Molecular Genetic Strategies for QTL Detection

Genome Scan Approach

- Anonymous genetic markers placed across genome (every 20 cM)

<table>
<thead>
<tr>
<th>M_1</th>
<th>M_2</th>
<th>M_3</th>
<th>Q</th>
<th>M_4</th>
<th>M_5</th>
<th>M_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_1</td>
<td>m_2</td>
<td>m_3</td>
<td>q</td>
<td>m_4</td>
<td>m_5</td>
<td>m_6</td>
</tr>
</tbody>
</table>

- Look for association of markers with trait phenotype
- Requires populations segregating for QTL and markers
- Requires linkage disequilibrium between markers and QTL
 - Marker and QTL (expected to be) in population-wide equilibrium (unless tightly linked)
 - Need specific family/resource population designs that generate sufficient linkage disequilibrium

Populations designs for marker QTL mapping

- Crosses between inbred (preferred) or outbred lines
 - Back cross
 - F2 cross
 - Advanced intercrosses (F3, etc.)
 - Must differ in QTL frequency

- Within outbred populations
 - Half sib families
 - Full sib families
 - 3-generation families (e.g. grand daughter design)
 - Selective Genotyping
 - Selective DNA pooling (Bulk segregant analysis)
Selective Genotyping

<table>
<thead>
<tr>
<th>Sire</th>
<th>M</th>
<th>Q</th>
<th>m</th>
<th>q</th>
</tr>
</thead>
</table>

q progeny

Q progeny

μ_L μ_2 μ_1 μ_U

P_{LM} P_{UQ} P_{LQ} P_{UQ}

α

M linked to QTL if $(P_{M,U} - P_{M,L}) = 0$

$(1-2r)\alpha = (\mu_M - \mu_m)/\sigma_s^2$

Power of alternative QTL mapping designs

For given number of animals genotyped

Candidate gene > F2 > BC > Fullsib > Halfsib

Strategies to reduce # genotypings

- 3-generation families (grand-daughter design)
- Selective genotyping
Selective DNA Pooling QTL mapping with flanking markers

Model for frequencies in upper tail

\[
E(p_{UM}|p_{UQ}) = (1-r_1)p_{UQ} + r_1(1-p_{UQ}) + u_{UM} + e_{UM}
\]

\[
p_{UM} = r_1 + (1-2r_1)p_{UQ} + u_{UM} + e_{UM}
\]

\[
E(p_{UM} - p_{LM}) = (1-2r_1)(p_{UQ} - p_{LQ})
\]

\[
= (1-2r_1)(2p_{UQ} - 1)
\]
((p_{UM} - p_{LM}) vs (p_{UN} - p_{LN})) provides information on QTL position and effect

\[
E(p_{UM} - p_{LM}) = (1-2r_1)(2p_{UQ} - 1)
\]

\[
E(p_{UN} - p_{LN}) = (1-2r_2)(2p_{UQ} - 1) = (1-2\Theta)(2p_{UQ} - 1)/(1-2r_1)
\]

\[
\hat{r}_1 = \frac{1}{2} - \frac{1}{2} \sqrt{[(1-2\Theta)(p_{UM} - p_{LM})/(p_{UN} - p_{LN})]}
\]

\[
\hat{p}_{UQ} = \frac{1}{2} + \frac{1}{2} \sqrt{[(1-2\Theta)(p_{UM} - p_{LM})/(p_{UN} - p_{LN})]}
\]

\[
\hat{\alpha} = (\mu_M - \mu_m)/s^2
\]

Selective Genotyping across the Population
With linkage disequilibrium between the Marker and QTL

- Total
- PLM
- PUM
- Qq
- QQ
- qq

- a
- d
- a