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Overview

Why do we need probability?

Random variables

Discrete probability distributions: binomial and Poisson

Continuous probability distributions: normal

Poisson processes
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Example: viraemia measurements from 1,120 pigs
exposed to the PRRS virus in an infection experiment
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these measurements vary from pig to pig in way that is
unpredictable (random)
to learn about the pig response to the virus, we need to represent
and describe the variability in the data (i.e what sorts of
measurements are “likely” and which are “unlikely”)
this variability is represented using probability models
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Why do we need probability?

randomness and probability are central to statistics

data are outcomes from experiments and/or complex systems

experiments and complex systems are random (not reproducible,
“unpredictable”)

we need to represent the uncertainty underlying the nature of the
data

probability is a measure of uncertainty
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Random variables
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In the example, viraemia is a random
variable

this random variable varies from pig
to pig

random variables may take any
values from a set of possible values,
but some values may be more likely
than others to occur (i.e. the variable
is random, but there is some
structure in it)

probability models (distributions) are
mathematical representations of this
structure
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Probability distributions

A probability distribution of a random variable X is the set of
probabilities assigned to each possible value of X.

This set of probabilities can be represented by a table, a graph of
a function

I Example: the pig histogram represents the distribution of viraemia
(a random variable) among pigs based on the data

Probability distributions can vary according to the set of possible
values of a random variable

discrete random variables may take only a countable number of
distinct values examples: faces of a dice, number of ticks in a
sheep, number of infections over time

continuous random variables may take values within a certain
range (a continuum) examples: height, viremia, time to infection.
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Discrete distributions

The distribution of a discrete random variable is represented by a
probability (mass) function (pmf)
This function assigns a probability to each possible value of a
random variable
All probabilities from the distribution must be non-negative and
their sum must be 1

Example: the binomial distribution
Suppose a sample of 50 fish is collected independently from a lake
and that some of these fish are infected with a disease of interest.
What’s the probability of

having 2 infected fish in this sample?
Or 30?
less than 10 infected fish?
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Discrete distributions: the Binomial distribution
We can define a random variable X as the number of infected
fish from a sample of size N=50
The binomial distribution can be used to represent the variability
underlying X

The probability mass function of the binomial distribution is

P(X = x) =
(

N
x

)
pk (1− p)50−x

where N=50 and p is the probability of having an infected fish at each
collection of a fish from the lake (Bernoulli trial)

N and p are the parameters of the binomial distribution
The parameters of a distribution control its shape and can have
useful interpretations
A key task in statistics is how to estimate distribution parameters
from data

Notation: if X follows a Binomial distribution, X ∼ Bin(N,p)
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Discrete distributions: the Poisson distribution
The Poisson distribution is suitable for counts of independent
events that occur in some fixed region of time or space

Examples:

number of mutations in the genome (e.g per region)
number of traffic accidents along a stretch of a road
number of infections per week

The probability mass function of the Poisson distribution is

P(X = x) =
λx

x!
e−λ

λ is a parameter which represents a rate - the expected counts per
unit of observed time (or region);
Notation: if X follows a Poisson distribution: X ∼ Poi(λ)
note: in probability and statistics, the upper-case X is used for the random
variable under consideration and lower-case x is used to represent the
possible values the random variable X might take
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Continuous distributions
A smooth curve can characterise the probabilities associated with
continuous random variables
This curve is described by the probability density function
(p.d.f)
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Probability density functions

ba

fX (u)

a probability density function:
must take only non-negative
values
their area under the curve
must be 1

then, the area under the curve between two values x and y gives
the probability that the random variable will take a value
somewhere between x and y (done by integration)

For example, for a random variable with a distribution given by a p.d.f
fX (x):

P[a ≤ X ≤ b] =
∫ b

a
fX (u)du
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Continuous distributions: the normal distribution
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The normal (or Gaussian) distribution is one of the most important
distribution in statistics
The normal distribution depends on two parameters

I µ: represents a central point where a distribution peaks
(expectation of the random variable)

I σ2: which represents the dispersion or the degree of the variability
in the outcome (variance of the random variable)

if X ∼ N(µ, σ2), its p.d.f is given by

fX (x) =
1√
2πσ

exp
{
−(x − µ)2

(2σ2)

}
12/18



Why is the normal distribution important?

it has separate parameters for the mean and variance of a random
variable (quantities that are often of primary interest)

the distribution is symmetric around µ, and the mode, median and
mean are all equal to µ

it is appropriate for data that result from the additive effects of a
large number of factors (due to the central limit theorm - see
inference lecture)
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Some remarks about probability distributions

There are also distributions for vectors of random variables (e.g.
the multivariate normal distribution)

A probabilility distribution is not defined by its density or mass
function only

When using probability distributions for statistical inference, a
crucial step is checking if the chosen distribution fits the data well
(e.g. by using q-q plots, goodness of fit tests, etc.)
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Counting processes
Suppose the data below show the times between infections during a
disease outbreak:

One way of viewing these data is plotting the time-to-infection on a
time axis, such that the first infection is represented at time 0:

The order of infections is crucial when modelling infectious
disease data. So, we can define a random variable X (t) which
represent the number of infectious occurred by time t .
The collection of all possible random variables {X (t), t ≥ 0} is a
type of random (stochastic) process called counting process
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Counting processes
The data can then be viewed as a realization of the counting process
{X (t), t ≥ 0}:
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Poisson Processes

The counting process {X (t), t ≥ 0} is a (homogeneous) Poisson
Process if:

the number of events X (t) occuring in time intervals of duration t
follows a Poisson distribution with mean λt
the times between consecutive events are independent
observations of a continuous random variable following an
exponential distribution with parameter θ = 1/λ

Poisson processes are extensively used when modelling and
simulating stochastic epidemic models
(see lectures on Tuesday and Thursday)
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