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GENETIC COMPONENTS OF MERIT  
 

This lecture considers: 
     *  How genes are transmitted to the next generation. 

     *  How useful an individual's genes are to its progeny. 
 

 * This lecture condenses a lot into a little. 
 *  It is needed to show that genes play a role in the selection 

and crossbreeding theory developed in this course. 
Consider a single locus with two alleles 
segregating.  A heterozygote is 
illustrated here, together with a 
reminder of the simple biology of 
transmission of genetic material. 
 
Recall that under Hardy-Weinberg 
Equilibrium we can predict the 
frequencies of genotypes A1A1, A1A2 
and A2A2 quite simply: 
 
From genotype frequencies to allele 
frequencies (no HW required) 
 Genotype A1A1 A1A2 A2A2  
Diploid: 
      to 

Frequency P H
 

Q Σ = 1 
 

 freq(A1) P ½  H -     = p 
Haploid:      
 freq(A2) - ½  H Q     = q  
     Σ = 1 

 

From allele frequencies to genotype frequencies (HW required) 
   A1 

p 
Eggs 

 
A2 
q 

 

 
Haploid 

 
A1 

 
p 

 
p2 

  
pq 

 
P = p2 

 
to 

 
Sperms 

     
H = 2pq 

Diploid 
 

A2 
 

q 
 

qp 
 

  q2 Q = q2 

 
ASSUMPTIONS FOR HARDY-WEINBERG EQUILIBRIUM.  

 
1.  Equal survival of genotypes 
2.  Equal fertility of genotypes 
3.  Large sample of animals 
4.  Random mating of animals 
5.  Gene frequency same in each sex 
 
1. and 2. together imply NO SELECTION. 
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Hardy Weinberg Equilibrium for allele frequency f(A1) = p and f(A2) = q.                                    

                                              
Genotype: 
                 

 
 A1A1 

 
  A1A2              

 
A2A2    

Frequency: 
 

p²   2pq   q²      

  
Whereas Population Genetics is concerned with the fitness of different genes (ie. their 
likelihood of surviving and increasing in frequency over generations), quantitative genetics is 
concerned with the merit of different genotypes (ie. their value to us in agricultural terms).  
The merit of different genotypes is addressed by considering a single locus (Falconer Ch. 7): 
 

Single locus model of genotypic effects on merit. 
 
 

The object of this section is to illustrate: 
 
 * The concept of Genetic value - the value of an animal's genes to itself.  This will also 
help show the effects of gene frequency (p and q) on the population mean merit. 
 
 * The concept of Breeding value - the value of an animal's genes to its progeny.  This is 
of greater interest to us, as it encompasses the basis of ongoing genetic improvement. 
 
 
Consider a single locus with just two alleles segregating (A1 and A2).  The merit with respect 
to a certain trait is only due to this particular locus. The values of the possible genotypes are in 
the Table. A1A2 has more merit than the average of the 2 homozygotes - i.e. showing some 
dominance. 
 
 

Genotype: A1A1 A1A2 A2A2 
    

Genotype mean merit: g1,1 g1,2 g2,2 
[Example] 320 310 280 

    
Frequency: p² 2pq q² 

[ p= 0.8 ] 0.64 0.32 0.04 
    

Genetic Value G: G1,1 G1,2 G2,2 
[= gx,y - 315.2*] +4.8 -5.2 -35.2 

 
  
 Population mean merit =  p².g 1,1 + 2pq.g1,2 +  q².g 2,2 = 315.2Kg 
 Population mean      G     =  p².G 1,1 + 2pq.G1,2 + q².G 2,2 = 0Kg 
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We also introduce here the commonly used “Falconer notation” (Falconer and MacKay, 1996). The difference 
between the homozygous genotypes is symmetric around 0. 
 
  A2A2               0  A1A2  A1A1 
   -a       d    +a 
  
Phenotypic mean of the homozygotes = 300 
 
A1A1 = +20 +a half the difference between genotypic values of homozygote  
A1A2 =     +10 d dominance deviation of heterozygote from homozygote mean 
A2A2 =     -20 -a 
 
If there is no dominance, d =0, and we have only additive genetic effects. If A1 is dominant over A2, then if 
0<d<a, we have partial dominance, if d=1, we have complete dominance and if d>a we have overdominance. 
Value for d would be negative if A2 is dominant. 
 
Notice that the population mean  (M) and Genetic Values (Gij) are population-dependent: 
 
Population mean M = p2.a + 2pq.d + q2.(-a) = a(p-q) +2pqd. 
Genetic value  G11 = a-M =  2q(a -pd) 
  G21 = d – M =  a(q-p)+d(1-2pq) 
  G22 = -a-M =  -2p(a+qd) 

 
 
BREEDING VALUE - the sum of average effects of genes. 
 
§ GENETIC VALUE and BREEDING VALUE - the difference. 

 
     Consider genotype A1A2: 
 
 Its heterozygosity means its carrier enjoys the effect of dominance in its GENETIC 
VALUE - the value of its genes to itself. 
 
 Its heterozygosity cannot be transmitted to its progeny - because it cannot give both alleles 
to any one progeny.  Thus the value of its genes to its progeny is different from the value 
of its genes to itself. 
 
 Its BREEDING VALUE - the value of its genes to its progeny, depends on the single 
genes it can transmit, A1 and A2.  Each of these has an average effect on progeny.  Its 
BREEDING VALUE is thus the sum of average effects of the genes it carries. 

 
 

Consider the average effect of gene A1: 
Sperm Egg Freq. Diploid GeneticValue Mean 

      
A1 A1 p A1A1 G1,1  

     pG1,1+qG1,2 
 A2 q A1A2 G1,2  

 
Thus the average effect of A1 is α1 = pG1,1 + qG1,2 = (.8 * 4.8) + (.2 * -5.2)     = 2.8 
And, the average effect of A2 is α2 = pG1,2 + qG2,2 = (.8 x -5.2) + (.2 x -35.2) = -11.2 
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Breeding Value (BV) = Sum of Average effects  
  BV(A2A2)  = α2 + α2  =  -11.2  +   -11.2   =  -22.4 
  BV(A1A2)  = α1 + α2  =  2.8  +   -11.2   =  -8.4 
  BV(A1A1) = α1 + α1  =  2.8  +   2.8    =   +5.6 

 
Breeding Values are additive effects. The breeding value of the heterozygote is always halfway 
the two homozygotes, irrespective of dominance or not. 

 
The average effect of a gene is larger (either positive or negative) when the gene is more rare! 
 
 
Note that the average effect of a gene 
involves more heterozygous progeny 
when it is rarer - as you would expect.  
 
An animal's breeding value depends on 
population gene frequencies. 
 
 
 
 
 
 
 
 
 
 
 
 
In Falconer notation: 
The average effect of A1 is  

α1 = pG1,1 + qG1,2 =  p[2q(a -pd)] + q[a(q-p)+d(1-2pq)] =  q[a+d(q-p)] 
The average effect of A2 is  

α2 = pG1,2 + qG2,2 =  p[a(q-p)+d(1-2pq)] +q[-2p(a+qd)] =  -p[a+d(q-p)] 
 
 
The difference between the average effects (for a 
model with only two alleles) is indicated a average 
effect of the gene substitution  
α1 - α2 = α =  a+d(q-p)]. 
 
The breeding value is the sum of the average 
effects 

A1A1

A1 2A
2

A
2

A

A1 2A

A1 2A

A1 2A A1 2
A

2
A

2
A

2
A

2
A

2
A

2
A

2
A

2
A

A1A1

A1 2A

A1 2A

x in mates. 

...  so progeny of

show much heterozygosity

A1A1

gene      is rareA1

 

Genotype  Breeding Value 
A1A1   α1 + α1 = 2qα 
A1A2   α1 + α2 = (q-p)α 
A2A2   α2 + α2 = -2pα 
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Summarising our example: 

 
 

Genotype: 
 

A1A1 

 
A1A2 

 
A2A2 

 
Mean 

 

A A
A A A A

1 2
1 1 2 2

2
−

+  

Freq. 0.64 0.32 0.04 - - 
Effects:      

Genetic +4.8 -5.2 -35.2 0 +10 
Addit.Genetic  +5.6 -8.4 -22.4 0 0 

Dominance -0.8 +3.2 -12.8 0 +10 
Falconer notn.      

G 2q(a-pd) a(q-p)+d(1-2pq) -2p(a+qd) 0 d 
A 2qα (q-p)α -2qα 0 0 
D -2q2d 2pqd -2p2d 0 d 

 
                                                             
Note that in the above example the mean Genetic value and the mean Breeding value both 
equal zero. [Remember to use genotype frequencies to give a properly weighted average].  
Thus all individuals' values reflect their superiority or inferiority compared to their 
contemporaries. This makes the subject much easier to handle.  So, from now G  = A  = 0  
 
Note that Dominance deviation (D) is simply the difference between G and A.  You can check 
that D values all equal zero (i.e. A = G) whenever there is no heterozygote advantage.  Note 
also that breeding value is additive:  A1,2 is the average of A1,1 and A2,2 
 
As A is the sum of the effects of 2 genes, and as only 1 gene can be passed on to each progeny, 
breeding values must be halved when used to predict progeny performance. For example, if a 
ram with a high breeding value is used over randomly selected ewes, his progeny show only 
half of his breeding value superiority in their genetic values ... 
 

  $
$

G
A

o =
+ 0

2
   eg. Progeny of A1A1: 

+5.6  +  0
2    =   2.8 

   
- where $Go  is the predicted (hat, ^) genetic value of offspring (o). The 0 reflects the 
'averageness' of the randomly selected ewes. 
 
 
 
In our example, the predicted value of progeny of A1A1 is ½.5.6 above the population mean 
(2.8 + 315.2 = 318 Kg), if s/he had been allocated mates of average breeding value. To check 
this is easy, by looking at the frequencies and values of the progeny of an A1A1 individual.   
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For the offspring of an A1A1 parent: 
 

 
MATE 

GENOTYPE 
 

 
MATE 

FREQUENCY 

 
PROGENY 

GENOTYPE 

 
PROGENY 

FREQUENCY 

 
PROGENY 

VALUE 

 
FREQ. x 
VALUE 

 
A1A1 

 
p²  

 
A1A1 

 
p²=.64  

 
320 

 
204.8 

 
A1A2 

 
2pq 

          
          A1A1 

A1A2 

 
pq=.16 
pq=.16 

 
320 
310 

 
51.2 
49.6 

 
A2A2 

 
q²  

 
A1A2 

 
q²=.04  

 
310 

 
12.4 

Sum the products of progeny frequencies and values  to give the predicted  318 

 
 
 

Variances 
 
Additive genetic variance: sum of frequency * value2 
    VA = p2(2qα)2 + 2pq(q-p)2α2 + q2(-2pα)2 = 2pqα2 

 
 
Dominance variance:  VD = d2(4q4p2 + 8p3q3 +4p4q2) = (2pqd)2 
 
 
Total genetic variance  VG = VA + VD 
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Two-locus models: 
 
The genetic basis of heterosis can be divided into two components - Dominance and Epistasis. 
 
 

L o cu s:

G ene from  sire:

G ene from  dam :

1        2        3        4        5

A        B        A        A        B

B        A        A        B        B

Eg. Growth
  Hormone

Length of
front legs

Length of 
back legs

Dominance Gain Epistatic Loss

 
Figure 1:  Mixing genes from different breeds leads to dominance gain 
and epistatic loss. 

 
 
DOMINANCE   An individual carries two copies of each gene, one from each of its parents. 
They are both designed to do the same job, but they may be slightly different and do the job in 
slightly different ways or with different effectiveness. Where the individual's parents come from 
two different breeds the individual will carry a wider range of genes, sampled from two breeds 
rather than just one. It is thought that this better equips the individual to perform well, 
especially under a varying or stressful environment. The classical meaning of dominance is that 
the better gene of each pair dominates in its effect on performance, and this may also be 
involved. We would thus expect dominance to be a positive effect, and there is much evidence 
to support this. 
 
 
EPISTASIS   Epistasis is the interaction between genes which are not partners, and which do 
different jobs. Generations of selection in pure breeds have ensured that these genes cooperate 
well in carrying out their tasks. It is difficult to give an example here, as we know relatively 
little about genes of importance in domestic animals - however it seems quite evident that life 
processes are complex, and there must be cooperation and coordination in the way genes act. 
When we cross breeds, genes find themselves having to cooperate with other genes that they 
are not used to. The crossbred animal may thus be out of harmony with itself, and we expect 
that epistasis, if important, is a negative effect. This has been found most notably in egg 
production, and milk production in the tropics. 
 
Models of epistasis 
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When considering degree of expression of dominance, heterozygosity is taken into account – 
either known heterozygosity, or probable level of heterozygosity from incomplete information, 
such as genetic marker information in pedigreed data sets. However, epistasis can be classified 
in two general categories: 
 
• Interaction between single genes and the total genotype at all other loci. This is seen as a 

scale effect.  Here is an example from crossbreeding: If milk yield per day and lactation 
length showed zero heterosis, then total lactation volume would show heterosis because of 
the multiplicative nature of these component traits.  With this type of interaction, multi-
locus QTL detection methods will not give benefit over single locus QTL methods – but 
the effect of QTL will differ between genetic backgrounds (typically different breeds).  
Single-QTL effects will tend to be higher in the populations in which they are detected – 
this is actually an effect of selection. 

• Interaction within small groups of loci whose products are interdependent in function (eg. 
Kinghorn, 1987).  Such interactions the subject of a number of models. These fall into two 
categories: general and specific. 

 
A General models of epistasis 
 
Here is a simple one-locus model of genetic effects, similar to that found in 
all texts in this area. II, Ii and ii are the genotype values for combinations 
of the two alleles I and i, µ is a general mean, Ai is the additive affect and 
Di the dominance effect at locus i.  We can now expand this to cater for 
effects at two loci.  The classical statistical approach (eg. Jana 1971) is 
typified as follows: 
 

















+−−−+−−+−
−−+++++++
−−+++++++

=
















ijjiijjiijji

jijiijjijiji

ijjiijjiijji

AAAAADDAAAAA

ADADDDDDADAD

AAAAADDAAAAAì

jjiiJjiiJJii

jjIiJjIiJJIi

jjIIJjIIJJII

µµµ
µµµ
µµ

 

 
The number of parameters to handle has increased from three (µ, Ai  and Di) to nine (µ, Ai, Aj, 
Di, Dj, plus interaction terms AAij, ADij, ADji, and DDij).   
 
Specific models of epistasis 
 
Many specific epistatic interactions can be described in the classical patterns: complementary, 
dominant, duplicate, recessive and inhibitory epistasis (Jana 1971). Carlborg et al. (2000) 
describe these: “Complementary epistasis is observed when a defect in either of two genes 
gives the same mutant phenotype, giving an expected Mendelian segregation ratio of 9:7 
(Table 1). In this case functional copies of both genes must be present to produce the dominant 
phenotype. Duplicate epistasis is observed when a defect in two genes gives a mutant 
phenotype and the expected segregation ratio will be 15:1. In this case a functional copy of 
only one of the two genes must be present to produce the dominant phenotype. Dominant, 
recessive and inhibitory epistasis occurs when one gene blocks the phenotypic expression of a 
second gene. For dominant epistasis, the dominant allele at the first locus is also dominant over 
the alleles at the second locus. The phenotypic effects of the second locus are therefore only 
expressed when the individual is recessive homozygote at the first locus. This gives an 
expected segregation ratio of 12:3:1. Recessive epistasis occurs when the recessive 
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homozygote at one locus is dominant over the alleles at the other locus. The phenotypic effects 
for the second locus is therefore only expressed when the individual is dominant homozygous 
or heterozygous at the first locus. The expected segregation ratio will in this case be 9:3:4. 
Inhibitory epistasis works in the same way as dominant epistasis and is the special case when 
the two genes have equal sized effects with opposite signs. The expected segregation ratio is 
here 13:3. The relationships among the genetic parameters for these five genetic models are 
given in Table 1. The translation of the genetic parameters to the genotypic effects of the two 
interacting QTL are given <above>.”  
 
Table 1. The relationships among the eight genetic parameters producing digenic segregation 
ratios in the F2 generation characteristic of classical epistasis (from Jana 1971). 
Nature of 
epistasis 

Relationship among parameters* F2 
Ratio 

Complementary A1 = A2 = D1 = D2 = AA12 = AD12 = AD21 = DD12 9:7 

Duplicate A1 = A2 = D1 = D2 = -AA12 = -AD12 = -AD21 = -DD12 15:1 

Dominant A1 = D1 ≠ A2,  A2 = D2 = -AA12 = -AD12 = -AD21 = -DD12 12:3:1 

Recessive A1 = D1 ≠ A2,  A2 = D2 = AA12 = AD12 = AD21 = DD12 9:3:4 

Inhibitory A1 = -A2 = D1 = -D2 = -AA12 = -AD12 = -AD21 = -DD12 13:3 

*A1 is the additive effect at locus 1, A2 is the additive effect at locus 2, D1 is the dominance 
effect at locus 1, D2 is the dominance effect at locus 2, AA12 is the interaction between A1 
and A2 , AD12 is the interaction between A1 and D2 , AD21 is the interaction between A2 and D1 
and DD12 is the interaction between D1 and D2 
 
 
We suspect that many loci affect most traits.  The rest of this lecture illustrates the build-up of 
normal distribution of genetic merit, assuming that we are dealing with many unknown genes, 
each of small effect.  Later on we will look at breeding strategies for when we have at least 
some knowledge (genotype probabilities) about known Quantitative Trait Loci.  

 

From genes to distributions 
 
Most traits do not show such distinct classes of expression as in the one-locus model. For most 
quantitative traits, we usually observe a continuous variation and the observed values follow a 
normal distribution. There are two explanations for this: 
 
1. Many loci affect the trait.  The distribution of genetic effects becomes normal if traits are 

influenced by genes at many loci, possibly with more than two alleles at each locus. 
 
2. The phenotypic expression of traits is not only due to genotype, but also due to 

environment (generally a larger part of the differences in observed phenotypes can be 
attributed to variation in environmental effects). 

 
 
 



Chapter 2   Building Blocks of Quantitative Genetics  

  19

Assume gene frequencies p = q = ½  at all loci, and contributions to genetic value as shown.  
As more loci are added, the distribution of genetic values becomes more normal: 
 
 

  A1A1 A1A2 A2A2 
  -1 0 1 
     
 

B1B1 

 
-1 

 
-2 

 
-1 

 
0 

     
B1B2 0 -1 0 1 

     
B2B2 1 0 1 2 

 
 
 
This example, with intermediate allele frequencies and no dominance, may seem like an ideal 
situation, giving a symmetric distribution even for a single locus. However, as more loci are 
added, the distribution of genetic values becomes more normal. Even with more extreme 
frequencies, and with large dominance effects, the distribution of the action of many genes 
working together will follow a normal distribution (can be illustrated with GENUP-module 
LOCI). 
 
A genetic model that assumes the action of very many genes, each with a small effect, can 
therefore explain traits for which we observe a normal distribution of genotypic values. This 
genetic model is indicated as polygenic model. One version of this model postulates that 
effects at individual loci are so small that allele frequencies do not significantly change with 
selection. This is indicated as infinitesimal model. 
 
Polygenic effects result from the action and interaction of genes at a large number of loci, each 
with a small effect.  The resulting effects are predicted to follow a normal distribution. 

 
 
 
 
P = G + E   and   G = A + D    
 

gives: 
 

P     =     A    +     D    +    E 
 

Example 
 
(+100) =   (+90)  +  (+40)  +  (-
30)     - note all elements are 
deviations. 
 

Locus A: ½¼ ¼

 -1    0    1

Loci  A & B:

-2   -1    0     1    2
1     4     6     4     1
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Estimation of Breeding Value 
 

IN REAL LIFE 
 

We can only see P   We want to estimate A. 
 
 
 
Individual X is superior in Phenotype (P). 
 
It is also likely to be superior in A, D and E: 
Since we don’t know to what extent each of 
those effects have contributed, we give them the 
most likely values: the contribution of each 
effect is proportional to the variance explained 
by that effect.  
For example, for a superior phenotype of + 100, 
we expect the additive genetic value to be + 25 

if 25% of the total variance is due to additive genetic effects.  

Hence, the estimated breeding value (EBV, or A-hat) is  $A
V
V

PA

P

= : 

 

similarly we can also estimate the effect of dominance:     $D
V
V

PD

P

=     

 

and environment 
$E

V
V

PE

P

=  

 
and all of these estimated effects should add up to P (as the proportions of each of the variance 
components add up to 1) 
  
Breeding values are estimated from regression of breeding value on phenotype.  Of course, in 
practical animal breeding we extend this to use information from relatives, and cater for fixed 
effects, using BLUP. 
 

Should we estimate Breeding Values or Genetic Values? 
 
Genetic value is the value of an animal's genes to itself. Breeding value is the value of an 
animal's genes to its progeny.  In general, breeding value has been of much more importance to 
animal breeders - it reflects the merit that can be transmitted to the next generation. It is the 
sum of the average effects of alleles carried by the animal, and because of the large number of 
loci classically assumed, there is no power to capitalize on anything but the average effects of 
these alleles, as dominance deviations in progeny cannot be predicted under normal 
circumstances.  
 
However, when dealing with individual QTL we have the power to set up matings designed to 
exploit favourable non-additive interaction in the progeny.   This means that prediction of 
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breeding value at individual QTL (average effects of QTL alleles) will only be of partial value 
in many circumstances.  Therefore, later in this course we will consider both prediction of 
breeding values and prediction of QTL genotypes, and therefore genetic values, at individual 
QTL. 
  
Of course prediction of QTL genotype of candidates is only of real value in helping to predict 
genetic values of their progeny - because the object is to improve performance of descendants. 
This in turn means that the evaluation system should be intimately associated with the mate 
allocation process, wherever non-additive effects (dominance and/or epistasis) are to be 
exploited.  The combination of animal selection and mate allocation can be termed mate 
selection.  Application of evaluation systems to exploit individual QTL will thus frequently 
involve mate selection strategies in addition to the simpler ranking processes we are used to 
with selection.  
 
One extreme example of this is where we manage to use genetic markers to identify QTL and 
chromosomal regions which can contribute strongly to increased expression of heterosis in 
crossbred progeny. Recurrent selection of purebreds on the performance of their crossbred 
progeny has not been of great practical value - however now with extra information from 
genetic markers and known QTL we have some power to breed for increased heterosis in a 
systematic manner.  
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