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Overview

@ Why do we need probability?

@ Random variables

@ Discrete probability distributions: binomial and Poisson
@ Continuous probability distributions: normal

@ Poisson processes
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Example: viraemia measurements from 1,120 pigs
exposed to the PRRS virus in an infection experlment

pig viremia 4 days post infection (dpi)

@ these measurements vary from pig to pig in way that is
unpredictable (random)

@ to learn about the pig response to the virus, we need to represent
and describe the variability in the data (i.e what sorts of
measurements are “likely” and which are “unlikely”)

@ this variability is represented using probability models
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Why do we need probability?

randomness and probability are central to statistics

@ data are outcomes from experiments and/or complex systems

@ experiments and complex systems are random (not reproducible,
“unpredictable”)

@ we need to represent the uncertainty underlying the nature of the
data

@ probability is a measure of uncertainty
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Random variables

@ In the example, viraemia is a random
variable

@ this random variable varies from pig
. pig viremia 4 days post infection (dpi) to plg

@ random variables may take any
values from a set of possible values,
but some values may be more likely
than others to occur (i.e. the variable
is random, but there is some
structure in it)

e @ probability models (distributions) are
mathematical representations of this
structure
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Probability distributions

@ A probability distribution of a random variable X is the set of
probabilities assigned to each possible value of X.

@ This set of probabilities can be represented by a table, a graph of
a function

» Example: the pig histogram represents the distribution of viraemia
(a random variable) among pigs based on the data

Probability distributions can vary according to the set of possible
values of a random variable

@ discrete random variables may take only a countable number of
distinct values examples: faces of a dice, number of ticks in a
sheep, number of infections over time

@ continuous random variables may take values within a certain
range (a continuum) examples: height, viremia, time to infection.
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Discrete distributions

@ The distribution of a discrete random variable is represented by a
probability (mass) function (pmf)

@ This function assigns a probability to each possible value of a
random variable

@ All probabilities from the distribution must be non-negative and
their sum must be 1

Example: the binomial distribution
Suppose a sample of 50 fish is collected independently from a lake
and that some of these fish are infected with a disease of interest.
What'’s the probability of

@ having 2 infected fish in this sample?

@ Or 307?

@ less than 10 infected fish?
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Discrete distributions: the Binomial distribution

@ We can define a random variable X as the number of infected
fish from a sample of size N=50

@ The binomial distribution can be used to represent the variability
underlying X

The probability mass function of the binomial distribution is

POx =10 = () - P

where N=50 and p is the probability of having an infected fish at each
collection of a fish from the lake (Bernoulli trial)
@ N and p are the parameters of the binomial distribution

@ The parameters of a distribution control its shape and can have
useful interpretations

@ A key task in statistics is how to estimate distribution parameters
from data

Notation: if X follows a Binomial distribution, X ~ Bin(N, p)
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Discrete distributions: the Poisson distribution

@ The Poisson distribution is suitable for counts of independent
events that occur in some fixed region of time or space

Examples:
@ number of mutations in the genome (e.g per region)
@ number of traffic accidents along a stretch of a road
@ number of infections per week

The probability mass function of the Poisson distribution is

X

P(X = x) = %e’*
A is a parameter which represents a rate - the expected counts per
unit of observed time (or region);
Notation: if X follows a Poisson distribution: X ~ Poi())

note: in probability and statistics, the upper-case X is used for the random
variable under consideration and lower-case x is used to represent the
possible values the random variable X might take
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Continuous distributions
@ A smooth curve can characterise the probabilities associated with
continuous random variables
@ This curve is described by the probability density function

(p.d.f)
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Probability density functions

a probability density function:

@ must take only non-negative
fx(u) values

@ their area under the curve
must be 1

a bp

@ then, the area under the curve between two values x and y gives
the probability that the random variable will take a value
somewhere between x and y (done by integration)

For example, for a random variable with a distribution given by a p.d.f
fx(x):

Pla< X <b| = /b fx(u)du
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Continuous distributions: the normal distribution
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@ The normal (or Gaussian) distribution is one of the most important
distribution in statistics
@ The normal distribution depends on two parameters

w: represents a central point where a distribution peaks
(expectation of the random variable)

o?: which represents the dispersion or the degree of the variability
in the outcome (variance of the random variable)

if X ~ N(u,o?), its p.d.f is given by

N2
(%) = \/2170“"{‘“(205)) }
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Why is the normal distribution important?

@ it has separate parameters for the mean and variance of a random
variable (quantities that are often of primary interest)

@ the distribution is symmetric around p, and the mode, median and
mean are all equal to

@ it is appropriate for data that result from the additive effects of a
large number of factors (due to the central limit theorm - see
inference lecture)
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Some remarks about probability distributions

@ There are also distributions for vectors of random variables (e.g.
the multivariate normal distribution)

@ A probabilility distribution is not defined by its density or mass
function only

@ When using probability distributions for statistical inference, a

crucial step is checking if the chosen distribution fits the data well
(e.g. by using g-q plots, goodness of fit tests, etc.)
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Counting processes
Suppose the data below show the times between infections during a
disease outbreak:

128621 16 1120:11915:1 5 GI3dETE
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One way of viewing these data is plotting the time-to-infection on a
time axis, such that the first infection is represented at time 0:

0 100 200 300
Time
@ The order of infections is crucial when modelling infectious
disease data. So, we can define a random variable X(t) which
represent the number of infectious occurred by time t.
@ The collection of all possible random variables {X(t),t > 0} is a

type of random (stochastic) process called counting process
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Counting processes
The data can then be viewed as a realization of the counting process

{X(t),t>0}:




Poisson Processes

The counting process {X(t),t > 0} is a (homogeneous) Poisson
Process if:

@ the number of events X(t) occuring in time intervals of duration ¢
follows a Poisson distribution with mean At

@ the times between consecutive events are independent
observations of a continuous random variable following an
exponential distribution with parameter = 1/

Poisson processes are extensively used when modelling and
simulating stochastic epidemic models
(see lectures on Tuesday and Thursday)
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