of chromosome 

segment effects used in method BayesB in Meuwissen et al. (2001), for 20% of 

chromosome segments containing QTL.   

The figure illustrates the infinitesimal density of the prior used in BayesA at 0, and 

the much higher mass near (and actually at) zero for the prior used in BayesB.  The 

Gibbs sampler described in Method BayesA cannot be used in method BayesB, as it 

will not move through entire sampling space. This is because the sampling of 2
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from the posterior distribution of Var(of 2
gi ) is not possible if g'

igi >
 0, which it will 

never be as gi = 0 has an infinitesimal probability if 2
gi > 0.  This problem was 

resolved by sampling 2
gi and gi simultaneously using a Metropolis-Hastings 

algorithm (see Appendix for details).   

4.2.5 Evaluation of accuracy of genomic selection methods  

To evaluate their methods (least squares, BLUP, Bayes A and Bayes B), a genome of 

1000 cM was simulated with a marker spacing of 1 cM.  The markers surrounding 

every 1-cM region were combined into marker haplotypes. Due to finite population 

size (Ne = 100), the marker haplotypes were in linkage disequilibrium with the QTL 

located between the markers.  The effects of the chromosome segments were 

predicted in one generation of 2000 animals, and the breeding values for the progeny 

of these animals were predicted based only on the markers which they carried, Table 

4.1.   

 

Table 4.1. Comparing estimated vs. true breeding values in progeny with no 

phenotypic records (from Meuwissen et al. (2001).  Chromosome segments were 

estimated in a population of 2000 animals.  

 

 rTBV;EBV + SE bTBV.EBV + SE 

 

LS 0.318 ± 0.018 0.285 ± 0.024 

BLUP 0.732 ± 0.030 0.896 ± 0.045 

BayesA 0.798 0.827 

BayesB 0.848 + 0.012 0.946 + 0.018 

Mean of five replicated simulations LS, least squares; BLUP, best linear unbiased 

prediction; Bayes, Bayesian method with inverse chi-square prior distribution and 

where the prior density of having zero QTL effects was increased; rTBV;EBV, 

correlation between estimated and true breeding values (equals accuracy of selection); 

bTBV;EBV, regression of true on estimated breeding value.  
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The least squares method does very poorly, primarily because the haplotype effects 

are over-estimated.  The increased accuracy of the Bayesian approach occurs because 

this method sets many of the effects of the chromosome segments to close to zero in 

BayesA or zero in BayesB, and “shrinks” the estimates of effects of other 

chromosome segments based on a prior distribution of QTL effects.      

 

4.2.6 An IBD approach to genomic selection 

In the above models, the covariance between haplotype effects for haplotypes within a 

chromosome segment are assumed to be zero, eg. ),0(~ 2

giN σIg i .  The assumption is 

that each haplotype carries a unique QTL allele.  In reality, it is possible that different 

haplotypes may carry the same QTL allele.  We can model this by setting the 

covariance between two haplotypes to the probability that at a putative QTL position, 

the two haplotypes are identical by descent, and therefore carry the same QTL allele.  

This approach can be used in Genomic selection if we consider many putative QTL 

positions across the genome simultaneously (DeRoos et al. 2007).  In fact Meuwissen 

and Goddard (2004) described this approach considering one chromosome at a time, 

but their method could include all chromosomes at once.  De Roos et al. (2007) used 

this approach to predict GEBV for fat % of progeny tested bulls, and reported an 

accuracy of GEBV of 0.75.  

   

4.2.7 Optional topic 1: Genomic selection with LDLA 

Meuwissen and Goddard (2004) describe an approach to mapping multiple QTL with 

multi-trait data, incorporating the IBD matrix for LDLA.  They make a key 

simplification which make their method tractable.  The first is that correlations among 

QTL effects at a single gene are either +1 or –1, ie the QTL either increases both 

traits, or it increases one trait and decreases the other.  This assumption is strictly 

valid only if there are two alleles segregating at the QTL. They also assumed there 

was one QTL per marker bracket, and considered only one putative QTL per bracket.     

 

The multi-trait multi-QTL model, for the vector of m phenotypic records of animal i 

is: 

( )∑ ++++=
j

ijijijiii qq evubXy 21  
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where yi is a mx1 vector of phenotypic records for animal i; Xib is a mx1 vector of 

non genetic fixed effects corrections for the traits of animal i;  ui=(mx1) vector of the 

effects of background genes (polygenic effect); ei is a mx1 vector of environmental 

effects on each of the traits, Σj denotes summation over all putative QTL positions on 

the chromosome (or genome for genomic selection); vj is a mx1 vector of the 

direction of the effects of the QTL alleles on different traits at position j; and qij1 (qij2) 

is the size of the QTL effect for the paternal (maternal) allele of animal i at position j 

along the direction vj.  This vj is the same for all animals at QTL position j.  For 

example, if  ( ) 221 =+ ijij qq  and vj =[1 2]’ this gives a genotypic effect of 2 and 4 for 

traits 1 and 2 respectively.   

 

At each marker bracket, there was an indicator variable Ij, which was one if there was 

a QTL in the bracket and zero if there was no QTL in the bracket.   

 

What is needed is the posterior probability density of the parameters b, u,v,q, I and R 

(the covariance between the errors of the traits) .   Using Bayes theorem: 

[ ]∏∝
i

iii pquypp )()....,,,,|()( Rv,q...,u,v,b,RI,vbHA,y,|RI,q...,v,u,b,  

The H here is the IBD matrix described for LDLA in section 2.6.1 and A is the 

average relationship matrix.   [ ]∏
i

iii quyp )....,,,,|( RI,vb  is the likelihood of the 

data and )( Rv,q...,u,v,b,p are the prior distributions of these parameters.   

 

Meuwissen and Goddard (2004) describe a Gibbs sampling scheme for sampling from 

the joint posterior distribution [ ]∏
i

iii pquyp )()....,,,,|( Rv,q...,u,v,b,RI,vb .   

 

De Roos et al. (2007) in real data and Calus et al. (2007) in simulated data 

demonstrated that using the method of Meuwissen and Goddard (2004) can lead to 

high accuracies of GEBV. 
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4.3  Factors affecting the accuracy of genomic selection 

While the simulations demonstrate genomic selection has huge potential to increase 

rates of genetic gain, several key questions remain regarding it’s implementation.  

These are  

1) How many markers are required, determined by the extent of LD. 

2) How many phenotypic records are required in the initial experiment estimating 

the effect of chromosome segments 

3) How do non-additive effects affect the accuracy of genomic selection. 

 

4.3.1 Extent of linkage disequilibrium and number of markers 
required 

The arguments here are similar to those given in chapter 3 for the number of markers 

required for LD-MAS.  For genomic selection to work, the haplotypes or single 

markers must be in sufficient LD with the QTL such that the haplotype or single 

markers will predict the effects of the QTL across the population.  For genomic 

selection to be as successful as in the simulations of Meuwissen et al. (2001), the level 

of LD between adjacent markers should be r2>=0.2, as this was the level of LD there 

simulations generated.  Solberg et al. (2006) used simulation of a population with Ne 

100 to assess the effect of marker spacing on the accuracy of genomic selection (with 

BayesMethodB).  They found a drop in accuracy of 20% as marker spacing was 

increased from one marker every 0.5cM to one marker every 4cM.  Calus et al. (2007) 

used simulation to assess the effect of the average r2 between adjacent marker pairs on 

the accuracy of genomic selection (where the accuracy was the correlation of true 

breeding values and GEBV for a group of un-phenotyped animals).  They found that 

accuracy increased dramatically as the average r2 between adjacent markers increased, 

from 0.68 when the average r2 between adjacent markers was 0.1, to 0.82 when the 

average r2 between adjacent markers was 0.2, Figure 4.2.    

 

In dairy cattle populations, an average r2 of 0.2 between adjacent markers is only 

achieved when markers are spaced every 100kb.  As the bovine genome is 

approximately 3 000 000kb, this implies that in order of 30 000 markers are required 

for genomic selection to be successful!   
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4.3.2 Haplotypes or single markers 

 
Closely related to the effect of the extent of linkage disequilibrium on the accuracy of 

genomic selection is the effect of using single markers rather than haplotypes.  The 

advantage of haplotypes over single markers in genomic selection is dependent on 

how accurately the haplotypes identify identical by descent chromosome segments 

compared to the accuracy with which single markers identify identical by descent 

chromosome segments.  This can be quantified as the proportion of QTL variance 

which is explained by the haplotype effects compared to the proportion of QTL 

variance which is explained by single marker effects, as discussed in section 2.3.  

Calus et al. (2007) compared the accuracy of GEBV for progeny without phenotypic 

records from genomic selection using single markers or marker haplotypes, in 

simulated data.               

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.075 0.095 0.115 0.135 0.155 0.175 0.195 0.215

Average r
2 

between adjacent marker loci

A
c
c
u
ra

c
y
 o

f 
G

E
B

V

SNP1

HAP_IBS

HAP_IBD

 

Figure 4.2  Accuracies of genomic breeding values estimated for animals with no 

phenotypic information with three different models of genomic selection: SNP1, 

using the single marker approach of Xu (2003), with the addition of a polygenic 

effect in the model; HAP_IBS using haplotypes of adjacent markers and method 

BayesB of Meuwissen et al (2001) to estimate haplotype effects, with the addition 

of a polygenic effect; HAP_IBD using windows of haplotypes of 10 markers in 

the approach of Meuwissen and Goddard (2004).  With permission from the 

authors., Calus et al. (2007).  
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They constructed haplotypes from the two adjacent markers defining each 

chromosome segment.  They found that the advantage of using haplotypes increased 

at lower marker densities (or lower r2 values between adjacent makers).  When the r2 

between adjacent markers was 0.2 or greater, there was little advantage in using 

marker haplotypes, Figure 4.2  Presenting the accuracy as a function of the average r2 

between adjacent markers, as Calus et al. (2007) do, is appealing as the results can be 

used to infer the number of markers required to achieve a desired accuracy of 

genomic selection given the extent of LD observed in the livestock species in 

question.  However, in all cases the accuracy achieved with the IBD approach was 

higher than regression on single markers or markers haplotypes.  This was particularly 

true at low densities of markers, probably due to the contribution from linkage.    

4.3.3 Number of phenotypic records in the reference population  

 
The accuracy of genomic selection will depend on the number of haplotype effects at 

the chromosome segments, and the number of phenotypic records per unique 

haplotype, or per marker allele if single markers are used.  The more phenotypic 

records available, the more observations there will be per haplotype and the higher the 

accuracy of genomic selection.  There are also large differences between statistical 

methodologies in the accuracy achieved with a low number of records.  Meuwissen et 

al. (2001) compared the accuracy of least squares, BLUP and BayesB with different 

numbers of phenotypic records, Table 4.2. Their results also suggest that in the order 

of 2000 phenotypic records are required to accurately estimate the haplotype effects.  

In their simulation, a heritability of 0.3 was used.  If the heritability were higher, so 

that phenotype was a more accurate predictor of genotype, fewer records may be 

required.  For example, in dairy cattle, daughter yield deviations (DYDs) are often 

used as the phenotype.  DYDs can have an accuracy of 0.99.          
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Table 4.2: Correlations between true and estimated breeding values 

when the number of phenotypic records is varied (from Meuwissen et 

al. 2001, with permission from the authors) 

 

 

No. of phenotypic 
records 

 

 500 1000 2200 

 

Least squares 0.124 0.204 0.318 

Best linear unbiased prediction (BLUP) 0.579 0.659 0.732 

BayesB 0.708 0.787 0.848 

 

4.4 Non additive effects in genomic selection 

While breeding values by definition should include only additive effects (genetic 

merit which is passed from one generation to the next), in some cases it may be 

desirable to predict genetic merit which better predict an animals actual phenotype, 

for example through the inclusion of dominance and epistatic effects.  If phenotypes 

are used in the estimation of chromosome segment effects (rather than DYDs for 

example), inclusion of epistatic and dominance effects in the model could improve the 

accuracy of estimating the additive effect of the chromosome segment effects.  

Further, dominance and epistatic effects can be exploited to produce sets of progeny 

with maximum genetic merit, through mate selection for example (Kinghorn 1998).   

 

Estimates of dominance effects with single markers is straight forward, requiring 

extension of the genetic model to estimate two effects per SNP, rather than one: 

∑ ∑ +++=
p

i

i

p

i

iijiijj edwgxy µ  

Where xij and wij are defined as 2=ijx and 1−=ijw for genotype A1A1, 0=ijx  and 

1=ijw for A1A2 and , 2−=ijx  and 1−=ijw for A2A2.  If G11, G12 and G22 are the 

genotypic coefficients for the three genotypes, then 2211 GGg i −= for the additive 

effect and 1122122 GGGd i −−= .  The x and w coded in this way are independent and 
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each has a zero expectation and unity variance.  The Bayesian estimation method of 

Xu (2003) can then be extended to estimate di as well as gi.     

 

Estimation of epistatic effects is more difficult, due to extremely large number of 

marker by marker interactions in the single marker approach, or haplotype by 

haplotype interactions in the haplotype approach.  Xu (2007) extended the single 

marker Bayesian approach in Xu (2003) to account for epistatic effects. 

A model including epistatic effects can be written as: 

∑ ∑
= >

+×+=
k

l

k

ll

llllll gggy
1 '

'' )( εαα  

Where 'll gg × is the element wise multiplication of vectors gl
 and gl’, αl is the main 

effect of locus l, and αll’ is the epistatic effect between locus l and l’.  The model can 

be simplified to fit into the methodology of Xu (2003) by using j to index the jth 

genetic effect for j=1,q, where q=k(k+1)/2.  The model can then be re-written  

∑
=

+=
q

1j

jj εZy γ  

For example, Zj=gl and γj=αl if the jth effect is a main effect, and Zj= 'll gg × and 

γj=αll’ if the jth
 effect is an epistatic effect.   

 

Xu (2007) used a similar approach to that in Xu (2003) to estimate the γj.  A normal 

prior was assigned to the γj , where ).,0(~ 2

jj N σγ   The prior assigned to the 2

jσ was 

./1~ 2

),(

2

ωτχσ j   For details on this prior distribution see Xu (2007). 

 

Xu (2007) showed that epistatic effects could be estimated both in simulated data with 

this approach using 600 records in a back-cross design.  They also applied the method 

to real data from a barley backcross experiment. 

 

Gianola et al. (2006) presented semi-parametric procedures for genomic selection 

which allowed them to estimate interactions between potentially hundreds of 

thousands of markers.  Their methods included kernel regression, which regress 

marker effects according to a smoothing parameter h, embedded into the standard 

mixed model equations.  Their model treated the variance of effects across 
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chromosome segments as equal.  In a small example, they achieved accuracies of up 

to 0.85 for predicted genotypic values in selection candidates with no phenotypes, 

when both dominance and epistasis were simulated.  For more details see their paper.       

 

4.5 Genomic selection with low marker density 

The IBD methodology for genomic selection is particularly suited to cases where 

marker density is low, as in this case there will be some advantage in including the 

linkage information in the estimation of chromosome segment effects carried by each 

animal.  Calus et al. (2007) demonstrated that use of the IBD approach can achieve 

high accuracies of genomic selection even with levels of r2 between adjacent markers 

as low as 0.1, Figure 4.2.  This result is however dependent on population structure.  

For example large sire half sib groups in the population will allow accurate estimation 

of sire haplotypes, such that linkage information contributes considerably to the 

accuracy of genomic selection.        

 

In LD-MAS, a polygenic breeding value is included in the GEBV to pick up genetic 

variance not captured by the markers.  In genomic selection as specified by 

Meuwissen et al. (2001), a polygenic component is not included in the prediction of 

GEBVs.  However if the available marker density is not sufficient to ensure all QTL 

are in high LD with a marker of haplotype, inclusion of a polygenic component in the 

GEBV from genomic selection would recapture some of the effects of the QTL which 

are not in sufficient LD with markers.   

 

Even with a sparse marker map, genomic selection can also be used to increase the 

efficiency of development of composite lines (Piyasatian et al. 2006).  Crosses 

between breeds will exhibit much greater levels of LD than within breed populations.  

Piyasatian et al. (2006) demonstrated that the genetic merit of composite lines can be 

improved by using genomic selection to capture chromosome segments with the 

largest effects from the contributing breeds, even with a sparse marker map.   

 

4.6 Genomic selection across populations and breeds 

In practise Genomic selection is always applied in a population that is different to the 

reference population where the marker effects are estimated.  It might be that the 
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selection candidates are from the same breed, but are younger than the reference 

population, or they could be from a different selection line or breed.  Genomic 

selection relies on the phase of LD between markers and QTL being the same in the 

selection candidates as in the reference population.  However as the two populations 

diverge, this is less and less likely to be the case, especially if the distance between 

markers and QTL is relatively large.  In section 1.5 we used the correlation between r 

in two populations, corr(r1,r2), to assess the persistence of LD across populations.  No 

if the chromosome segment effects are estimated in population 1, and GEBVs in that 

population can be predicted with an accuracy x1, then the GEBVs of animals 

population 2 may be predicted from the chromosome segment effects of population 1 

with an accuracy x2 = x1*corr(r1,r2).  For each set of populations, one can work out the 

marker density that is required to obtain a corr(r1,r2) = 0.9 (De Roos et al. 2007).    

  

In the above, we have assumed that effect of QTL alleles are similar in different 

breeds and populations.  For some QTL which have been traced to known mutations, 

the alleles do act reasonably similarly in different breeds and populations.  For 

example, the A allele of the DGAT1 gene results in increased fat yield and reduced 

protein yield and milk volume in New Zealand Holstein-Friesians, Jersey’s and 

Ayshires (Spelman et al. 2002).  However while the size of the effects are consistent 

for protein and milk volume in the Holstein-Friesian and Jersey breeds, the size of the 

fat response in Holstein-Friesians is nearly double that for Jerseys (Spelman et al. 

2002).  Another problem is that we have assumed that the same mutations affecting 

production traits are polymorphic in different breeds.  This is true for some well 

characterised mutations such as the K232A mutation in DGAT1, which is 

polymorphic in Holsteins, Jerseys, Aryshires and some Bos indicus breeds (Spelman 

et al. 2002, Kaupe et al. 2004).  Other mutations, such as some of the functional 

mutations in the myostatin gene, appear to breed specific (Dunner et al. 2003).  One 

solution would be to use a multi-breed reference population, so that all the genetic 

variants are captured.  Finally, genotype by environment interaction may also reduce 

the accuracy of predicted GEBV when the chromosome segment effects are estimated 

from animals in another population.  
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4.7 How often to re-estimate the chromosome segment 
effects?  

 

If the markers used in genomic selection were actually the underlying mutations 

causing the QTL effects, the estimation of chromosome segment effects could be 

performed once in the reference population.  GEBVs for all subsequent generations 

could be predicted using these effects.  A more likely situation in practise is that there 

will be markers with low to moderate levels of r2 with the underlying mutations 

causing the QTL effect.  Over time, recombination between the markers and QTL will 

reduce the accuracy of the GEBV using chromosome segment effects predicted from 

the original reference population.  Meuwissen et al. (2001) used simulations to 

investigate the change in accuracy of GEBV with an increasing number of generations 

between the reference population and the population for which GEBV were estimated, 

Table 4.3. 

 

Table 4.3. The correlation between estimated and true breeding values in 

generations 1003–1008, where the estimated breeding values are obtained from 

the BayesB marker estimates in generations 1001 and 1002.  From Meuwissen 

et al. (2001).  

 

Generation rTBV;EBV 

 

1003 0.848 

1004 0.804 

1005 0.768 

1006 0.758 

1007 0.734 

1008 0.718 

The generations 1004–1008 are obtained in the same way as 1003 from their 
parental generations.  

 

 

After five generations, the decline in accuracy of GEBV was large.  This suggests that 

with the levels of LD simulated in Meuwissen et al. (2001), re-estimation of the 

chromosome effects should take place every 3 generations.   
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De Roos et al (2007) investigated the same issue using real SNP data from both Dutch 

and Australian Holstein Bulls.  They calculated the correlation of r values at different 

marker distances for sub-divisions of the same population across time, as an indicator 

of persistency of marker-QTL phase across generations.  They found correlation of r 

values between Dutch Holstein bulls before 1995 and Dutch Holstein calves born in 

2006 is 0.9 at 135kb.  They concluded from this data that with 20,000 markers, the 

predictions of chromosome segment effects should be usable for two generations, as 

accuracy will be reduced only slightly (by a factor 0.9) by breakdown of LD phase 

over this time.   

 

4.8 Cost effective genomic selection 

Depending on the genotyping technology used, the cost of genotyping animals for ~ 

30 000 SNPs may be $500, while the cost of genotyping animals for ~ 50 SNPs may 

be as low as $20.  If the number of markers required to apply genomic selection can 

be reduced, this could represent a large saving to the breeding program (and may 

make the difference between applying or not applying genomic selection).   

   

There are two possibilities to reduce the number of markers in genomic selection.  

When the method BayesB of Meuwissen et al. (2001) is applied to estimate 

chromosome segment effects in the reference population, many of the chromosome 

segment effects will be set to close to zero.  So genotyping the markers in these 

segments in animals where GEBVs are to be predicted using generations has no value.  

In other words only the subset of markers in chromosome segments with a non-zero 

effect need be genotyped.  One problem with this approach occurs when genomic 

selection is extended to multiple traits.  If the selection criteria includes say 30 traits, 

and there are 50 markers per trait with non-zero effects, then the total number of 

markers to be genotyped may be ~ 1500.  For most genotyping platforms, the cost of 

genotyping 1500 markers is close to the cost of genotyping 30000 markers! 
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4.9 Optimal breeding program design with genomic selection 

Genomic selection allows prediction of very accurate EBVs for young animals.  The 

effect of such information on the optimal breeding program design for the different 

livestock industries could be profound.   

 

In dairy cattle breeding, progeny testing is currently used to identify bulls of high 

genetic merit.  A good description of the progeny test scheme was given by Schaeffer 

et al. (2006)  “In the progeny test scheme, a number of elite cows are identified each 

year as the dams of young bulls, and these cows are mated to specific sires”.  At one 

year of age, the young bulls are test mated to a large number of cows in the 

population, in order that they will have about 100 daughters with their first EBVs for 

production and other traits.  Approximately 43 months later the daughters from these 

matings complete their first lactations and the young bull EBVs for production are 

produced with an accuracy of approximately 75%.  At this point the young bull is 

proven or returned to service.”  As suggested by Schaeffer et al. (2006), genomic 

selection allows GEBVs with an accuracy of 0.75 or greater to be calculated for bull 

calves.  Bull calves can therefore be selected at this stage, rather than following 

progeny testing.  This reduces the generation interval by at least half.  Further genetic 

gains can be made by genotyping the elite bull dams and selecting a smaller number 

for mating to specific sires.   Schaffer (2006) suggested the effect of genomic 

selection may be to shift the structure of the dairy cattle breeding industry to a model 

similar to that used by the poultry and swine industries, where companies maintain a 

nucleus of elite animals “within house”.  Another effect of genomic selection may be 

more appropriate balance in the direction of genetic gain.  Currently in the dairy 

industry, large gains are made for production traits, while the gains in fertility are 

relatively smaller, in part due to the lower accuracy of fertility EBVs (and also 

because production and fertility are unfavourable correlated).  Genomic selection 

could increase the accuracy of fertility EBVs, if sufficient records were taken in the 

initial experiment to estimate chromosome segment effects, allowing greater 

contribution of this trait to the total breeding objective. 

 

In the pig. sheep and poultry industries, a major impact of genomic selection is likely 

to be increased genetic gain for hard to select for traits.  This would include traits like 

disease resistance in poultry and meat quality in pigs. 
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5.  Practical Exercises 
 

5.1  Haplotyping with the PHASE program 

The above exercise assumes that the genotypes of each animal have already been 
sorted into haplotypes.  In a real data set, this will not be the case.  If the population 
has large half sib family structure, resolving the genotypes is relatively 
straightforward.  In some situations pedigree information may no be available, or you 
may deliberately choose to randomly sample animals from the population for LD 
mapping.  With this type of data it is possible to use the PHASE program (Stephens et 
al 2001).  The program is available for free download at 
http://www.stat.washington.edu/stephens/software.html.  Note that the program is 
only designed to resolve short range haplotypes, eg many markers in a single cM. 
 
Exercise 3.2.1.  Haplotyping with the PHASE program. 

The casein genes in goats are good candidates for harbouring a mutation affecting 
milk production, as casein constitutes around 80% of caprine milk protein.  You have 
found 10 SNPs in the goat casein genes, and want to sort the genotypes into 
haplotypes for LD analysis.  205 goats have been genotyped for the 10 SNPs. 
 
The PHASE input file (goat_geno.txt) has the following format: 
 
205           
10           
P 264 866 888 1105 1169 1379 1470 6075 6091 9889 
SSSSSSSSSS           
38362           
 A C G G G C G T C C 
 A C G G G C G T C C 
38393           
 A C G G G T G ? ? T 
 A C A A A C A ? ? C 
38421           
 A C G ? G T G ? G T 
 A C A ? A C A ? C C 
38452           
 ? C G G G T G T ? C 
 ? C A A A C A C ? C     
 

Where the first line is the number of animals in the analysis, the second line is the 
number of SNPs, the third line is the position of the SNPs (begin this line with P) in 
bases, the next line is the type of marker for each marker (S=SNP,M=microsatellite).  
Missing alleles are coded as ?. 
 
Then for each animal, there is an ID, followed by the genotypes at each SNP  
 Marker1 allele1, marker2 allele 1 ….. 
 Marker1 allele2, marker2 allele 1…… 
 
To run the phase program, you will need to type the following: 
 
PHASE <filename.inp> <filename.out>  <number of iterations> <thinning interval> 
<burn in>. 
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For the data set goat_geno.txt, 100 iterations with thinning interval 2 and burn in 10 
iterations should be sufficient. 
 
Run the PHASE program.  Go to output file.  How many unique haplotypes are there?  
Do they have the same frequency in the population?. 
 
The PHASE program usually predicts a number of haplotypes with very low 
frequency.  What we want to now if the probability that these haplotypes really exist.  
So, take one of the rare haplotypes from the *.out file.  Then, in the *.pairs file, you 
can see the probability for each animal of carrying a certain haplotype configuration.  
Are you satisfied that your rare haplotype really exists?  
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5.2 Estimating the extent of linkage disequilibrium   

The GOLD program (for Graphical Overview of Linkage Disequilibrium) calculates 
linkage disequilibrium statistics from haplotype data ((Abecasis and Cookson, 2000).   
The statistics calculated are D, r2 (which the authors call delta) and D’.  The program 
also gives a nice graphical picture of the extent of linkage disequilibrium.  The  
program is freely available from http://www.sph.umich.edu/csg/abecasis/GOLD/. 
 
We will use the haploxt program from GOLD to calculate the extent of linkage 
disequilibrium between pairs of SNPs in practical 5.1.  The inputs to the program are 
marker haplotypes (eg output from the phase program) and a map of the markers.   
 
The file map.gm should look like (the header must be included): 
 
MARKERID   NAME      LOCATION 

       1   SNP1  266 

       2   SNP2  864 

       3   SNP3  888 

………. 

 

You can create this file from the positions line in the file goat_geno.txt 
 
Next you will need to create a file with a list of haplotypes, called HAPLO.LST.   
 
The format of this file is: 
 
  HAPLO_1   1 1 1 2 1 2 1 

  HAPLO_2   1 2 2 1 2 1 2 

  HAPLO_3   2 1 1 2 1 0 0 

 
Eg. one line for each haplotype.  You can create this file from the list of best pairs 
from PHASE, using excel for example.  Note that in PHASE, we have used A,C,T 
and G to code the SNP alleles.  These must be replaced with 1,2,3 and 4 in the *.lst 
file.  Save your file to a location on your c: drive.  If you used excel to create the file, 
save it as a text file, and then remove the .txt extension.     
 
Open a DOS window, and go to the directory containing the *.lst file.  Run the 
program haploxt in this directory by typing haploxt.    
 
The program will produce a file called LD.XT.  This a table of LD values for each 
marker pair.  Open this file.  Plot the values D’ and r2 against each other in excel.  Is 
the value of D’ usually larger or smaller than r2?   
 
Now open the gold program (click on the gold icon).  Load the disequilibrium data 
(the file you have just produced, LD.XT).  The load the map file (map.gm).  View the 
LD across the segment with the delta squared statistic.  Are there any regions of very 
high LD?  Why do you think this is?  In general, what is the relationship between 
distance between the SNPs and LD?  Are there any exceptions to this across the 
chromosome segment? 
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Another useful program in the GOLD package is ldmax.  This program estimates r2 
values from genotypes.  So there is no need to haplotype the data first.  The “cost” of 
using this program could be less accurate estimates of r2 values.  To investigate the 
effect of using genotype data to estimate r2, we will use the genotype data from 
practical 5.1        The data format for ldmax is   
 

<famid> <pid> <fatid> <motid> <sex> <genotype_1> ... <genotype_n> 

<famid> is a unique identifier for each family, and within each family <pid> is a 
unique identifier for an individual. <fatid> and <motid> identify the individuals 
father and mother (if this line refers to a founder, these should be set to zero). <sex> 
denotes the individuals sex, using the convention 1=male, 2=female. Each 
<genotype> is encoded as two integer allele numbers. The pedigree columns should 
be separated by spaces. 

An example pedigree file fragment, describing a single nuclear family genotyped at 3 
markers would be: 

100 1 0 0 1  1 2  1 2  1 2 

100 2 0 0 2  1 2  1 2  1 2 

100 3 1 2 1  1 1  2 2  1 1 

This describes a family (labelled 100), contains two founders (1 and 2), and their 
single offspring (3). The founders are heterozygous at all marker loci, while the 
offspring is homozygous at all loci. 

In the case of the goat genotype data, we will assume all animals are founders.  The 
input file for ldmax, qtdt.ped has already been made for you.  First rename your 
LD.XT file so you don’t lose it.  Then run the ldmax program, which also produces 
the file LD.XT.  Now plot the delta^2 values from haploxt and ldmax (using excel 
for example).  How similar are they?  Do you think ldmax is giving reliable estimates 
of r2 in this case?         
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5.3 Power of association studies 

As we discussed in section 2, the power of association studies depends on the r2 
between the QTL and the marker we are trying to detect the QTL with, the frequency 
of the rare allele of the marker and the QTL, the number of phenotypic records, and 
the significance level we are testing the association at. 
 
There is a program which calculates the power of an association study given all these 
parameters called ldDesign.  The package is written in the R language.     
By way of background, R is a free software environment for statistical computing and 
graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and 
MacOS.  We will use R in a windows environment.  R provides a wide variety of 
statistical (linear and nonlinear modelling, classical statistical tests, time-series 
analysis, classification, clustering, ...) and graphical techniques.  There are a very 
large number of “packages” available for R, and one of these is the ldDesign pack. 
 
Before we use this design pack, lets take a moment to get acquainted with R.  We will 
use a simple example of multiplication of two matricies to obtain another matrix. 
 
Open the R graphical user interface by clicking on it.  You should see the command 
prompt.   
 
Lets multiply two matricies a and b to get a third matrix c. 
 
The matrix a is a two by two matrix with elements: 
1 1 
2 2  
The matrix b is a two by three matrix with elements: 
1 2 2 
2 3 4 
 
We can input these matricies into the computer memory as: 
>  a   <- matrix(c(1,1,2,2),ncol=2,byrow=TRUE)  
>  b   <- matrix(c(1,2,2,2,3,4),ncol=3,byrow=TRUE) 
 
To check the dimensions of a and be are correct type: 
> dim(a) 
> dim(b) 
 
You can print a matrix at any time, eg   
> print(a) 
    
Now lets multiple matricies a and b to get a new matrix c: 
> c <- a%*%b   (%*% is the symbol for matrix multiplication) 
 
Check the dimensions of c are correct,  
> dim(c) 
And that the c matrix has the correct elements: 
> print(c)   (you can compare this to the result in excel for example) 
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A matrix can be transposed using t(a), eg 
> d <-t(a) 
 
Now we will return to the ldDesign package.  Hit the “packages” button on the top of 
the screen.  Then click on ldDesign.  If the package does not appear, you can install it 
by typing 
> install.packages("ldDesign") 

  
The documentation for the ldDesign package can be found here: 
(http://bg9.imslab.co.jp/Rhelp/R-2.4.0/src/library/ldDesign.html) 
 
We will use the luo.ld.power function in the ldDesign package.  This function 
performs a classical deterministic power calculation for power to detect linkage 
disequilibrium between a bi-allelic QTL and a bi-allelic marker, at a given 
significance level in a population level association study.  This is based on the 'fixed 
model' power calculation from Luo (1998, Heredity 80, 198–208), with corrections 
described in Ball (2003).  
 
To run the function: 
> luo.ld.power(n, p, q, D, h2, phi, Vp = 100, alpha) 
 
Where: 
-  n   The sample size, i.e. number of individuals genotyped and tested for the 

trait of interest 
-   p Bi-allelic marker allele frequency  
-  q Bi-allelic QTL allele frequency  
- D Linkage disequilibrium coefficient  
- h2 QTL `heritability', i.e. proportion of total or phenotypic variance explained 

by the QTL  
- phi Dominance ratio: phi = 0 denotes purely additive, phi = 1 denotes purely 

dominant allele effects  
- Vp Total or phenotypic variance: and arbitrary value may be used  
- alpha Significance level for hypothesis tests  
 
The function returns the power, or probability of detecting an effect, with the given 
parameters, at the given significance level. 
 
One problem we will have is that the program takes as an input D instead of r2, which 
is more useful to us.  We can run the program at a desired level of r2 between the 

marker and QTL by inputting for the value of  2)1()(1( rqqppD −−=   where p and 

q are defined above.   
 
For example, if we want to evaluate power at a level of r2 of 0.2, with p=q=0.2, we 

would use a value of 072.02.0*)2.01(*2.0*)2.01(*2.0 =−− .  Now say we have 

n= 500 phenotypic records, the QTL explains 2.5% of the phenotypic variance, the 
QTL is purely additive (phi=0), and alpha is 0.05.  Assume of a value of Vp of 100, 
though the value assumed will not affect the calculations.  Then the power of the 
experiment is: 
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> luo.ld.power(500, 0.2, 0.2, 0.072, 0.025, 0, 100, 0.05) 
Which should return a value of 0.277. 
 
 
Now run the program with 1000 phenotypic records, 
p=q=0.2,h2=0.025,phi=0,Vp=100 an alpha =0.05 for r2=0.1,0.2,0.3-1.0. 
 
You can either do this by calculating the value of D at each level of r2 and rerunning 
the program, or you can write a small “script” which loops through the values of r2.   
 
You can write such a script in notepad.  The script might look like: 
 
# Script to calculate power at different levels of r2. 
 
# Script to calculate power at different levels of r2. 

n <- 1000 

p_val <- 0.2 

q_val <- 0.2 

h2 <- 0.025 

phi <- 0 

Vp <- 100 

alpha <- 0.05 

for (i in 1:10) { 

 r2 <- i/10 

 D <- sqrt(p_val*(1-p_val)*q_val*(1-q_val)*r2) 

 luo.ld.power(n, p_val, q_val, D, h2, phi, Vp, alpha) 

} 

 
 
Save your script with a *.R extension, eg power.R.  To open the script, click the file 
tab and select “open script”.  You can run the script by clicking the edit tab and 
selection “Run all”.    
 
At what level of r2 does the power reach 0.9 with these parameters?  To determine 
this, you can plot the power against the level of r2 in excel for example.   
    
Now plot the power with 500 and 2000 records as well.  What does the level of r2 
need to be to get a power of 0.9 if 500 records are used.  If 2000 records are used? 
 
The next exercise is to determine the number of phenotypic records necessary to 
detect a QTL with power 0.9 with different levels of r2.  You can do this by looping 
through different numbers of phenotypic records (increments of 100 for example) in 
your script and keeping the r2 constant.  Plot the minimum number of records required 
to reach a power of 0.9 with r2=0.1,0.2,0.3,0.4….1.0.  (eg r2 on the x axis, and number 
of phenotypic records required to reach a power of 0.9 with this level of r2 on the y 
axis). 
 
Do the results agree with the statement that the number of records must be increased 
by a factor of 1/r2 in order to achieve the same power as observing the QTL itself?    
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5.4 Building the IBD matrix from linkage disequilibrium 
Information  

 
Background 

In this practical, we will extract the LD information contained in marker haplotypes to 
build IBD matricies between animals sampled from a population.  We will use the 
algorithm of Meuwissen and Goddard (2001).  This algorithm calculates the IBD 
matrix based on deterministic predictions which take into account the number of 
markers flanking the putative QTL position which are identical by state, the extent of 
LD in the population based on the expectation under finite population size, and the 
number of generations ago that the mutation occurred. 
 
The data files for the LD program are h5.dat, h5.ibs, and h5.dis 
 
“h5.dat” 
For two haplotypes, the first line of this file tells the program how many markers are 
identical by state.  There is also one column for the putative QTL position.  So if we 
were comparing two haplotypes, 
112112 
222222, with the putative QTL position on the middle of the haplotype, the first line 
of the h5.dat file would be: 
0010001, with the circle indicating the position of the QTL.  The second line of the 
file is identical, except with a one in the QTL position.  
 
“h5.ibs” 
The second file tells the program the probability that each marker is identical by state, 
which is very similar to the marker homozygosity (eg. 1-heterozygosity) for each 
marker, with a zero in the QTL position.   
 
“h5.dis” 
The third file tells the program the distance between the markers.  The first number is 
the distance between markers one and two, etc.  Usually the QTL is positioned in the 
middle of a marker bracket.  So for example if we had four evenly spaced markers in 
10cM, a putative QTL in the middle of the haplotype, the h5.dis file would be 0.033, 
0.0167, 0.0167, 0.03.  
 
To run the program, click on h5.exe.  A small window should come up, asking for the 
number of loci, which will be the number of markers + one for the QTL.  You will 
then be asked for the position of the QTL.  The next prompt is the effective 
population size, followed by the number of generations ago that the QTL mutation 
occurred (we will assume 100 for all our examples).    
 
Exercises 
Exercise 3.1.1  Effect of segment length and effective population size on IBD 

coefficients.   

Consider a chromosome segment 10cM long, containing 4 markers.  Two animals are 
drawn from at random from the population and genotyped for the four markers.  Two 
of the four haplotypes carry identical marker alleles (1222).  There is a putative QTL 
in the middle of this haplotype.   
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What is the probability that the two identical haplotypes carry the same QTL allele 
(eg, are IBD at the QTL  position)? 
 
If the four markers were in a 1cM segment, what is the IBD probability?  Why has it 
changed? 
 
If the effective population size was 1000, what would the IBD probability (4 markers 
in 1cM).  How does this result relate to the result of the first question and the 
predictive equation LD=1/(4Nc+1).     
 
Now for a 10cM haplotype and Ne=100, increase the number of markers (6,8,11).  In 
each case, work out the IBD coefficient for two identical haplotypes.  Plot the IBD 
coefficient against the number of markers in the 10cM interval (use excel).  What 
happens to the IBD coefficients as the number of markers increases? 
 
Exercise 3.1.2.  Building the IBD matrix from LD information. 

A further 3 animals are genotyped for the four markers (effective pop size 100, 
chromosome segment length 10cM).  The marker haplotypes are: 
Animal 1.  1122, 2122 
Animal 2.  1122, 1221 
Animal 3.  1222, 1222 
 
For a putative QTL in the middle of the marker haplotype, build the lower diagonal of 
the IBD matrix (dimensions 6 x 6).  Graph the IBD coefficients against the length of 
the haplotype that is identical by state surrounding the QTL. 
  
This IBD matrix could be inverted, then used in a variance component analysis in 
ASREML.  Of course, for a large number of haplotypes, you would implement the 
algorithm of Meuwissen and Goddard (2001) in some sort of code, so you did not 
have to type in the haplotypes, etc, by hand. 
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5.5 Marker assisted selection with linkage disequilibrium 

In this practical, we will investigate the accuracy of LD-MAS with single markers.  

We will predict MEBV for animals without phenotypes, as  

∧∧

+= gXuMEBV  

Where 
∧

u  is a vector of polygenic effects, X is a design matrix, and g is the estimate of 

the effect of the marker.  

 

You can use either excel or R for this practical, whichever you are more comfortable 

with.   

 

A genome wide association study has identified a marker with a significant effect.  

We wish to calculate MEBV for a group of progeny which are the offspring of a 

group of phenotyped animals.  The progeny are genotyped, but not phenotyped.  The 

data was “simulated” with a mean of 1, a SNP effect of 1.5 for allele 2 and 0 for allele 

1, true polygenic breeding value for animal 1 of 1 and animal 5 0f -1, and true 

polygenic breeding values for animals 2,3,4,6,7,8,9 and 10 of zero.  Errors were 

randomly distributed with mean 0 and variance 1.   

 

The genotype and phenotype data is: 

Animal Sire Dam Phenotpe 
SNP 
allele 1 

SNP 
allele 2 

1 0 0 1.27 1 1 

2 0 0 2.52 1 2 

3 0 0 1.67 1 2 

4 0 0 5 2 2 

5 0 0 1.5 1 2 

6 0 0 2.02 2 1 

7 0 0 0.68 1 1 

8 0 0 4.09 2 2 

9 0 0 3.33 1 2 

10 0 0 2.43 1 2 

11 1 2 - 1 2 

12 1 4 - 2 1 

13 5 6 - 1 1 

14 5 7 - 2 1 

15 5 8 - 2 2 

 

We will fit the model to the data: 

eZuXg'1y n +++= µ  
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To solve for the SNP effect and polygenic effects: 
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Where 1n and X are both of dimensions (number of records x 1).   

 

The steps are  

1. Build the 1n and X (you can follow the example in section 3.2). 

2. Build the Z matrix, which allocates records to phenotypes and has the 

dimensions (number of records 10 x number of animals 15). 

3. Build the A matrix, the matrix of average additive relationships 

(number of animals x number of animals): 

4. Build the coefficient matrix a block at a time (eg. 1n’1n first).  To do 

this you can use the transpose(matrix1) and mmult(matrix1,matrix2) 

functions in excel.  Assume λ=1.6. 

5. Solve the equation to get estimates of the mean, marker effect and 

polygenic effects. 

6. Calculate MEBV for animals 11-15, we using the formula 

∧∧

+= gXuMEBV , where the X matrix in this case only refers to 

animals 11-15.   

7. Calculate the accuracy of the MEBV, the correlation between true 

breeding values and estimated breeding values, where the TBV for 

animals 11-15 are 2, 2, -0.5, 1 and 2.5 respectively.   

 

What is the accuracy of the MEBV? 

 

Now we will treat the marker as a random effect rather than a fixed effect.   

The equations to predict the marker effect and polygenic effect are now: 
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Where 3.0/ 22 == QTLeQTL σσλ .   

Solve these new equations.  Is the estimate of the marker effect increased or reduced 

in absolute value when it is treated as a random effect?  is it closer to it’s true value 

(1.5).  Is the accuracy of MEBV improved? 
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5.6  Genomic selection using BLUP 

In this practical you will perform genomic selection in a small data set using BLUP.  

The data set consists of a reference population of 325 bulls with daughter yield 

deviations (DYDs) for protein %. This phenotype is an accurate predictor of 

genotype, eg the heritability is close to one.  The bulls have been genotyped for 10 

SNPs. 

 

Then there are a set of 31 calves who are selection candidates for this years progeny 

test team.  They are genotyped for the same 10 markers.  Your task is to predict 

GEBV for these 31 selection candidates.  To do this we will need to predict the effects 

of the 10 SNPs in the reference population, using the equations: 









=
























+
∧

∧

yX'

y'1

gIλXX'X'1

X'1'11 n

n

nnn µ
 

Where g are the SNP effects, 1n is a vector of ones (325 x 1, X is a design matrix 

allocating SNP genotype to records, µ is the overall mean.  We will use R to solve 

these equations.  The X matrix has already been built for you, and is contained in the 

file xvec_day4.inp.  The y matrix is contained in the file yvec_day4.inp. 

 

What you need to do is write a small R script to solve the equations.  This can be done 

by starting the script in notepad, then opening it in the R console.   

 

The first lines should declare the parameters number of markers and number of 

records.  A this point we will also specify the value of lamda as 10.   

nmarkers <- 10      #number of markers 

nrecords <- 325     #number of records 

lamda    <- 10     #value for lamda 

 

Next we will read in the files.  Change the path to the location where you have stored 
the files.  Note that these statements should all be on one line.  Have a look at these 
files before opening them.     
 

x <- 

matrix(scan("d:/iowacourse/practicals/day4/realDataExample/xvec_day4.

inp"),ncol=nmarkers,byrow=TRUE) 

y <- 

matrix(scan("d:/iowacourse/practicals/day4/realDataExample/yvec_day4.

inp"),byrow=TRUE) 
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So now we have the matrix x, the vector y.  We still need a vector of ones and a 

identity matrix dimension number of markers x number of markers….. 

ones <- array(1,c(nrecords)) 

ident_mat <-diag(nmarkers) 

 

The next step is to build the coefficient matrix.  This can be done in blocks, eg…. 

coeff <- array(0,c(nmarkers+1,nmarkers+1)) 

coeff[1:1, 1:1] <- t(ones)%*%ones 

coeff[1:1,2:(nmarkers+1)] <- t(ones)%*%x 

 

You will need to build the other blocks.  You will also need to build the right hand 

side of the equation.   

 

The solutions can be obtained easily by using the inbuilt function solve, 

solution_vec <- solve(coeff,rhs) 

 

Print out this vector of solutions (eg print(solution_vec)).  What is the solution for the 

mean?  Which SNP has the largest effect? 

 

Next we want to print GEBV for the selection candidates.  This is done with the 

equation: 

 

∧

= gXGEBV  

 

The g_hat are the solutions for the SNP effects you have just solved.  The xvector for 

the selection candidates is in the file xvec_prog.inp.  Can you write a small R script to 

calculate the GEBV? 

 

Fours years later, all the selection candidates receive a phenotypic record from a 

progeny test.  The results are in the file yvec_prog.inp.  What is the correlation 

between your GEBV and the TBV?   (Don’t expect this to be to high with only 10 

SNPs).  
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5.7 Genomic selection using a Bayesian approach 

For the first exercise, we will analyse a small data set using the method BayesA of 

Meuwissen et al. (2003).  We will analyse the data with a script written in the R 

language, meuwissenBayesA.R.  The script considers single markers rather than 

marker haplotypes, but would be easy to extend to haplotypes.  The script estimates 

single marker effects (g), a variance for each of these effects (gvar), and overall mean 

mu and the error variance (vare).  A description of the program is given here 

(descriptions in bold). 

 

R coding of genomic selection from Meuwissen et al. (2001) 

 

Set the number of markers, the number of markers and the number of               # 

iterations 
 

nmarkers <- 3      #number of markers 

nrecords <- 25     #number of records 

numit    <- 1000   #number of iterations 

 

The next section reads in the data from two files.  The first is the x vector, with   -

1 for the 1 1 SNP genotype, 0 for 1 2 and 1 for 2 2.  The second file is a vector  of 

phenotypic records.  Set the path to the location of your files. 
   

x <- 

matrix(scan("d:/iowacourse/practicals/day5/smallExample/xvec.inp"),nc

ol=nmarkers,byrow=TRUE) 

y <- 

matrix(scan("d:/iowacourse/practicals/day5/smallExample/yvec.inp"),by

row=TRUE) 

 

Set up some storage vectors and matricies to store parameter values across 

iterations 
 

gStore <- array(0,c(numit,nmarkers)) 

gvarStore <- array(0,c(numit,nmarkers)) 

vareStore <- array(0,c(numit)) 

muStore <- array(0,c(numit)) 

ittstore <- array(0,c(numit)) 

 

The Gibbs cycles begin. 

 

Step 1.  Initialization of g and mu, declaration of other arrays. 
 

g <- array(0.01,c(nmarkers))  

mu <- 0.1 

gvar <- array(0.1,c(nmarkers)) 

ones <- array(1,c(nrecords)) 

e <- array(0,c(nrecords)) 
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Begin the iterations 
 

for (l in 1:numit) { 

 

Step 2.  Sample the gvar from the inverse chi square posterior 
 

      for (j in 1:nmarkers) { 

 

#       gvar[j] <- (0.002+g[j]*g[j])/rchisq(1,4.012+1)  # Meuwissen                                                

#et al. (2001) prior 

#       gvar[j] <- (0.002+g[j]*g[j])/rchisq(1,1)        # Xu (2003)  

#prior 

        gvar[j] <- (0.002+g[j]*g[j])/rchisq(1,0.998)    # Te Braak et 

# al. (2006) prior 

      } 

 

Step 3.  Sample vare from an inverse chi-square posterior    
      e <- y - x%*%g - mu   # First calculate the vector of residuals 

      vare <- (t(e)%*%e)/rchisq(1,nrecords-2) 

             

Step 4 Sample the mean from a normal posterior  
      mu <- rnorm(1,(t(ones)%*%y - 

t(ones)%*%x%*%g)/nrecords,sqrt(vare/nrecords)) 

 

Step 5 Sample the g from a normal distribution 
      z <- array(0,c(nrecords)) 

      gold <- g 

      for (j in 1:nmarkers) { 

       gtemp <- gold 

       gtemp[j] <- 0 

       for (i in 1:nrecords) { 

        z[i] <- x[i,j] 

       } 

       mean <- ( t(z)%*%y-t(z)%*%x%*%gtemp-t(z)%*%ones*mu ) / 

(t(z)%*%z+vare/gvar[j])   # Calculating the mean of the distribution 
       g[j] <- rnorm(1,mean,sqrt(vare/(t(z)%*%z+vare/gvar[j]))) 

      } 

 

The final step in each iteration is to store the parameter values       
      for (j in 1:nmarkers) { 

        gStore[l,j] <- g[j] 

        gvarStore[l,j] <- gvar[j] 

      } 

      vareStore[l] <- vare 

      muStore[l] <- mu  

      ittstore[l] <- l 

}   

This is the end of the program. 

 

Consider a data set with three markers.  The data set was simulated as: the effect of a 

2 allele at the first marker is 2, the effect of a 2 allele at the second marker is 0, and 

the effect of a 2 allele at the third marker was -0.5.  The mu was 3 and the vare was 1.  

The data set is: 
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Animal Phenotype 
Marker1 
allele 1 

Marker1 
allele 2 

Marker2 
allele 1 

Marker 2 
allele 2 

Marker3 
allele 1 

Marker 3 
allele 2 

1 7.34 2 2 2 1 1 1 

2 6.02 2 2 2 2 2 2 

3 4.92 1 2 2 2 2 2 

4 2.89 1 1 2 1 1 1 

5 5.62 2 1 1 1 1 1 

6 4.85 2 1 2 1 2 2 

7 7.01 2 2 2 1 2 2 

8 7.61 2 2 2 2 1 1 

9 2.14 1 1 2 2 1 2 

10 8.68 2 2 2 2 1 1 

11 4.22 1 2 1 2 2 1 

12 7.15 2 2 1 1 1 2 

13 6.57 2 2 1 2 1 1 

14 2.47 1 1 2 2 2 2 

15 4.51 2 1 1 1 1 1 

16 5.98 1 2 2 1 1 1 

17 5.37 2 1 2 1 1 1 

18 4.51 1 2 2 1 1 2 

19 7.53 2 2 2 2 2 2 

20 3.33 1 1 2 1 1 2 

21 7.32 2 2 1 2 1 1 

22 5.87 2 2 2 1 1 2 

23 3.19 1 1 2 2 2 1 

24 3.87 1 1 2 1 2 1 

25 2.72 1 1 2 2 2 2 

   

The first step is to make the files yvec.inp and xvec.inp.  In the case of yvec.inp, this 

is simply the list of phenotypes (no headers or identifiers).  For xvec.inp, the number 

of 2 alleles at each marker for each animal, as a 25 x 3 matrix.  The first line of this 

file would be (for animal 1)       “2 1 0”. 

 

Save these files in a convenient location.  Next open the R graphical interface, and 

open the script “meuwissenBayesA.R”.  Check the number of markers is set to 3, and 

the number of records 25.  You will have to change the path of the files as well.   

 

Choose a number of iterations, say 1000.   

 

Run the script using the run all command.  As the script runs, it stores values for g, 

gvar, mu and vare for each iteration.  After the script has run, you can use the plotting 

facilities in R to investigate changes in the parameters over iterations.     
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For example, to look at the effect of the third marker across iterations, you would 

enter the command 

 

> plot(ittstore[1:1000],gStore[1:1000,1]) 

 

Use this command to investigate each of the parameters in turn, and determine if they 

appear to be fluctuating about the correct values. 

 

We can also plot the posterior distribution, for example for the effect of the third 

marker.  We would discard the first 100 iterations of the program as “burn in”: 

 

> plot(density(gStore[100:1000,1])) 

 

Does the distribution appear to be normal?  What about the distributions of the other 

parameters? 

 

To get the mean of the distribution, you would type: 

mean(gStore[100:1000,1]) 

Do the means of the parameters agree with the true value of these parameters? 

 

Now a new set of animals (selection candidates without phenotypes) are genotyped 

for the three markers.  Their genotypes are: 

 

Animal 
Marker1 
allele 1 

Marker1 
allele 2 

Marker2 
allele 1 

Marker2 
allele 2 

Marker3 
allele 1 

Marker3 
allele 2 TBV 

26 2 2 2 1 2 1 3.5 

27 2 1 1 2 2 1 1.5 

28 1 1 1 2 2 2 -1 

29 1 2 2 2 2 1 1.5 

30 1 1 2 2 1 2 -0.5 

31 2 1 1 2 2 1 1.5 

32 2 2 2 2 2 2 3 

33 2 2 2 2 1 2 3.5 

34 2 2 2 1 1 2 3.5 

35 1 1 1 2 2 2 -1 

 

Calculate the GEBV for these animals as: 

∧

= gXGEBV  



 111 

What is the correlation with the True breeding values ? (given in the table above, 

TBV).    

 

Next we will use the script to estimate SNP effects in the reference population in 

practical 5.6.  So you will need to read in the x matrix in xvec_day4.inp, the y vector 

in yvec_day4.inp.  The number of markers in the program will need to be changed to 

10 and the number of records to 325.   

 

Run the script. 

 

The next thing you want to do is extract SNP solutions.  After the script has run, you 

can do this by typing: 

> mean(gStore[100:1000,1]  

This will give you the mean value of the SNP effect for SNP 1 from iterations 100 to 

1000 (eg, excluding burn in).  So for SNP 6 you would type 

>mean(gStore[100:1000,6].   

 

Compare your SNP solutions from the Bayes program to those from BLUP (practical 

5.6).  One of the reasons for using the Bayesian approach is to allow different 

variances of SNP effect across chromosome segments.  In particular, the Bayes 

approach should set some variances (and so SNP effects) to very close to zero.  Does 

this seem to have happened?  How many QTL would you say are on the chromosome 

segment? 

 

Can you predict GEBV for the selection candidates in practical 5.6 using the SNP 

solutions from the Bayesian approach?  Are they more highly correlated with the 

TBV than the GEBV from the BLUP approach?      
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