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Building Blocks of Population Genetics 
 

Jack Dekkers 
 

Genotype frequencies, Allele frequencies, Haplotype 
frequencies, Linkage Disequilibrium, Linkage    

 
Single locus à  allele (or gene) frequencies à  genotype frequencies 
    
Consider a single locus in a random mating outbred population. 
The locus has alleles A1 and A2 with allele (or gene) frequencies p and q 
 

Under random mating (Hardy Weinberg Equilibrum), the allele received from one parent is 
independent of the allele received from the other parent, resulting in the following 
relationship between allele and genotype frequencies: 

 

 
Table 1: Genotype probabilities, single locus two-allele case 
 Maternal allele  
Paternal allele      Pr(A1) = p Pr(A2) = q Marginal prob 

 

Pr(A1) = p 
 

p2 
 

pq 
 

p2 + pq = p(p + q) = p 
 

Pr(A2) = q pq q2 pq + q2 = q(p + q) = q 
 

Marginal prob. 
p2 + pq =  

p(p + q) = p 
pq + q2 =  

q(p + q) = q 
 

 

This results in the HWE genotype frequencies: p2 , 2pq , q2 
 
With multiple loci we also need to consider haplotypes and their frequencies,  

        and relationships between allele, haplotype, and genotype frequencies. 
 
Haplotype = the combination of alleles at >1 locus that an individual inherited from a parent 
 

E.g. an individual with (unordered) genotype A1A2 and B1B2 at loci A and B, can have the 
following combinations of haplotype pairs (separated by / ): 

 
 A1B1/A2B2 à alleles A1 and B1 received from one parent and A2 and B2 from the other 
 

 A1B2/A1B2 à alleles A1 and B2 received from one parent and A2 and B1 from the other 
 
 

Haplotype frequency = frequency of a given haplotype in a population 
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With two loci with two alleles, there are 4 possible haplotypes, 16 ordered  genotypes 
(ordered based on haplotypes), and 9 unordered genotypes (see tables 2,3) 
 
Table 2: Haplotype frequencies and genotype frequencies under random mating (HWE) 
     
  Haplotype - freq 

Maternal haplotype 
        A1B1       r         A1B2       s          A2B1      t          A2B2      u 

Pa
te

rn
al

 
ha

pl
ot

yp
e 

A1B1         r A1B1/A1B1     r2 A1B1/A1B2     rs A1B1/A2B1     rt A1B1/A2B2     ru 

A1B2         s A1B2/A1B1      sr A1B2/A1B2      s2 A1B2/A2B1      st A1B2/A2B2      su 

A2B1         t A2B1/A1B1     tr A2B1/A1B2     ts A2B1/A2B1       t2 A2B1/A2B2     tu 

A2B2         u A2B2/A1B1     ur A2B2/A1B2     us A2B2/A2B1     ut A2B2/A2B2      u2 

 
Table 3: Unordered and ordered genotypes and their frequencies under random mating 
Unordered 
genotypes 

Frequency 
=sum of ordered 

frequencies 

Possible ordered genotypes and their frequencies (from Table 1) 
 

‘ordered’ based on parental origin (paternal haplotype/maternal haplotype) 

A1A1B1B1   r2 A1B1/A1B1     r2       
A1A1B1B2 2rs A1B1/A1B2     rs A1B2/A1B1      sr   
A1A1B2B2 s2 A1B2/A1B2      s2    
A1A2B1B1   2rt A1B1/A2B1     rt A2B1/A1B1     tr   
A1A2B1B2   2ru+2st A1B1/A2B2     ru A1B2/A2B1      st A2B1/A1B2   ts A2B2/A1B1   ur 
A1A2B2B2 2su A1B2/A2B2      su A2B2/A1B2     us   
A2A2B1B1   t2 A2B1/A2B1       t2    
A2A2B1B2 2tu A2B1/A2B2     tu A2B2/A2B1     ut   
A2A2B2B2 u2 A2B2/A2B2      u2    
The unordered genotype is what is obtained from genotyping, i.e. the genotype at each locus 
 
What is the relationship between haplotype frequencies and the frequencies of alleles that 
make up each haplotype? This depends on whether the alleles at the two loci are 

dependent or independent: 
 

        Locus A allele freqs 
            Haplotype freqs        Multi-locus genotype freqs 
        Locus B allele freqs  

 
Independence 

(random mating) 
 

HWE multi-locus 
genotype frequencies 

(product of haplotype freqs)  

Independence of alleles at A and B 
 

Linkage Equilibrium haplotype 
frequencies (product of allele freqs) 

 

Dependence of alleles at A and B 
 

Linkage Disequilibrium 
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Haplotype probabilities (= frequencies) - two-allele case:  
What is the probability of a progeny to receive from a parents:  allele Ai at locus A  

    and allele Bj at locus B ? 
i) if the alleles at the two loci are  independent  from each other  

è joint probability = product of marginal probabilities 
 

Locus B Locus A – allele frequencies  
allele freq’s Pr(A1) = pA Pr(A2) = qA Marginal prob 

 

Pr(B1) = pB 

 

Pr(A1B1) = pApB 
 

Pr(A2B1) = qApB 
 

pApB + qApB 
= pB (pA + qA) = pB 

 

Pr(B2) = qB Pr(A1B2) = pAqB Pr(A2B2) = qAqB pAqB + qAqB 
= qB (pA + qA) = qB 

 
Marginal prob 

pApB + pAqB 
= pA(pB + qB) = pA 

qApB + qAqB 
= qA(pB + qB) = qA 

 

 

 
ii) What if the alleles at the two loci are NOT independent ? 

è joint probabilities deviate from product of marginal probabilities (by +D) 
 

 Locus A  
Locus B Pr(A1) = pA Pr(A2) = qA Marginal prob 

 

Pr(B1) = pB 

 
 

 

Pr(A1B1) = r 
= pApB + D 

 

Pr(A2B1) = t 
= qApB – D 

 

pApB+ D + qApB – D 
= pB (pA + qA) = pB 

 
 

Pr(B2) = qB 
 

 

Pr(A1B2) = s 
= pAqB – D 

 

Pr(A2B2) = u 
= qAqB + D 

 

pAqB – D + qAqB + D 
= qB (pA + qA) = qB 

 

Marginal 
prob 

 

 

pApB + D + pAqB – D 
= pA(pB + qB) = pA 

 

qApB – D + qAqB + D 
= qA(pB + qB) = qA 

 

 

If alleles are dependent è loci are in Linkage Disequilibrium  
or in Gametic Phase Disequilibrium 

 
The term ‘linkage’ in Linkage disequilibrium is actually not quite correct and a bit misleading because 
disequilibrium can occur between unlinked loci, although it is more likely to be present (and persist) between 
linked loci (see later). Thus, ‘Gametic phase’ disequilibrium is a better term; gametic phase refers to the 
haploid phase of chromosomes and disequilibrium refers to dependence between alleles that make up the 
haplotypes that are present in the current generation and which originated from the haploid gametes produced 
by their parents. 

 

D = measure of disequilibrium =    D = r – pApB 

 
 
 
The value obtained for |D| is the same irrespective of the haplotype used. 

Pr(A1B1) - Pr(A1)Pr(B1) 
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You can also calculate D as:  D = ( ) ( )[ ]
12

21

22

11 PrPr2
1

BA
BA

BA
BA −  = ru – st 

 
 
 

 
Other measures of LD: 
 

D’ = D standardized to make it less dependent on allele frequencies 
	
  

	
   D’ = D/Dmax  where Dmax = Min(pApB , qAqB)  if D<0 
 

     Dmax = Min(pAqB , qApB)  if D>0   
 

r2 = squared correlation between           allele at locus A  and  allele at locus B 
   - also measures ability (R2) to predict allele at locus A from allele at locus B 
 

 
To derive r2: Let X = 1 when allele A1 present,  X = 0 if A2 present (= Bernoulli var.) 

        Y = 1 when allele B1 present,  Y = 0 if B2 present (= Bernoulli var.) 
 

Then: cov(X,Y) = E(XY) – E(X) E(Y) 
        =     r    –     pA   pB      = D 
 

è Corr.= rXY = ( )( )BBAA qpqp
D

YX
YX

=
)var()var(

),cov(
 

è r2 = rXY
2

BBAA qpqp
D2

=  (Note: this r is different than r in the table above) 

 
|D’| and r2 range between 0 and 1  
|D’| is strongly inflated if one haplotype has a very low frequency 

r2 is the preferred measure of LD for most uses 

 

   A1  X=1   A2  X=0 
 

B1  Y=1 Pr(A1B1) = r 
XY = 1 

Pr(A2B1) = t 
XY = 0 

 

B2  Y=0 Pr(A1B2) = s 
XY = 0 

Pr(A2B2) = u 
XY = 0 

Coupling 
heterozygote 

 

Repulsion 
heterozygote 
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Mechanisms that generate Linkage Disequilibrium (LD) 
 

A variety of mechanisms generate linkage disequilibrium, and several of these can operate 
simultaneously.  They can be separated into: 

 

1. Recurrent factors – operate to create LD each generation 
a. Drift (inbreeding) in small populations – by chance or sampling, haplotypes 

                                passed on to the next generation are not in LE frequencies 
b. Recurrent migration – continuous mixing of populations in which haplotypes occur  

                                     in different frequencies (e.g. Pr(A1B1)=1 for pop. 1 and =0 for pop. 2) 
c. Selection – certain haplotypes may be selected upon and increase in frequency 

                – selection creates LD between loci that are selected upon (= Bulmer effect) 
 – selection with epistasis (certain combinations of alleles are favorable) 

                                            also creates LD between loci involved. 
 

2. Punctual factors – operate only sporadically over time to create LD 
a. Mutation – occurs in a specific haplotype, which is then the only haplotype 

                    that contains that mutation, resulting it to be in LD with the mutation. 
b. One-time admixture/migration/crossing (e.g. producing F1/F2) – results in mixing 

                   populations with different haplotype frequencies 
c. Population bottleneck / founder effects – severe drift from 1-time sampling effects 
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LD is continuously eroded by recombination:  how does D change over time? 
Let r0 = frequency of A1B1 haplotypes in generation 0 à D0 = r0 - pApB 
What is the frequency of A1B1 haplotypes in generation 1? 
 

In the following derivation, we will consider parental origin of haplotypes and will let 
l
 indicate ‘any’ allele, 

so A1B1/Al
B

l
 indicates an individual that received the A1B1 from its father and any haplotype (A1B1 or A1B2 

or A2B1 or A2B2) from its mother) 
There are four ways that parents from generation 0 can generate gametes that carry the A1B1 
haplotype and that will produce generation 1: 
 

1. non-recombinant A1B1 haplotype produced by a   A1B1 /Al
B

l
 parent  

2. non-recombinant A1B1 haplotype produced by a   A
l
B

l
/A1B1  parent  

3. recombinant        A1B1 haplotype produced by a   A1Bl
/A

l
B1   parent 

4. recombinant        A1B1 haplotype produced by a   A
l
B1 /A1Bl

 parent 
 

For case 1, the frequency of A1B1 /Al
B

l
 parents is r0. The frequency of non-recombinant A1B1 

haplotypes produced by these parents is ½(1-c). Thus, the frequency of  A1B1 haplotype 
produced by  A1B1 /Al

B
l
 parents = Prob(1.) = ½(1-c)r0. 

 

Case 2 results in the same frequency: Prob(2.) = ½(1-c)r0. 
 

For case 3, the frequency of A1Bl
/A

l
B1 parents is pA pB. The frequency of recombinant A1B1 

haplotypes produced by these parents is ½c, so the overall frequency is  ½cpA pB. 
 

Case 4.results in the same frequency: Prob(4.) = ½cpA pB.. 
 

Thus, the overall frequency of A1B1 gametes produced by generation 0 is the some of these 
four mutually exclusive cases: 

è    r1 = r0(1-c) + pA pB c 
è D1 = r1-pApB  = r0(1-c)+pA pBc-pA pB  = r0(1-c)-pA pB(1-c) = (r0+ pA pB)(1-c) = D0(1-c)  
è D2 =D1(1-c) ={D0(1-c)} (1-c) = D0(1-c)2 
è Dt = D0(1-c)t    è  D∞ = 0 

è Erosion of LD by recombination occurs faster when loci are further apart. 
LD is halved each generation if loci are unlinked (c = ½). 

Since r2 

BBAA qpqp
D2

=   , LD measured by r2 will decline at a rate of (1-c)2 per 

generation:      rt
2 = r0

2(1-c)2t   
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Balance between drift and recombination: in small(er) closed populations  

• LD is continuously created by drift (sampling)   (small effective population size, Ne) 
• LD is continuously eroded by recombination – faster at longer distances 

 

This results in a balance/equilibrium of average LD at a given distance: E(r2
∞,c) = 

 
                   (Sved 1971) 

  
 
Most outbred domesticated plant and animal populations have small(er) (historical) effective 
population size and drift-recombination balance is expected to be the main contributor to LD 
è LD expected to be sizeable at short distances, but small at longer distances. 
Most human populations have large (historical) Ne è E(r2

∞,c) =
cNe41

1
+

 is smaller at given 

distance. 

 
 

cNe41
1

+
 



 8 

Homozygote midpoint µ = 10
aA = 4 aB = 3
dA = 2 dB = -1
pA = 0.6 pB = 0.3
qA = 0.4 qB = 0.7

 Linkage Disequilibrium D = 0
    Recomb. Rate = 0.2  
Input matrix for epistatic effects

A1A1 A1A2 A2A2

B1B1 0 0 0
B1B2 0 0 0
B2B2 0 0 0

GENOTYPE-BASED MODEL FOR GENOTYPIC VALUES
        2-locus genotypic values A locus genotype
    and frequencies (random mating) A1A1 A1A2 A2A2

B locus µ+GT 4 2 -4
genotype freq 0.36 0.48 0.16

B1B1 3 17 15 9

0.09 0.0324 0.0432 0.0144
B1B2 -1 13 11 5

Population mean 0.42 0.1512 0.2016 0.0672
M  = 10.14 B2B2 -3 11 9 3

new µ = 10 0.49 0.1764 0.2352 0.0784
µ

A = 8.38 Average at A locus 12.38 10.38 4.38
µ

B = 11.76 Average at B locus 14.76 10.76 8.76
Re-calculated 1-locus additive, dominance +a d -a

and genotypic values G A  = 4 2 -4
with epistasis G B  = 3 -1 -3

Building Blocks of Quantitative Genetics 
 

Jack Dekkers 
1 locus case: 
Genotype A2A2 A1A2 A1A1 
 

Genotypic value µ–a µ µ+d µ+a µ = mid-homozygote value 
 
Single-locus frequencies, genotypic values (deviated from µ), and expectation 

T Frequency, 
Pr(T) 

Genotypic 
value, GT 

Pr(T)×GT 

A1A1 p2   a p2a 
A1A2 2pq   d 2pqd 
A2A2 q2 a –q2a 

Population mean = µ + E(GT) = M = µ + p2a + 2pqd + –q2a = µ + a(p – q) + 2pqd 
 
Extension to two loci (without epistasis): 
 

The genotypic value of an individual is the sum of the genotypic values at each 
locus:  
           GT = µ + GA + GB Gi = genotypic value locus i, as defined for 1-locus case 
 

Now the homozygote “midpoint” µ is midway between the best and worst double 
homozygote (A1A1B1B1 and  A2A2B2B2) = (17+3)/2 = 10  in the example below. 
 

Pop. mean = µ + E(GT) = M = µ + E(GA + GB) =  E(GA)     +      E(GB) 
 

           = µ + {aA(pA – qA) + 2pAqAdA} + {aB(pB – qB) + 2pBqBdB} 
 

 

Spreadsheet Genotypic_values_models_v10.xls 
Input parameters:     Output: 

. 
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Extension to many loci: GT = ΣGi              summation is over all loci 
 

Homozygote “midpoint” µ is average of the best and the worst multi-homozygote 
Population mean = µ + E(GT) = M  = µ + E(ΣGi ) =  µ + ΣE(Gi) 
      =  µ + Σ{ai(pi – qi) + 2piqidi} = Σai(pi – qi) + 2Σpiqidi 

 
Allele-based models for additive effects 

 

In practice, we are interested in selecting the ‘best’ individuals to be used as parents to breed 
the next generation; we want to select individuals whose progeny have the highest expected 
phenotype, i.e. whose progeny have the highest expected genotypic value. 
 

To identify these individuals we need to know how the genotypic value of progeny relates to 
the genotypic value of their parents. 
 

Models described in terms of a and d are for genotypic values for whole genotypes.  
But individuals pass on alleles NOT genotypes 
 

 
The breeding value of an individual is defined to quantify an individual’s value as a parent.  
It is related to the expected genotypic or phenotypic values of that individual’s progeny. 
 

An individual’s breeding value = 2 x expected deviation of the mean phenotype 
of an individual’s progeny from population mean (M)  
when mated at random to other individuals from the population. 

 

   Ai = 2 E(Pprogeny-M) 
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In general: an individual’s breeding value is the sum of the average effects of the 
alleles that the individual carries:  Aij = αi + αj 

 

Average effect αi = Average deviation from the population mean of individuals 
who received allele i (i.e. A1 or A2) from one parent and the 
other allele at random (i.e. A1 with freq. p and A2 with freq. q) 

         
 “Other Allele” (=random) Mean GT Mean of GT 
 A1 A2 of resulting deviated from 

“Allele i” Pr(A1) = p Pr(A2) = q individuals Population mean 
 

A1 
 

GA1A1 = a 
 

GA1A2 = d 
 

pa + qd 
α1 = pa + qd – M 
 =q[a + (q–p)d]   = qα 

 
A2 

 
GA2A1 = d 

 
GA2A2 = –a 

 
pd – qa 

α2 = pd – qa – M 
 =–p[a + (q–p)d] =-pα 

 

Another important concept/quantity is the average allele substitution effect (α): 
 

Average allele substitution effect = α  = α1 – α2 = a + (q – p)d 
 

= average effect on the genotypic value of substituting a random A2 allele for an A1 allele 
 

One locus multiple alleles: an individual’s breeding value is the sum of the average effects 
of the alleles that the individual carries:  Aij = αi + αj 

 

For two loci: individual with alleles i and j at locus A and alleles k and l at locus B: 
   Aijkl = αAi + αAj + αBk + αBl      with each αni derived as above for 1-locus case (no epistasis) 

Many loci: Aijkl = ∑ ∑
= =

n

llocus iallele
li

1

2

1
α   sum average effects over all n loci and 

the individual’s two alleles at each locus 
 

Spreadsheet ‘Genotypic_value_models.v10.xls’ 
ALLELE-BASED MODEL FOR GENOTYPIC VALUES

Average allele effects Substitution effect
Locus A ���

A1 = 1.44 ���
A2 = -2.16 ���

A = 3.6
Locus B ���

B1 = 1.82 ���
B2 = -0.78 ���

B = 2.6
All values are now deviated from the population mean, M.

A locus genotype
A1A1 A1A2 A2A2

( ��� +GT)-M 2.24 0.24 -5.76
Additive 2.88 -0.72 -4.32

B locus Dom.dev. -0.64 0.96 -1.44
Genotype Epistasis -- -- --

B1B1 4.62 6.86 4.86 -1.14
3.64 6.52 2.92 -0.68

0.98 0.34 1.94 -0.46
-- 0.00 0.00 0.00

B1B2 0.62 2.86 0.86 -5.14
1.04 3.92 0.32 -3.28
-0.42 -1.06 0.54 -1.86
-- 0.00 0.00 0.00

B2B2 -1.38 0.86 -1.14 -7.14
-1.56 1.32 -2.28 -5.88
0.18 -0.46 1.14 -1.26

-- 0.00 0.00 0.00  

0.42

0.49

0.0

2.0

4.0

6.0

8.0

10.0

12.0

  Total
Genetic

  Additive
effects

  Breeding
values

 
Dominance

  Epistasis

Population VariancesSingle locus Genotypic and Breeding Values
deviated from population mean (M)

-8
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A locus G B locus G
A locus Br.val. B locus Br.val.  
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Alternate derivation of allele substitution effect based on  
Linear regression on number of ‘1’ alleles 

 

Allele substitution effects can also be derived by analyzing phenotype (or the genotypic 
value) by a linear regression model on the number of ‘1’ alleles that an individual carries (as 
we have done is some of the homeworks): 

Linear regression of Y on X: eXXbMY YX +−+= )(ˆ  

)(ˆˆ XXbMY YX −+=  
In this case, X = # 1 alleles: XT = {2, 1, 0} for T = {A1A1, A1A2, A2A2} 
 

Genotype 
T 

 
GT 

# A1 
XT 

Frequency 
f 

 
f*XT

2 
 

F*GT*XT  
A1A1 a 2 p2 4p2 2p2a 

A1A2 d 1 2pq 2pq 2pqd 
A2A2 -a 0 q2 0 0 
SUM    4p2+2pq 2p2a+2pqd 

[ ] [ ][ ]
[ ] [ ]

α=−+=

+−+

++−−+
=

−

−
==

p)d(qa
2pq2p2pq4p

2pq2p2pqdq)a(p2pqda2p
22

22

222 )()(
)()()(

)var(
),cov(ˆ

TT

TTTT

T

TT

XEXE
XEGEXGE

X
XG

b

 Interpretation of regression coefficient b̂ : 
• When XT  increases by 1, Ŷ increases by a + (q – p)d = α = allele substitution effect 
• When XT  increases by 1, an allele substitution has occurred è α=b̂  

 
 

Allele-based models for dominance and epistatic effects 
 

When d is not 0, breeding values will not explain everything about the genotypic value: 
 

Single locus example: p=0.6; a=+4; d=1; M=0 è  α = a + (q – p)d = +3.8 
           è α1 = qα =   0.4*3.8 =+1.52 
           è α2 = -pα = -0.6*3.8 = -2.28 
Genotype 

T 
Fre- 

quency 
Genotypic value (G) 

deviated from M 
Breeding value 

A 
Dominance deviation 

δ = G-A 
A1A1 0.36 +2.72 2α1       = +3.04 -0.32 
A1A2 0.48 -0.28 α1 + α2 = -0.76 +0.48 
A2A2 0.16 -5.28 2α2       = -4.56 -0.72 

 

These differences between the single-locus genotypic and breeding values are called 
‘dominance deviations’. 
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Based on this, the genotypic value at a single locus of an individual that has alleles i and j at 
that locus (deviated from the population mean, M) can be written as:  
Gij = αi + αj + δij   =   Aij   + δij 
 

αi = average effect of allele i  αj = average effect of allele j  
δij = dominance deviation effect of the interaction of alleles i and j 

 
 

Dominance devations can also be derived as a function of allele frequencies and d 
 

 
Genotype T 

GT 
(deviated from µ) 

Average allele effects Dom.dev. 
δij  αi αj 

A1A1 a α1 = qα α1 = qα –2q2d 
A1A2 d α1 = qα α2 =-pα    2pqd 
A2A2 -a α2 =-pα α2 =-pα –2p2d 

 
Graphical 
representation of 
average effects and 
dominance 
deviations 
 
Dominance 
deviations are the 
residuals from the 
regression of 
genotypic values on 
the number of A1 
alleles.  
 
The regression line 
represents the 
breeding values 
 
 
 
 

-a 

d a 

= slope 

δ22 

δ12 

δ11 

B
reeding values 
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Extension to two loci (no epistasis) 
 

With two loci, the genotypic value is the sum of the individual’s genotypic value at each 
locus:   GT = GA + GB Gi = genotypic value locus i, as defined for 1-locus case 
 

And the genotypic value at each locus can be partitioned into additive and dominance effects:  
GAij = αAi + αAj + δAij     

     and   GBij = αBi + αBj + δBij     
 

Thus the overall genotypic value can be written as the sum of average allele effects and 
dominance deviations as: 

GT = αAi + αAj + δAij + αBi + αBj + δBij 

GT = αAi + αAj + αBi + αBj + δAij + δBij 
 

The sum of average allele effects define the breeding value: AT = αAi + αAj + αBi + αBj 
 

The sum of dominance deviations define the dominance effect: DT = δAij + δBij 
 

Thus the genotypic value can be written as the breeding value and its dominance effect:  
GT = AT + DT 

 
Homozygote midpoint ���  = 10

aA = 4 aB = 3
dA = 2 dB = -1
pA = 0.6 pB = 0.3
qA = 0.4 qB = 0.7  

 Linkage Disequilibrium D = 0
    Recomb. Rate = 0.2  

Input matrix for epistatic effects
A1A1 A1A2 A2A2

B1B1 0 0 0
B1B2 0 0 0
B2B2 0 0 0  

 

ALLELE-BASED MODEL FOR GENOTYPIC VALUES
Average allele effects Substitution effect

Locus A ���
A1 = 1.44 ���

A2 = -2.16 ���
A = 3.6

Locus B ���
B1 = 1.82 ���

B2 = -0.78 ���
B = 2.6

All values are now deviated from the population mean, M.  

A locus genotype
A1A1 A1A2 A2A2

( ��� +GT)-M 2.24 0.24 -5.76
Additive 2.88 -0.72 -4.32

B locus Dom.dev. -0.64 0.96 -1.44
Genotype Epistasis -- -- --

B1B1 4.62 6.86 4.86 -1.14
3.64 6.52 2.92 -0.68
0.98 0.34 1.94 -0.46
-- 0.00 0.00 0.00

B1B2 0.62 2.86 0.86 -5.14
1.04 3.92 0.32 -3.28
-0.42 -1.06 0.54 -1.86

-- 0.00 0.00 0.00
B2B2 -1.38 0.86 -1.14 -7.14

-1.56 1.32 -2.28 -5.88
0.18 -0.46 1.14 -1.26

-- 0.00 0.00 0.00  
 
Extension to multiple loci (no epistasis):  

GT = AT + DT  AT = ∑ ∑
= =

n

llocus iallele
li

1

2

1
α   DT  = ∑

=

n

llocus
lij
1
δ  
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Epistatic Deviations 
 

When epistatic effects are present, the genotypic value of an individual can not be written as 
a simple sum of the genotypic value at each locus but an effect of the interaction between loci 
needs to be added: For two loci: GT = GA + GB + GAxB 
 

Similarly, the genotypic value of an individual can also not be written as the sum of a 
breeding value and a dominance deviation but an epistatic deviation effect (IT) needs to be 
added:     GT = AT + DT + IT  
 

Epistatic deviation effects for each individual (or multi-locus genotype) can be calculated by 
subtraction, after the additive and dominance deviation effects have been computed as 
described before:    IT  = GT - AT - DT  
 
 

Homozygote midpoint ���  = 10

aA = 4 aB = 3
dA = 2 dB = -1
pA = 0.6 pB = 0.3
qA = 0.4 qB = 0.7  

 Linkage Disequilibrium D = 0
    Recomb. Rate = 0.2  

Input matrix for epistatic effects
A1A1 A1A2 A2A2

B1B1 3 0 0
B1B2 0 0 0
B2B2 0 0 0  

 

Genotype-based epistatic effects G AxB

A1A1 A1A2 A2A2
B1B1 0.825 -1.905 -1.905

B1B2 -1.095 -0.825 -0.825

B2B2 -1.095 -0.825 -0.825
 

2-locus Genotypic vs Br.Values
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Frequency

 

ALLELE-BASED MODEL FOR GENOTYPIC VALUES
Average allele effects Substitution effect

Locus A ���
A1 = 1.5048 ���

A2 = -2.2572 ���
A = 3.762

Locus B ���
B1 = 2.0468 ���

B2 = -0.8772 ���
B = 2.924  

 

A locus genotype
A1A1 A1A2 A2A2

( ��� +GT)-M 2.41 0.14 -5.86
Additive 3.01 -0.75 -4.51

B locus Dom.dev. -0.60 0.90 -1.34
Genotype Epistasis -- -- --

B1B1 5.60 9.76 4.76 -1.24
4.09 7.10 3.34 -0.42
1.51 0.91 2.40 0.17
-- 1.75 -0.98 -0.98

B1B2 0.52 2.76 0.76 -5.24
1.17 4.18 0.42 -3.34
-0.65 -1.24 0.25 -1.99

-- -0.17 0.10 0.10
B2B2 -1.48 0.76 -1.24 -7.24

-1.75 1.26 -2.51 -6.27
0.28 -0.32 1.17 -1.07

-- -0.17 0.10 0.10  
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 Genetic Variance Components 
Single-locus model 

 

Genotype A2A2 A1A2 A1A1 
 
Genotypic value -a 0 d a  
 

T Fre-
quency 
Pr(T) 

Genotypic 
value 
GT 

Pr(T) 
× 

GT 

(GT)2 Pr(T) 
× 

(GT)2 

Breeding 
value 

AT=αi + αj 

Domi-
nance dev. 

DT=δij 
A1A1 p2   a p2a a2 p2a2   2qα –2q2d 
A1A2 2pq   d 2pqd d2 2pqd2  (q-p) α   2pqd 
A2A2 q2 –a –q2a a2 q2a2 -2pα –2p2d 
 

Genetic model for genotypic values: GT = AT + DT  = Breeding value + Dominance dev. 
 

Variance of genotypic values in a population = (Total) Genetic variance = VG 
 

VG = var(GT) =  p2a2 + 2pqd2 + q2a2 – E(GT)2 = 2pq[a + (q – p)d]2 + (2pqd)2  
 Using α = a + (q – p)d = allele substitution effect:       VG = 2pq  α2                 + (2pqd)2 
               

Additive genetic variance = variance of breeding values in a population = VA  
 

VA = var(AT) = p2(2qα)2 + 2pq[2(q-p)α]2 + q2(-2pα)2 – 02 = 2pqα2         (Note that E(AT)=0) 
 

Dominance variance = variance of Dominance deviations in a population = VD  
Using the table on p1, the variance of dominance deviations in the population is : 
 

VD = var(DT) = var(δij) = p2(–2q2d)2 + 2pq(2pqd)2 + q2(–2p2d)2 – 02 = (2pqd)2     (E(DT)=0) 
 
è Genotypic variance = VG = 2pqα2 + (2pqd)2 = VA + VD  
 

        = Additive Variance + Dominance Variance 
  

Note : cov(AT,DT) = 0 ; i.e. breeding values and dominance deviations are independent 
 

                                   Extension to two loci – first without epistasis: 
 

Genotypic value =   GT = GA + GB     Gi = genotypic value locus i 
 

VG = var(GT) =  var(GA + GB)  = var(GA) + var(GB) + 2cov(GA,GB)   
 

    = var(GA) + var(GB) + 0                 cov=0 if loci are in LE   
 

    = 2pAqAαA
2 + (2pAqAdA)2  +  2pBqBαB

2  + (2pBqBdB)2 
 

    = {2pAqAαA
2 + 2pBqBαB

2} + {(2pAqAdA)2 + (2pBqBdB)2} 
 

    = {     VAA     +     VAB     } + {      VDA     +       VDB      } 
 

    =                 VA                 +                  VD      
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Homozygote midpoint ���  = 10

aA = 4 aB = 3
dA = 2 dB = -1
pA = 0.6 pB = 0.3
qA = 0.4 qB = 0.7  

 Linkage Disequilibrium D = 0
    Recomb. Rate = 0.2  

Input matrix for epistatic effects
A1A1 A1A2 A2A2

B1B1 0 0 0
B1B2 0 0 0
B2B2 0 0 0  

 

ALLELE-BASED MODEL FOR GENOTYPIC VALUES
Average allele effects Substitution effect

Locus A ���
A1 = 1.44 ���

A2 = -2.16 ���
A = 3.6

Locus B ���
B1 = 1.82 ���

B2 = -0.78 ���
B = 2.6

All values are now deviated from the population mean, M.  

A locus genotype
A1A1 A1A2 A2A2

( ��� +GT)-M 2.24 0.24 -5.76
Additive 2.88 -0.72 -4.32

B locus Dom.dev. -0.64 0.96 -1.44
Genotype Epistasis -- -- --

B1B1 4.62 6.86 4.86 -1.14
3.64 6.52 2.92 -0.68
0.98 0.34 1.94 -0.46
-- 0.00 0.00 0.00

B1B2 0.62 2.86 0.86 -5.14
1.04 3.92 0.32 -3.28
-0.42 -1.06 0.54 -1.86

-- 0.00 0.00 0.00
B2B2 -1.38 0.86 -1.14 -7.14

-1.56 1.32 -2.28 -5.88
0.18 -0.46 1.14 -1.26

-- 0.00 0.00 0.00  
 

Population variances A locus B locus Population Percent
  Total Genetic 7.142 3.016 10.158 100.0%

  Additive effects 6.221 2.839 9.060 89.2%
  Breeding values 6.221 2.839 9.06
  Dominance 0.922 0.176 1.098 10.8%

  Epistasis -- -- 0.000 0.0%  
 
“Additive effects” refer to breeding values computed 

as the sum of average allele effects. 
“Breeding values” are computed based on the 

expected progeny means 
0.0

2.0

4.0

6.0

8.0

10.0

12.0

  Total
Genetic

  Additive
effects

  Breeding
values

 
Dominance

  Epistasis

Population Variances

 
 
Extended to >2 loci, this gives: 

VG = ΣVGi = Σ{2piqiαi
2 + (2piqidi)2} = ΣVAi + ΣVDi   = VA + VD  

 

with:  VA = ΣVAi = Σ2piqiαi
2  and  VD = ΣVDi = Σ(2piqidi)2 

 

è the genetic, additive, and dominance variances for a quantitative trait are the simple 
     sum of the genetic, additive, and dominance variances at each locus that affect the trait. 
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With Epistatic effects = Interactions between the effects that loci have on phenotype 
 

Two locus example: GT = GA + GB + GAxB       Genotype-based model 
 

   GT = αAi + αAj + αBi + αBj + δAij + δBi j + IAB Allele-based model 
 

         =                A                 +       D       + I  
  

Epistatic variance = variance of epistatic deviations in a population = VI = var(IAB) 
 

è  Complete partitioning of genetic variance:    VG = VA + VD + VI       Note: all cov’s = 0 
 

è Epistatic variance can be obtained by difference: VI = VG – VA  – VD      see spreadsheet for ex. 
 
 
 

Input matrix for epistatic effects
A1A1 A1A2 A2A2

B1B1 3 0 0
B1B2 0 0 0
B2B2 0 0 0   

 

 
 Population means A locus B locus Population Population
 Genotypic values 0.00 0.00 0.00 means are
   Additive 0.00 0.00 0.00 always 
  Dominance deviations 0.00 0.00 0.00 equal to 
  Epistasic deviations -- -- 0.00 zero  

0.0

2.0

4.0

6.0

8.0

10.0

12.0

  Total
Genetic

  Additive
effects

  Breeding
values

 
Dominance

  Epistasis

Population Variances

 
Covariances Addit. Dom.dev Covariances
Dom.dev 0.00 are always
Epist.dev 0.00 0.00 zero  
Additive, dominance, and epistatic effects are 
independent (no covariances)  

 
In a typical population, most genetic variance is additive – see also Hill et al. PLOS Genetics (2008) 
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Impact of Linkage disequilibrium on genetic variances 
 

Consider 2 linked loci, A and B:      Paternal gamete p 
Each individual has a paternal and a maternal gamete Maternal gamete m 
 

The breeding value is the sum of the average effects of the paternal and maternal alleles: 
A = αAp + αBp + αAm + αBm 

 

If the loci are in LD è allele states (0/1) at two loci on the same gamete are not independent  
                                 è they have a non-zero covariance (r2 = squared correl. of allele states (0/1) is > 0) 
 

Then, the variance caused by the additive effect of the paternal (or maternal) gamete is 
 

    var(αAp + αBp) = var(αAp) + var(αBp) + 2cov(αAp,αBp)  From bottom p.1: var(αi) =pqα2 = ½VA 
 

            =   ½VAA   +   ½VAB   +  2DABαApαBp        where DAB = LD A,B  
 

è Additive genetic variance = VA = VAA + VAB + 4DABαApαBp  see spreadsheet for example 
 

è Dominance genetic variance = 
 

VD  = var(δApm + δBpm) = var(δApm) + var(δBpm) +  2cov(δApm, δBpm) 
 

                                    =       VDA   +     VDB     +     8DAB
2dAdB      

(D2 because dominance is based on combinations of paternal and maternal alleles) 
 

 

Homozygote midpoint ���  = 10

aA = 4 aB = 3
dA = 2 dB = -1
pA = 0.6 pB = 0.3
qA = 0.4 qB = 0.7  

 Linkage Disequilibrium D = 0
    Recomb. Rate = 0.2  

D = +0.1 
Population variances A locus B locus Population Percent
  Total Genetic 7.142 3.016 13.742 100.0%

  Additive effects 6.221 2.839 12.804 93.2%
  Breeding values 6.221 2.839 12.804
  Dominance 0.922 0.176 0.938 6.8%

  Epistasis -- -- 0.000 0.0%  
D =  0 
Population variances A locus B locus Population Percent
  Total Genetic 7.142 3.016 10.158 100.0%

  Additive effects 6.221 2.839 9.060 89.2%
  Breeding values 6.221 2.839 9.06
  Dominance 0.922 0.176 1.098 10.8%

  Epistasis -- -- 0.000 0.0%  

D = - 0.1 
Population variances A locus B locus Population Percent
  Total Genetic 7.142 3.016 6.254 100.0%

  Additive effects 6.221 2.839 5.316 85.0%
  Breeding values 6.221 2.839 5.316
  Dominance 0.922 0.176 0.938 15.0%

  Epistasis -- -- 0.000 0.0%  
 

 

Note that individual locus variances are not affected by LD but across locus variances are 
                                                                                                  (because of non-zero covariances). 
Whether VA  increases or decreases depends on whether the favorable alleles are in repulsion 
or coupling phase 
 

Whether VD increases or decreases depends on whether d has the same sign for both loci. 

Ap 

Am 

Bp 

Bm 
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 Phenotypic and Environmental Effects and Variances 
 

 
Models for Environmental Effects 

 

Phenotype for a quantitative trait is determined by genetic and environmental factors: 
 

P = µ + G + E   
 

µ includes the mean and systematic (environmental) effects 
G = genotypic value 
E = Random environmental effects 

 
Partitioning of phenotypic variance 
 

Phenotypic variance = var. of phenotypes in a pop. after removal/adjustment for syst. effects  

     = VP = var(P-µ) = var(G+E) = var(G) + var(E) + 2cov(G,E) 

If genotypes are distributed at random relative to random environmental effects è cov(G,E)=0   
 

è  VP = VG + VE = VA + VD + VI + VE 
 

 
 
Relative importance of the genetic component 
 

 
Genetic variance as a fraction of the phenotypic variance: 
 

Broad sense heritability  
P

G2

V
VH =   = proportion of phen. var. in a pop. that is genetic 

 

Narrow sense heritability  
P

A2

V
Vh =  = proportion of phen. var. that is additive genetic 
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MODELS FOR TRAITS WITH REPEATED MEASURES 
 

 
 

General environmental effects = Eg  =Effects that are common to each measurement  
 
Special environmental effects  = Es  = Effects that are specific to a given measurement   

 

 
Pij = Gi + Egi + Esij        Pij = jth measurement of phenotype on ith individual 

         Gi and Egi are common to all measurements on individual i 
Esij = special envir. effect for jth measurement on ith individual 

 

This also allows random environmental variance to be separated into variances due to 
General versus Special environmental effects:   

    

       
VP = VG + VEg  + VEs       Note: cov(Eg,Es)=0  

 
 
Repeatability = r = correlation between repeated measures on the same individual 

 

(Assume that VEs and therefore VP is the same for each measurement) 
 

PVVV
)cov()cov(

))var(var(
)cov(

)corr(
P

ikijikij

ikij

ikij
ikij

P,PP,P
PP

P,P
P,Pr ====

P
 

 
 

cov(Pij, Pik) = cov(Gi + Egi + Esij, Gi + Egi + Esik)  
 

= cov(Gi,Gi) + cov(Egi,Egi) + Cov(Esij,Esik) 
 

=       VG       +        VEg       +         0  special env. effects are independent 
 

è repeatability = r = (VG + VEg) / VP    = prop. of VP  that is due to effects that are 
consistent across measurements (G + Eg) 

 

è                   1 – r = VEs / VP                = prop. of VP  that is due to effects that  
differ between measurements (Es) 
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CORRELATED TRAITS 
Phenotypic correlation = correlation between phenotypes on traits 1 and 2 on same individual 
       = caused by genetics and environment 
Phenotype trait 1   P1 = A1 +  D1 + I1 + E1 

 

     (Additive) genetic correlation = rA   Environmental correlation  
            = Corr(A1,A2)     = rE 

 

Phenotype trait 2   P2 = A2 +   D2 + I2 + E2 

21 PP

21
P σσ

)P,Cov(Pr =   
21 AA

21
A σσ

)A,Cov(Ar =   
21 EE

21
E σσ

)E,Cov(Er =  

 

 

Genetic correlation – caused by - pleiotropic genes = genes with effect on both traits 
- linkage – a gene that affects trait 1 is in LD with  
                   a gene that affects trait 2 

 à transient correlation – disappears with loss of LD 
               - quantifies the overall effect on both traits, across all loci 
      è rA = 0 does not imply that there are no pleiotropic genes 
 

Environmental correlation – caused by random environmental factors that affect both traits 
–  measures the overall effect of all environmental factors 

 

Some quantitative genetic math to show relationships among correlations:  

)E,Cov(E)A,Cov(A)EA,ECov(A)P,Cov(P 2121221121 +=++=  

è 
212121 EEEAAAPPP σσrσσrσσr +=  

è 
212121 P2P1EP2P1APPP σeσerσhσhrσσr +=  e2 = 1-h2 = prop.of phen.var. that is not add.genetic 

è 21E21AP eerhhrr +=  

 

 

Trait 2 

• A 

• B 

Trait 1 
No GxE 

• C 
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GENETIC RELATIONSHIPS AND INBREEDING 

Are two alleles the same? Identity By State (IBS) versus Identity By Descent (IBD) 
- IBS: if we can genotype individuals o and o’ for this locus (QTL), then we can directly determine 

whether the alleles the two individuals carry are indeed the same 
– if they are the same, this is referred to as the alleles being IBS. 

- IBD: if we cannot genotype the locus (ie. the usual case), then we cannot determine IBS directly 
but, if o and o’ have a common ancestor, than we can determine the probability that the two 
alleles are identical because they may have originated from a common ancestor 

 

IBD probabilities from pedigree: 

Prob(op is IBD to o’p) = P(op = o’p) 
        = probability that alleles op and o’p 
           originated from the same allele 
            of the common ancestor  
  

   Example IBD probabilities, coefficients of coancestry and additive and dominance coefficients 

  
   IBD probabilities for pairs of alleles 

 
Coancestry 
coefficient 

Additive 
relationship 
coefficient 

Dominance 
relationship 
coefficient 

Individual o – o’ op–o’p om–o’m op–o’m om–o’p foo’ roo’ uoo’ 

Sire(o) – Offspring(o’) ½  0 0 ½  ¼  ½  0 

Dam – Offspring 0 ½ ½  0 ¼  ½  0 

Paternal half-sibs ½ 0 0 0 1/8 ¼  0 

Full sibs ½  ½ 0 0 ¼  ½  ¼  

Identical twins 1 1 0 0 ½  1 1 
 

Coefficient of coancestry (also coeff. of kinship or consanguinity) between o and o’ (See also Ch 5 p85) 

= foo’ = probability that an allele drawn at random from o is IBD to an allele drawn random from o’
 = average of the 4 possible IBD probabilities between alleles at o and o’ 

roo’   =  2foo’ = coefficient of relationship = additive genetic relationship coefficient 

NOTE: foo’ is also equal to the coefficient of inbreeding of a progeny produced by o and o’ 
    = probability that an individual’s alleles are IBD 
 

From IBD probabilities to covariances of between relatives: 
 

   Cov(Go,Go’) = roo’VA + uoo’VD  

 

This equation applies to each locus that affects the trait but also to total genetic value;  

summing variances over loci (VA = ΣVAi), this equation also applies to multiple loci  

Alleles       sp  sm       dp  dm        s’p  s’m        d’p d’m 
Parents       s     x    d          s’     x     d’ 
 
 
Alleles     op om      o’p  o’m 
Offspring      o        o’ 
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Thus, the genetic covariance (resemblance) between relatives is a function of their genetic 
relationships and genetic variance components.  
- the additive genetic cov. between relatives = genetic relationship x add. genetic var.= roo’VA 
 - relatives ‘share’ a portion roo’ of their additive genetic variance because 

       they share  a portion roo’ of their alleles 
-  the dominance genetic cov. betw. relatives = dom. relationship x dom. genetic var. = uoo’VD 

 

ALTERNATIVE DERIVATION OF ADDITIVE COVARIANCES based on quantitative genetics algebra 
 

Model of phenotype: P = A + E  E includes D, I, environment 
Offspring phenotype: Po = Ao + Eo = ½As + ½Ad + RAs + RAd + Eo 

 
     ½ * breeding value of parents 

Ø Breeding value = 2*E(PO-M)  (by definition) 
Ø Includes some dominance and epistatic effects 

 RAs , RAd = random assortment / Mendelian sampling terms 
       - sampling of 1 of 2 parent alleles at each locus during meiosis 

- by definition independent from other terms: Cov(As,RAs) = 0 
 

Without inbreeding: Var(RAs) = ¼VA        Var(RAd) = ¼VA    (see derivation below) 
With inbreeding:  Var(RAs) = ¼(1-Fs)VA       Var(RAd) = ¼(1-Fd)VA          
Thus:  Var(Ao) = Var(½As + ½Ad + RAs + RAd) =  
     =   ¼VA + ¼VA +¼VA +¼VA  = VA  (no inbreeding or selection) 
Single locus derivation of Var(RA) 
Parent 
Geno-
type 

Fre-
quen-
cy 

Genotypic value 
of parent  
[α=a+(q-p)d] 

Offspring mean 
phenotype 
= ½*breeding 
value parent 

Trans-
mitted 
allele 

Fre-
quen-

cy 

Offspring 
mean 

phenotype 

Mendelian 
sampling 
term (RA) 

A1A1 p2 a 2q(α-qd) qα A1 1 qα 0 

A1A2 2pq d (q-p)α+2qd ½(q-p)α A1 ½  qα  ½α 

A2 ½  -pα -½α 

A2A2 q2 -a -2p(α+pd) -pα A2 1 -pα 0 

  E(RAs)     = p2(0) + 2pq½(½α) + 2pq½(-½α) + q2(0) = 0 

Without inbreeding: Var(RAs)  = p2(0)2 + 2pq½(½α)2 + 2pq½(-½α)2 + q2(0)2  

   = ½pqα2 = ¼VA     (VA = 2pqα2)  
With inbreeding:  Fs     = Pr(two alleles in s are ibd) è RAs = 0 
   1-Fs = Pr(two alleles in s not ibd) è RAs = as in Table above 
  Var(RAs)  = Fs(0) + (1-Fs)¼VA = ¼(1-Fs)VA 


