Molecular markers

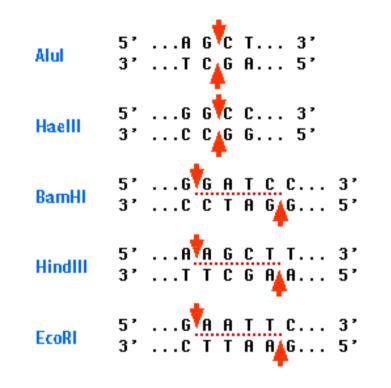
SHEEPCRC

What are they? How are they detected?

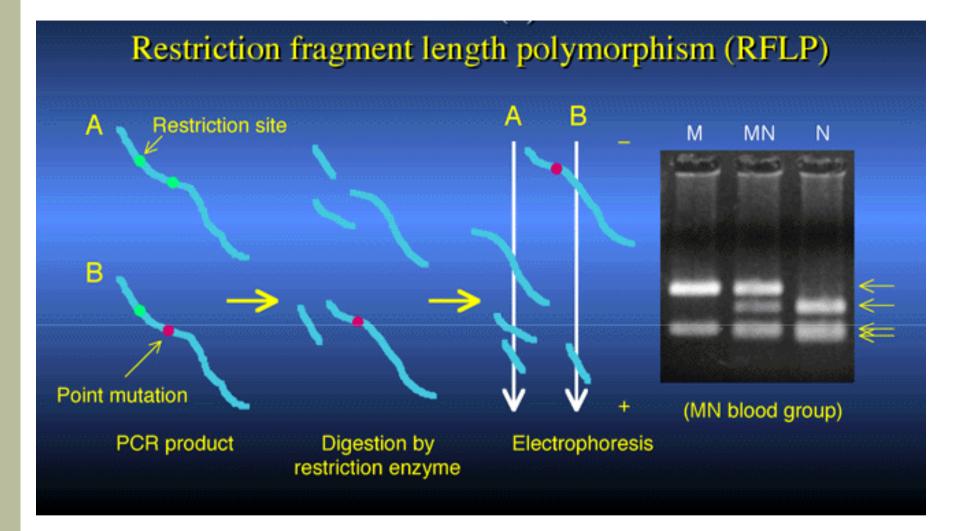
Molecular markers

- Are sites where differences in DNA sequences occur among members of the same species
- Reveal polymorphisms at the DNA level
- Can be in either coding or non-coding regions

Variations at the DNA level


- Single nucleotide polymorphisms (SNPs)
- Insertions or deletions (Indels)
- Variable number of tandem repeats (VNTRs)

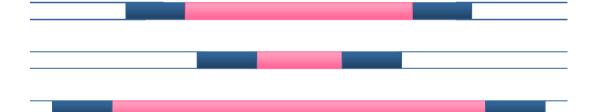
Markers detect one or more of these variations


RFLP markers

- Restriction fragment length polymorphisms
- Restriction enzymes recognise and cut DNA at specific sites
- Different sized fragments are produced depending on whether the restriction site exists or not

Microsatellite markers

- Type of VNTR, which are multiple copies of a sequence of base pairs arranged end to end
- Length of repeating unit varies
 - if <4 base pairs: microsatellite
 - 5' CACACACACA 3'
 - 3' GTGTGTGTGTGT 5'
 - if >4 base pairs: minisatellite



Microsatellite markers

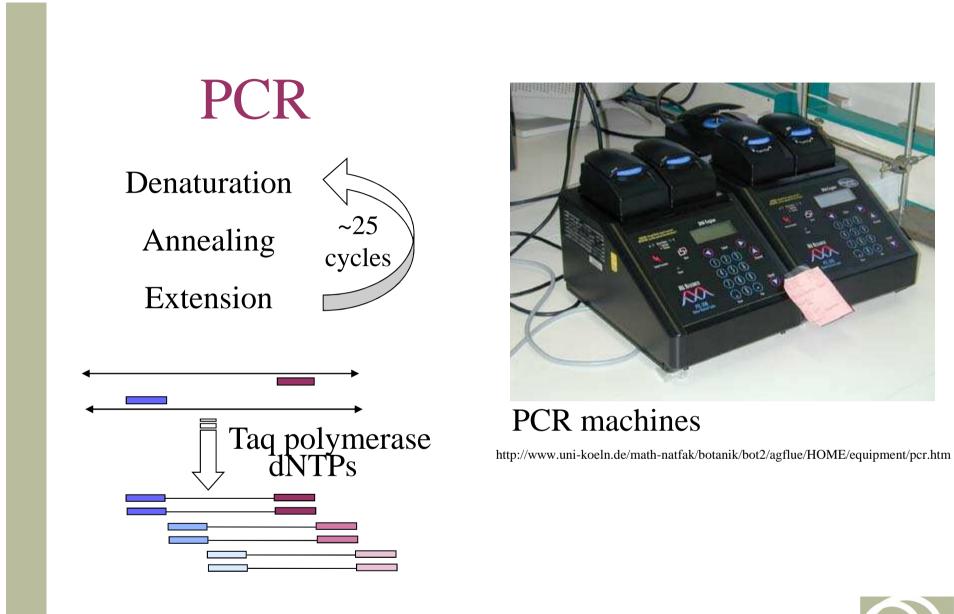
BL25

3'

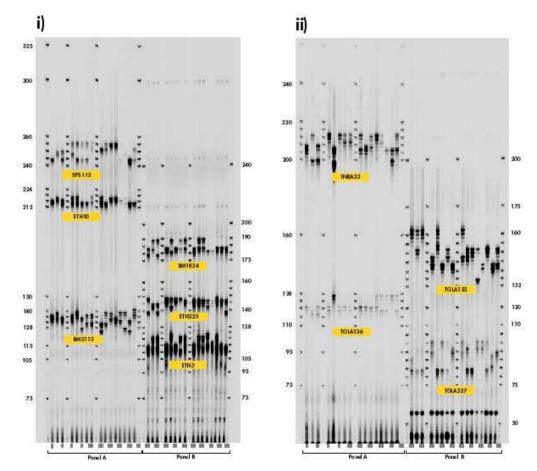
5' GGCAATGGAAGTGG CACACA...CACACA CACTCACCCACTAGATC CCGTTACCTTCACC GTGTGT...GTGTGT GTGAGTGGGTGATCTAG

Alleles differ in length

5'


Typing microsatellites

Most commonly use PCR based methods

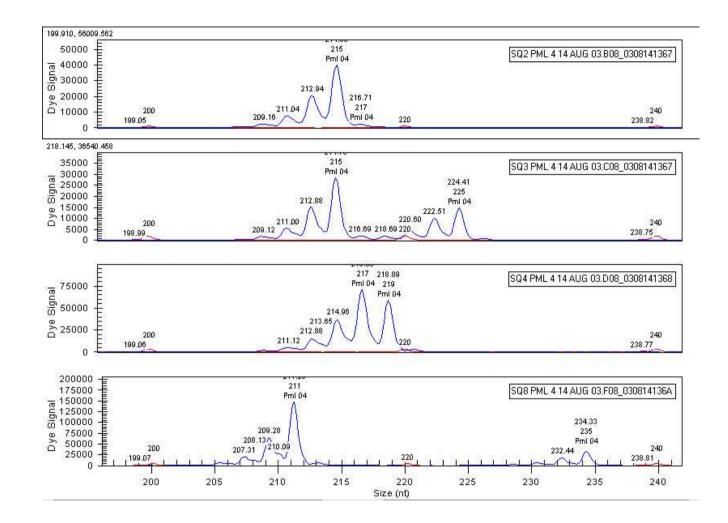

Steps are

- amplify region by PCR
 - primers labelled via radioactivity or fluorescence
- separate PCR products according to size
 - polyacrylamide gel, capillary based systems
- determine size of amplified product
 - autoradiography, fluorescent traces
- score alleles

Microsatellite genotyping via autoradiography:

bands at different positions represent different alleles

http://www.licor.com/bio/Posters/PAG_520/F1.jpg


Bovine Microsatellite Multiplexing for Herd Evaluation and Parentage J. Kovar, J. Walker, D. Steffens, J. Harford, and J. Qiu LI-COR Inc., 4308 Progressive Avenue, Lincoln, NE 68504, USA

Loading an ABI377 for genotyping

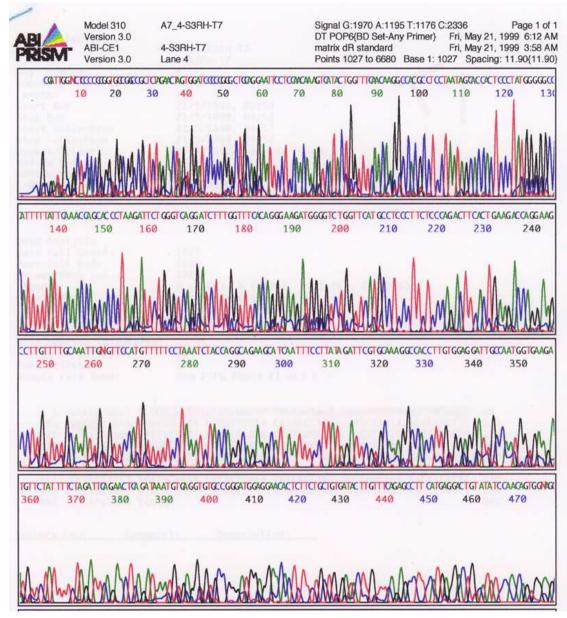
Microsatellite genotyping where a trace is produced. Peaks at different positions represent different alleles.

SNP markers

- Single base change in DNA sequence
- Usually two alternative nucleotides at a single position
- Least frequent allele present at 1% or greater
- Why not 4 alternative nucleotides?
 - low probability of 2 independent base changes occurring at any single position
 - (1-5 x 10⁻⁹ / nucleotide / generation at neutral position)
 - bias for transitional mutations (A ⇔ G, C⇔ T) over transversions

а	SNPs	SNP	SNP	SNP
		÷	÷	. +
	Chromosome 1	A A C A <mark>C</mark> G C C A	TTCGGGGTC	A G T C <mark>G</mark> A C C G
	Chromosome 2	AACACGCCA	TTCGAGGTC	AGTCA ACCG
	Chromosome 3	AACATGCCA	TTCGGGGTC	AGTCA ACCG
	Chromosome 4	AACACGCCA	TTCGGGGTC	AGTC <mark>G</mark> ACCG

Examples of SNPs as found from sequence alignment



Typing SNPs

Numerous methods

- Direct sequencing
- DNA chips (potential for very high throughput)
- Other e.g. SSCP (single stranded confirmation polymorphism), primer extension, pyrosequencing etc. (see Vigal et al. GSE 2002)

Example of DNA sequence output

http://www.genelink.com/images/Seqfull.jpg

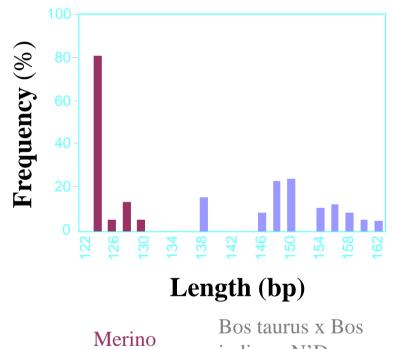
Variations detected by markers

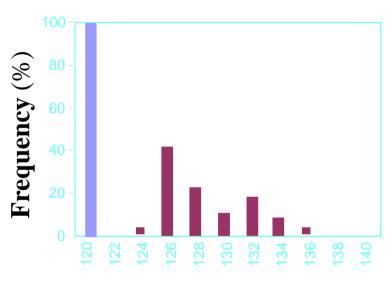
Marker	Variation type		
	SNP	Indel	VNTR
RFLP	+	(+)	(+)
Microsatellite	-	(+)	+
SNP	+	(+)	-
RAPD (random amplification of polymorphic DNA)	+	(+)	(+)
AFLP (amplified fragment length polymorphism)	+	(+)	(+)
SSCP (single stranded confirmation polymorphism)	+	(+)	(+)

From: Vignal et al. GSE 2002.

Properties of markers: statistical considerations

Heterozygosity


- SNPs: two co-dominant alleles
- microsatellites: numerous co-dominant alleles
- thus, lower heterozygosity of single locus SNPS compared to microsatellites
- note, however, that marker heterozygosity is always population dependent


Microsatellite Allele Frequency

CSDR240

Bos taurus x Bos indicus, N'Dama, Boran, Brangus

Length (bp)

Brahman, Hereford, Afrikaner Merino, Suffolk, Border Lester, Romney, Poll Dorset

Properties of markers: statistical considerations

- Density
 - SNPs (~1 every 1000 bp)>> microsatellites
- Neutrality
 - imp. assumption of pop'n genetics
 - microsatellites usually in non-coding regions, whereas neutrality of SNPs is case dependent
- Mutation rate
 - microsatellites $(1x10^{-5}) > SNPs (1x10^{-9})$
- Rate and type of genotyping errors

History of markers

- 1980's : 1st major effort to produce a human genetic map, mainly used RFLPs
- 1990's : Shift to microsatellites
 More informative and easier to type
- 2000's : Movement to SNPs
 need for very high density of markers
- Technology is very rapidly changing

