Building Blocks of Population Genetics
Jack Dekkers

Genotype frequencies, Allele frequencies, Haplotype
frequencies, Linkage Disequilibrium, Linkage

Single locus = allele (or gene) frequencies = genotype frequencies

Consider a single locus in a random mating outbred population.
The locus has alleles A1 and A, with allele (or gene) frequencies p and ¢

Under random mating (Hardy Weinberg Equilibrum), the allele received from one parent is
independent of the allele received from the other parent, resulting in the following
relationship between allele and genotype frequencies:

Table 1: Genotype probabilities, single locus two-allele case

Maternal allele
Paternal allele Pr(A;) =p Pr(Ay) =q Marginal prob
Pr(A) =p P Pq P rpg=pp+q =p
Pr(4) =q Pq q Pa+qd=qp+q =g
P +pg= pPg+q =
Marginal prob. pptqg) =p gpt+tq)=gqg

This results in the HWE genotype frequencies: p*, 2pq , ¢°

With multiple 1oci we also need to consider haplotypes and their frequencies,
and relationships between allele, haplotype, and genotype frequencies.

Haplotype = the combination of alleles at >1 locus that an individual inherited from a parent

E.g. an individual with (unordered) genotype A4;4, and B;B; at loci A and B, can have the
following combinations of haplotype pairs (separated by / ):

A;B;/A>,B, > alleles A; and B, received from one parent and 4, and B, from the other
A;By/A;B, > alleles A; and B, received from one parent and 4, and B; from the other

Haplotype frequency = frequency of a given haplotype in a population



With two loci with two alleles, there are 4 possible haplotypes, 16 ordered genotypes
(ordered based on haplotypes), and 9 unordered genotypes (see tables 2,3)

Table 2: Haplotype frequencies and genotype frequencies under random mating (HWE)
Maternal haplotype
Haplotype - freq AB; r AB;, s A,B; ¢t AB;, u
A1B1 r A]B]/A]B] 7"2 A]B]/A]Bg rs A]B]/AZBI rt A]B]/AZBZ ru
~ O
§§: A1B2 S A]BZ/A]BI Sr A]BZ/A]BZ S2 A]BZ/AZBI St A]BZ/AZBZ Su
S
SS|[AB o [AB/AB w [ABJAB: s |AB /4B P |ABJAB;
=
A2B2 u AZBZ/A]BI ur AZBZ/A]BZ us AZBZ/AZBI ut AZBZ/AZBZ l/tz

Table 3: Unordered and ordered genotypes and their frequencies under random mating

Unordered | Frequency Possible ordered genotypes and their frequencies (from Table 1)
genotypes :S?rr:q?lfeﬁf:?ee;ed ‘ordered’ based on parental origin (paternal haplotype/maternal haplotype)
A;A,B,B, v ABJ/AB, 7

AIAIBIBZ 2rs A]B]/A]B2 rs A]Bg/A]B] \Ya

A;A,B,B, s A;ByJAB, S

AIAzBIBI 2rt A]B]/AZBI rt AZBI/A]BI tr

AIAgBIBZ 2rut2st A]B]/Ang ru A]Bg/AgB] St AgB]/A]Bg ts Ang/A]B]
AIAngBZ 2su A]Bg/Ang Su Ang/A]Bg us

A,A,B,B, £ A,B,/4;B,  F

AzAgBIBZ 2tu AgB]/Ang tu Ang/AgB] ut

A,A,B,B, u’ A,B,/4;,B, o

The unordered genotype is what is obtained from genotyping, i.e. the genotype at each locus

What is the relationship between haplotype frequencies and the frequencies of alleles that
make up each haplotype? This depends on whether the alleles at the two loci are
dependent or independent:

Locus A allele freqs \

Locus B allele freqgs %

Independence of alleles at A and B

-
Linkage Equilibrium haplotype

frequencies (product of allele freqs)

Dependence of alleles at A and B
-

Linkage Disequilibrium

Haplotype freqs =——=>Multi-locus genotype freqs
A

Independence

(random mating)

L

HWE multi-locus
genotype frequencies

(product of haplotype freqs)




Haplotype probabilities (= frequencies) - two-allele case:
What is the probability of a progeny to receive from a parents:

allele A4; at locus 4
and allele Bj at locus B ?

i) if the alleles at the two loci are independent from each other
=> joint probability = product of marginal probabilities

Locus B Locus A — allele frequencies
allele freq’s Pr(A;) =p,4 Pr(A;) =q,4 Marginal prob
= = — PaPs 1 gaps
PI”(BI) PB PI'(A]B]) PAPB PI'(AQB]) qaPB = Dp (pA I qA) = Dp
Pr(By) =qg | Pr(4;B:)=paqs  Pr(4:B:) =qags Pags t qagn
=g (Patga)=gs
PapB Tt pags gaPB T qaqs
Marginal prob | = pa(ps + q8) =ps = qa(Ps T gB) = qu

ii) What if the alleles at the two loci are NOT independent ?
=> joint probabilities deviate from product of marginal probabilities (by +D)

Locus A
Locus B Pr(A;) =p,4 Pr(4,) = q. Marginal prob
Pr(B;) =ps Pr(4,B;)=r Pr(4,B;) =t papst D + gapg — D
=paps + D =qgaps—D =pB (PA T qA) =5
PI"(Bz) =qg PI'(A]BZ) =S Pr(AZB2) =u Paqds — D+ qdads +D
=paqs — D =qaqs t D =qs (Pa 1T qa) = g5
Marginal | papg +D +pags—D qaps—D + qags + D
prob = pa(ps + ¢gB) = p4 =ga(ps + gB) = q4

If alleles are dependent = loci are in Linkage Disequilibrium
or in Gametic Phase Disequilibrium

The term °‘linkage’ in Linkage disequilibrium is actually not quite correct and a bit misleading because
disequilibrium can occur between unlinked loci, although it is more likely to be present (and persist) between
linked loci (see later). Thus, ‘Gametic phase’ disequilibrium is a better term; gametic phase refers to the
haploid phase of chromosomes and disequilibrium refers to dependence between alleles that make up the
haplotypes that are present in the current generation and which originated from the haploid gametes produced

by their parents.

D = measure of disequilibrium =

f

D =r—paps

PI'(A 131) - PI'(A 1)PI’(Bl)

The value obtained for |D| is the same irrespective of the haplotype used.



1 4B,
You can also calculate Das: D = ) |_PI'( A,B, ) - Pr(AzB1

4B,

? [

Coupling
heterozygote

Repulsion
heterozygote

Other measures of LD:

D’ = D standardized to make it less dependent on allele frequencies

D’ = D/D

where D,,.. = Min(papg , gags) 1f D<0

Dyper = Min(pags , gaps) if D>0

2 .
I = squared correlation between

allele at locus 4 and allele at locus B

- also measures ability (R?) to predict allele at locus 4 from allele at locus B

To derive I°: Let X = 1 when allele A, present,
Y =1 when allele B, present,

Then: cov(X,Y) = E(XY) — E(X) E(Y)

r — paps =D
3 C . cov(X,Y) D
orr.=Tyy = =
T YvarX)var(Y)  (p,a,Xpsas)
2
> r2: r 2 = D—
A P494Ps95

|D’| and 1’ range between 0 and 1

X =0 if 4, present (= Bernoulli var.)
Y =0 if B, present (= Bernoulli var.)

A1 X=1 A2 X=0

- Pr(4;B;)=r | Pr(4:B;) =t

B Pl o XY =0
- PI‘(A[BQ):S Pr(AQBQ):M

B 01y —o XY =0

(Note: this T is different than 7 in the table above)

|D’| is strongly inflated if one haplotype has a very low frequency

1’ is the preferred measure of LD for most uses




Mechanisms that generate Linkage Disequilibrium (LD)

A variety of mechanisms generate linkage disequilibrium, and several of these can operate
simultaneously. They can be separated into:

1. Recurrent factors — operate to create LD each generation
a. Drift (inbreeding) in small populations — by chance or sampling, haplotypes
passed on to the next generation are not in LE frequencies
b. Recurrent migration — continuous mixing of populations in which haplotypes occur
in different frequencies (e.g. Pr(4,B,)=1 for pop. 1 and =0 for pop. 2)

c. Selection — certain haplotypes may be selected upon and increase in frequency

— selection creates LD between loci that are selected upon (= Bulmer effect)

— selection with epistasis (certain combinations of alleles are favorable)

also creates LD between loci involved.

2. Punctual factors — operate only sporadically over time to create LD
a. Mutation — occurs in a specific haplotype, which is then the only haplotype
that contains that mutation, resulting it to be in LD with the mutation.
b. One-time admixture/migration/crossing (e.g. producing F/F,) — results in mixing
populations with different haplotype frequencies
¢. Population bottleneck / founder effects — severe drift from 1-time sampling effects

Processes that create LD Processes that create Linkage
Disequilibrium
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LD is COIltiIlllOllSly eroded by recombination: how does D change over time?
Let 7y = frequency of 4B, haplotypes in generation 0 = Dy = r - p4ps
What is the frequency of 4,B; haplotypes in generation 1?

In the following derivation, we will consider parental origin of haplotypes and will let | indicate ‘any’ allele,
so A1Bi/4 B indicates an individual that received the 4,B; from its father and any haplotype (4B, or 4,8
or A,B) or A;B;) from its mother)

There are four ways that parents from generation 0 can generate gametes that carry the 4,5,

haplotype and that will produce generation 1:

1. non-recombinant 4,8, haplotype produced by a A4,B,/4 B, parent
2. non-recombinant 4,8, haplotype produced by a A4 B,/4,B; parent
3. recombinant A\B; haplotype produced by a 4,B,/4 B, parent
4. recombinant A\B; haplotype produced by a 4 B, /4,8, parent
For case 1, the frequency of 4,B,/4 B, parents is r, The frequency of non-recombinant 4,8,

haplotypes produced by these parents is Y2(1-c). Thus, the frequency of A;B;, haplotype
produced by A4,B,/4 B, parents = Prob(1.) = 2(1-c)r,.

Case 2 results in the same frequency: Prob(2.) = Y2(1-c)r,.

For case 3, the frequency of 4,8,/4 B, parents is p, pp. The frequency of recombinant 4,8,
haplotypes produced by these parents is Y4c, so the overall frequency is Yacpps.

Case 4.results in the same frequency: Prob(4.) = Yacp ps..

Thus, the overall frequency of 4,8, gametes produced by generation 0 is the some of these
four mutually exclusive cases:
=2 ri=r(l-c)+pypsc
> Di=ripaps = ro(1-c)tpapsc-paps = ro(1-¢)-papp(1-c) = (rot papp)(1-c) = Do(1-c)
> D, =Di(1-¢) ={Dy(1-¢)} (1-¢) = Dy(1-c)’
= D.=Dy(1-c)' > D=0
=>» Erosion of LD by recombination occurs faster when loci are further apart.
LD is halved each generation if loci are unlinked (¢ = %).
D?
. 2 - - @ 2 . . 2
Since I , LD measured by I~ will decline at a rate of (1-¢)” per
Pa94Pp45

generation: I"t2 = r02(1 -C)2t



Break-up of LD by recombination Recent LD extends over large distances
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Balance between drift and recombination: in small(er) closed populations
* LDis COIltiIlU.OU.S1y created by drift (samphng) (small effective population size, N.)
* LD is continuously eroded by recombination — faster at longer distances

This results in a balance/equilibrium of average LD at a given distance: E(+...) = 134N ¢

(Sved 1971)
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Most outbred domesticated plant and animal populations have small(er) (historical) effective

population size and drift-recombination balance is expected to be the main contributor to LD

=> LD expected to be sizeable at short distances, but small at longer distances.

Most human populations have large (historical) N, = E(r.,..) :% is smaller at given
+4N,c

distance.



Building Blocks of Quantitative Genetics

Jack Dekkers
1 locus case:

Genotype A2A2 A1A2 A1A1
| | |

Genotypic value u—a u utd uta w = mid-homozygote value

Single-locus frequencies, genotypic values (deviated from 1), and expectation

T Frequency, Genotypic Pr(T)xGr
Pr(T) value, Gt
2

AA, p a p’a
AiA; 2pq d 2pqd
ALA, q° a —g’a

Population mean = u + E(G7) = M= u + pa+2pqgd + —g°a = u + a(p — q) + 2pqd

Extension to two loci (without epistasis):

The genotypic value of an individual is the sum of the genotypic values at each
locus:
Gr=u+Gs+Gpg G; = genotypic value locus /, as defined for 1-locus case

Now the homozygote “midpoint” u is midway between the best and worst double
homozygote (A1A1B1B; and A,A;B.B;) = (17+3)/2 = 10 in the example below.

Pop.mean=u+E(Gr)=M=u+E(Ga+ Gg)= E(G,) + E(Gp)
= p+{aa(pa— qa) + 2paqada} +{as(ps — gs) + 2Psqsds}

Spreadsheet Genotypic_values_models_v10.xls

Input parameters: Output:
Homozygote midpoint W = 70 GENOTYPE-BASED MODEL FOR GENOTYPIC VALUES
an= 4 ag= 3 2-locus genotypic values A locus genotype
and frequencies (random mating) AqA, AA, AA,
da= 2 dg = '1
B locus MGy 4 2 -4
pa= 0.6 ps= 0.3 genotype | freq 0.36 0.48 0.16
da = 0.4 ds = 0.7 BB, 3 17 15 9
Linkage Disequilibrium D = 0 0.09 0.0324 | 0.0432 | 0.0144
BB, -1 13 11 5
Recomb. Rate= 0.2 Population mean 042 | 01512 | 02016 | 0.0672
Input matrix for epistatic effects M =10.14 BB, -3 11 9 3
AA, AA, A, new =10 049 | 01764 | 0.2352 | 0.0784
“,=8.38 Average at A locus 12.38 10.38 4.38
=5l 0 0 0 g =11.76 A
B = 11. verage at B locus 14.76 10.76 8.76
B1B2 0 0 0 Re-calculated 1-locus additive, dominance +a d -a
B,B, 0 0 0 and genotypic values G, = 4 2 -4
with epistasis Gp = 3 -1 -3




Extension to many loci: Gr=2XG; summation is over all loci

Homozygote “midpoint” u is average of the best and the worst multi-homozygote
Populationmean=u +E(Gr)=M =u+EXG;)= u+2ZE(G)
= u+ Z{a(pi— q) + 2pqd} = Zalpi — qi) + 22piqd;

Allele-based models for additive effects

In practice, we are interested in selecting the ‘best’ individuals to be used as parents to breed
the next generation; we want to select individuals whose progeny have the highest expected
phenotype, i.e. whose progeny have the highest expected genotypic value.

To identify these individuals we need to know how the genotypic value of progeny relates to
the genotypic value of their parents.

Models described in terms of a and d are for genotypic values for whole genotypes.
But individuals pass on alleles NOT genotypes

Parents pass a sample half of
their genes to progeny

Parents Dam

g9
Hh Ff

meiosis 1 ov
c
b
Fde

perm a
A C a ¢C A A C
g
D D D

Progeny
(full sibs)

The breeding value of an individual is defined to quantify an individual’s value as a parent.
It is related to the expected genotypic or phenotypic values of that individual’s progeny.

An individual’s breeding value = 2 x expected deviation of the mean phenotype
of an individual’s progeny from population mean (M)
when mated at random to other individuals from the population.

Ai =2 E(Pprogeny'M)



In general: an individual’s breeding value is the sum of the average effects of the
alleles that the individual carries: Al-j =o;t Q;

Average effect a; = Average deviation from the population mean of individuals

who received allele i (i.e. As or A;) from one parent and the
other allele at random (i.e. A; with freq. p and A, with freq. q)

“Other Allele” (=random) Mean Gt Mean of Gt
A A, of resulting deviated from
“Allele i~ Pr(A)=p Pr(Ay) =q individuals Population mean
ar =pat+tqd-M
A Gaimi = a Gaiaz = d pa + qd =qla + (g—p)d] =qa
o, =pd—-qa-M
Az Gpoa1 =d Gponz =—a pd—qa =—pla + (g—p)d] =-pa

Another important concept/quantity is the average allele substitution effect (@):

Average allele substitution effect=a = a1 — az2=a+ (q - p)d

= average effect on the genotypic value of substituting a random A; allele for an A, allele

One locus multiple alleles: an individual’s breeding value is the sum of the average effects

of the alleles that the individual carries:

dj=oait+ o

For two loci: individual with alleles i and j at locus A and alleles & and / at locus B:

Aju = On; + O + O + ap; with each a; derived as above for 1-locus case (no epistasis)

n 2

Many loci: 4, = E /2 A
locus =1 allelei=1

sum average effects over all n loci and

the individual’s two alleles at each locus

Spreadsheet ‘Genotypic_value models.v10.xls’

Substitution effect

A= 3.6
=26

ALLELE-BASED MODEL FOR GENOTYPIC VALUES
Average allele effects
Locus A a1 = 1.44 A2 = -2.16
Locus B B1 = 1.82 B2 = -0.78
All values are now deviated from the population mean, M.
A locus genotype
AAq A+A2 AzAz
( +Gy)-M 2.24 0.24 -5.76
Additive 2.88 -0.72 -4.32
B locus |Dom.dev. -0.64 0.96 -1.44
Genotype | Epistasis - = —
BiB1 4.62 6.86 4.86 -1.14
3.64 6.52 2.92 -0.68
0.98 0.34 1.94 -0.46
- 0.00 0.00 0.00
BiB2 0.62 2.86 0.86 -5.14
1.04 3.92 0.32 -3.28
-0.42 -1.06 0.54 -1.86
- 0.00 0.00 0.00
B2B, -1.38 0.86 -1.14 -7.14
-1.56 1.32 -2.28 -5.88
0.18 -0.46 1.14 -1.26
- 0.00 0.00 0.00

42

6

Genotypic / Breeding value

Single locus Genotypic and Breeding Values

4 -

deviated from population mean (M)

=0—A locus Br.val.

0
4
-6 | o
-8
® Alocus G ® Blocus G

=O-B locus Br.val.

H—
o




Alternate derivation of allele substitution effect based on
Linear regression on number of ‘1’ alleles

Allele substitution effects can also be derived by analyzing phenotype (or the genotypic
value) by a linear regression model on the number of ‘1’ alleles that an individual carries (as
we have done is some of the homeworks):

Linear regression of Y on X:

In this case, X=# 1 alleles:

Y=M+b,(X-X)+e

Y=M+b, (X -X)

Xr=12,1,0} for T= {A1A1, A1A2, A2Az}

Genotype # A, | Frequency
T Gr | Xr f X7 F*GrXr
AqA, a 2 p’ 4p° 2p‘a
A1A; d 1 2pq 2pq 2pqd
AA, -a 0 q° 0 0
SUM 4p°+2pq 2p‘a+2pqd

b’\=

cov(Gy, X;) _ E(G,X;) - E(Gy)E(X,) _|2p°a+ 2pqd |- [a(p - g) + 2pqd]|2p7 + 2pq]

var(X ;)

E(Xi) _E(XT)2

@rpifgatim dEregression coefficient b :
* When X7 increases by 1, Y increases by a + (g — p)d = a = allele substitution effect

402 + 209|202 + 204 [

* When X7 increases by 1, an allele substitution has occurred =» b=a

Allele-based models for dominance and epistatic effects

When d is not 0, breeding values will not explain everything about the genotypic value:

Single locus example: p=0.6; a=+4; d=1; M\=0 =» a=a+(q—p)d=+3.8

=2 o =qa=

0.4*3.8 =+1.52

=2 o =-pa=-0.6"3.8 =-2.28

Genotype | Fre- Genotypic value (G) Breeding value Dominance deviation
T quency deviated from M A 0=G-4
AsA; 0.36 +2.72 20 = +3.04 -0.32
A A, 0.48 -0.28 a;+ ap =-0.76 +0.48
A2A2 0.16 -5.28 20{2 =-4.56 -0.72

These differences between the single-locus genotypic and breeding values are called
‘dominance deviations’.
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Based on this, the genotypic value at a single locus of an individual that has alleles i and ; at
that locus (deviated from the population mean, M) can be written as:

Gy=o;+ o+ 0; = Ay + 0

o; = average effect of allelei ;= average effect of allele j
0;; = dominance deviation effect of the interaction of alleles i and j

Dominance devations can also be derived as a function of allele frequencies and d

Gr Average allele effects Dom.dev.
Genotype T (deviated from u) a; a S
A4A; a aq = qo a1 = qo —2¢°d
A1Az d ay = qo o =-pa. 2pqd
ALA, -a oy =-pa. Qo =-po. —2p2d

Graphical 1
representation of -
average effects and . +& -

dominance iy o
o Lo 7] -
deviations . @
e

) 5
Dominance 0:
deviations are the =)
. , =
residuals from the  * 04 2

regression of
genotypic values on
the number of A,
alleles.

The regression line  —g : @
represents the -l

breeding values 0 1 2
AA; O AA AA,
Frequency
ol 2pq P2
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Extension to two loci (no epistasis)

With two loci, the genotypic value is the sum of the individual’s genotypic value at each
locus: Gr=G4 +Gg G; = genotypic value locus /, as defined for 1-locus case

And the genotypic value at each locus can be partitioned into additive and dominance effects:

G = oyt ay+ Oy
and GBij = Qp; T+ Apj + 63,:/'

Thus the overall genotypic value can be written as the sum of average allele effects and

dominance deviations as:

Gr=oay + ay+ 04+ o+ ag + Opy
Gr=oay + ay+ o+ ag+ 04+ Opy

The sum of average allele effects define the breeding value: At = ot; + oy + o + ap;

The sum of dominance deviations define the dominance effect: D+ = O, it 534-,

Thus the genotypic value can be written as the breeding value and its dominance effect:

Gr=Ar+Dr
Homozygote midpoint = 10 A locus genotype
ap = 4 ag = 3 A1A1 A1A2 A2'6\2
da= 2 ds = -1 ( +Gr)-M| 2.24 0.24 -5.76
Additive 2.88 -0.72 -4.32
p“: 0.6 = ~ 0.3 B locus |Dom.dev.| -0.64 0.96 -1.44
R SERE Genotype | Epistasis -- -- --
Linkage Disequilibrium D = 0 BB 4.62 6.86 4.86 114
Recomb. Rate= 0.2 3.64 6.52 2.92 -0.68
Input matrix for epistatic effects 0.98 0.34 1.94 -0.46
ArA AA; AA; — 0.00 0.00 0.00
B,B, 0 0 0 B:B, 0.62 2.86 0.86 -5.14
B,B, 0 0 0 1.04 3.92 0.32 -3.28
BB -0.42 -1.06 0.54 -1.86
272 0 0 0 - 0.00 0.00 0.00
ALLELE-BASED MODEL FOR GENOTYPIC VALUES B2B> -1.38 0.86 -1.14 -7.14
Average allele effects Substitution effect 156 1.32 _2.28 -588
Locus A A= 144 A2 = -2.16 A= 3.6
Locus B g1 = 1.82 B2 = -0.78 B =26 0.18 e (O Uz
All values are now deviated from the population mean, M. - 0.00 0.00 0.00
Extension to multiple loci (no epistasis):
n 2 n
Gr=Ar+ D+ Ar= E A Dt = 51?'
locus =1 allelei=1 locus =1
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Epistatic Deviations

When epistatic effects are present, the genotypic value of an individual can not be written as
a simple sum of the genotypic value at each locus but an effect of the interaction between loci

Gr=Ga+ Gp + Gaws
Similarly, the genotypic value of an individual can also not be written as the sum of a

breeding value and a dominance deviation but an epistatic deviation effect (/1) needs to be
Gr=Ar+Dr+ 1y

Epistatic deviation effects for each individual (or multi-locus genotype) can be calculated by
subtraction, after the additive and dominance deviation effects have been computed as

[T = GT-AT-DT

needs to be added: For two loci:

added:

described before:

omozygote midpoin = 10
a,=4 ap =3
da= 2 ds = -1
pa= 0.6 pe = 0.3
da = 0.4 de = 0.7
Linkage Disequilibrium D = 0
I Recomb. Rate = 0.2
Input matrix for epistatic effects
ALA, AA, AA,
B1B 3 0 0
B1B: 0 0 0
B.B> 0 0 0
Genotype-based epistatic effects G axs
AA, AA, AA,
B1B+ 0.825 -1.905 -1.905
B:B> -1.095 -0.825 -0.825
B2B2  -1.095 -0.825 -0.825

ALLELE-BASED MODEL FOR GENOTYPIC VALUES

Average allele effects

Substitution effect

2-locus Genotypic vs Br.Values

® Breeding value
10 ® Genotypic Value
—o— Additive dev

8 A Dominance dev
+ Epistatic dev
6 = Frequency

Genotypic value
o

-5 0 5
Additive deviation = sum of alpha's

Locus A A1 = 1.5048 A2 = -2.2572 A= 3.762
Locus B g1 = 2.0468 g2 = -0.8772 B =2.924
A locus genotype

AA, AA, ALA,

( +G)-M| 2.41 0.14 -5.86

Additive 3.01 -0.75 -4.51

B locus JDom.dev. -0.60 0.90 -1.34
Genotype | Epistasis -- - --

B1B1 5.60 9.76 4.76 -1.24

4.09 7.10 3.34 -0.42

1.51 0.91 2.40 017

- 1.75 -0.98 -0.98

B:B. 0.52 2.76 0.76 -5.24

1.17 4.18 0.42 -3.34

-0.65 -1.24 0.25 -1.99

- -0.17 0.10 0.10

B2B: -1.48 0.76 -1.24 -7.24

-1.75 1.26 -2.51 -6.27

0.28 0.32 1.17 -1.07

- -0.17 0.10 0.10
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Genetic Variance Components
Single-locus model

Genotype A2A2 A1 Az A1 A1

| | |

Genotypic value -a 0 d a
T Fre- Genotypic | Pr(T) |(Gp)*| Pr(T) Breeding Domi-

quency value X X value nance dev.

Pr(T) Gr Gr (G’ |Ar=ait ;| Dr=¢;
AA | p? a p’a p‘a’ 2qa —2q°d
AA2 | 2pq d 2pqd 2pqd” | (g-p) @ 2pqd
AN, | QP —a —q’a q’a’ -2pa —2p°d

Genetic model for genotypic values: Gr = Ar+ Dt = Breeding value + Dominance dev.
Variance of genotypic values in a population = (Total) Genetic variance = V'

Ve = var(Gr) = p’a” + 2pqd” + q°a” — E(Gr)’ = 2pgla + (q — p)dT’ + (2pqd)*

Using a = a + (q — p)d = allele substitution effect: Vg = 2pq 062 + (ZPQd)2

Additive genetic variance = variance of breeding values in a population = V,

V, = var(4y) = p?(2qa)* + 2pq[2(g-p)al? + ¢*(-2pa)’ — 0% = 2pqd? (Note that E(47)=0)

Dominance variance = variance of Dominance deviations in a population = V),
Using the table on p1, the variance of dominance deviations in the population is :

V) = var(Dr) = var(s;) = p*(-2q°d)* + 2pq(2pqd)’ + g*(—2p°d)’ — 0% = (2pqd)’  (Ewr)=0)

= Genotypic variance = Vg = 2pqa” + (2pqd)? = V., + V),

= Additive Variance + Dominance Variance

Note : cov(4r,D7) = 0 ; i.e. breeding values and dominance deviations are independent

Extension to two loci — first without epistasis:

Genotypic value = G7 = Ga + Gp G; = genotypic value locus i

Vs =var(Gr) = var(Ga + Gg) = var(Ga) + var(Gg) + 2cov(Ga, Gg)
= var(Gp) + var(Gg) + 0
= 2Pa0aan” *+ (2PaGadA)’ + 2psGsas’ + (208GE08)°
= {2pagaca® + 2Psqscs’} + {(2Pagada) + (205qs0s)}
={ Vag  3+{ Vb, + Vbg 1}
= V4 + Vp

cov=0 if loci are in LE

+
7R
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Homozygote midpoint = 10 A locus genotype
a,=4 as =3 AA, AA, ALA,
da= 2 ds = -1 (+Gr)-M| 2.24 0.24 -5.76
pa=0.6 pe=0.3 Additive 2.88 -0.72 -4.32
an= 0.4 ds = 0.7 B locus | Dom.dev. -0.64 0.96 -1.44
Genotype | Epistasis - - -
Linkage Disequilibrium D = 0 BB, 2.62 6.86 2.86 114
S fRe°°r_"tt"t'?at‘:_f= t 0.2 3.64 6.52 2.92 -0.68
nput matrix A‘:':p's a IZ\?A:C S o 0.98 0.34 1.94 -0.46
- 0.00 0.00 0.00
BiBy| 0 0 0 BB, 0.62 2.86 0.86 -5.14
BBl 0 0 0 1.04 3.92 0.32 -3.28
B2B, 0 0 0 -0.42 -1.06 0.54 -1.86
ALLELE-BASED MODEL FOR GENOTYPIC VALUES = 0.00 | 00 | 000
Average allele effects Substitution effect B2B. -1.38 0.86 -1.14 -7.14
Locus A A1 =144 A2 = -2.16 AT 3.6 -1.56 1.32 -2.28 -5.88
Locus B g1 = 1.82 B2 = -0.78 B = 2.6 0.18 -0.46 1.14 -1.26
All values are now deviated from the population mean, M. _ 0.00 0.00 0.00
Population variances| Alocus | Blocus | Population | Percent Population Variances
Total Genetic 7.142 3.016 10.158 100.0%
Additive effects 6.221 2.839 9.060 89.2% 1207
Breeding values 6.221 2.839 9.06
Dominance 0.922 0.176 1.098 10.8%
Epistasis - - 0.000 0.0%

“Additive effects” refer to breeding values computed
as the sum of average allele effects.

“Breeding values” are computed based on the
expected progeny means

Total Additive Breeding Epistasis
Genetic effects values Dominance

Extended to >2 loci, this gives:
Vi = ZVei= Z{2pqia’ + 2pqid)’} = ZVai+ ZVp; = Va+ Vp

with: VA = 2 VA,' = 22p,-q,-a,-2 and VD = 2 VD,' = Z(Zp,q,d,)z

=> the genetic, additive, and dominance variances for a quantitative trait are the simple
sum of the genetic, additive, and dominance variances at each locus that affect the trait.
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With Epistatic effects = Interactions between the effects that loci have on phenotype

Two locus example: Gr=G,+ G+ Gup Genotype-based model
Gr=oy, + Oy + op; T Apj + 514[:]' + 53[]- + Iy Allele-based model
= A + D +/

Epistatic variance = variance of epistatic deviations in a population = V, = var(/,z)
=» Complete partitioning of genetic variance: Vg=Vy+ Vp+V, Note: all cov’s =0

=>» Epistatic variance can be obtained by difference: V, = Vis— V4 — Vp  see spreadsheet for ex.

Input matrix for epistatic effects Population variance| A locus | B locus |Population| Percent
AAq Az Ao Total Genetic 7595 | 4.009 | 11774 | 1000%
B1B; 3 0 0 Additive effects 6.793 3591 10.384 88.2%
BB, 0 0 0 Breeding values B5.793 SUEEN 10.41357
Jornina 0.807 0.418 1.220 | 10.4%
BB O g 0 0.170 1.4%
A locus genotype . .
e e e Population Variances
(p+Gn-M|  2.41 0.14 5.86 0m
Additive | 301 | -075 | -451
B locus | Dom. dev. | -0.60 ] 0.90 1.54 10.0-/
Genotype Eo.-’stas.-‘.s‘ -- - - /
B1B4 5.60 9.76 4.76 -1.24 807
4.09 710 | 3.34 -0.42
757 | o091 ] 240 0.17 oot
- 175 | -098 -0.98 ot
BB 0.52 2.76 0.76 5.24
117 | 4.8 0.42 3.34 2.0-/
065 | -1.24 0.25 -1.99
= -0.97 Q.90 Q.90 00
Total Additive Breeding Epistasis
B2B2 -1.48 i 0.76 -1.24 -7.24 Genetic  effects values Dominance
-1.75 1.26 -2.51 -B.27
028 | -0.32 1.17 -1.07
. 017 010 010 Covariances |Addit. Dom.dev |Covariances
Population means Alocus Blocus Population Population | Dom.dev 0.00 are always
Genotypic values 0.00 0.00 0.00 |meansare | Epist.dev 0.00 0.00 zero
Add',t've » 0.00 0.00 0.00 | always Additive, dominance, and epistatic effects are
Dominance deviationy  0.00 0.00 0.00 equal to . .
Epistasic deviations - - 0.00 zero mdependent (no covarlances)

In a typical population, most genetic variance is additive — see also Hill et al. PLOS Genetics (2008)
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Impact of Linkage disequilibrium on genetic variances A 5
o p

Consider 2 linked loci, A and B: Paternal gamete p ; 4

Each individual has a paternal and a maternal gamete Maternal gamete m Am é
m

The breeding value is the sum of the average effects of the paternal and maternal alleles:
A= ap,+ g, T Opp + O

If the loci are in LD = allele states (0/1) at two loci on the same gamete are not independent
-> they have a non-zero covariance (1’ = squared correl. of allele states (0/1) is > 0)

Then, the variance caused by the additive effect of the paternal (or maternal) gamete is

Var(aAp + aBp) = Var(aAp) + Var(OCBp) + ZCOV(aAp,OCBp) From bottom p.1: var(a) :pqa2 WA
= VzVAA + VZVAB + 2DABOCApO!Bp where Dag = LD A,B
=>» Additive genetic variance = V4= V4 At VAB + 4Dpgop, 08, see spreadsheet for example

=> Dominance genetic variance =
VD = Var(éApm + (SBpm) = Var((SApm) + Var(éBpm) + 2Cov(aApms 5Bpm)
= Vo, + Vb 8Das’dadls
(D2 because dominance is based on combinations of paternal and maternal alleles)

Homozygote midpoint = 10 D=+0.1
a,=4 ag =3 Population variances| Alocus | Blocus | Population | Percent
da= 2 ds = -1 Total Genetic 7142 | 3016 | 13.742 | 1000%
Pa= 0.6 pe = 0.3 Additive effects 6.221 2839 | 12804 | 93.2%
qa = 0.4 48 = 0.7 Breeding values 6.221 2.839 12.804
Linkage Disequilibrium D = 0 Dominance 0.922 0.176 0.938 6.8%
| Recomb.Rate= 0.2 Epistasis - - 0000 | 0.0%
D=0 D=-0.1
Population variances| Alocus | Blocus | Population | Percent | | Population variances| Alocus | Blocus | Population | Percent
Total Genetic 7142 3.016 10.158 100.0% Total Genetic 7.142 3.016 6.254 100.0%
Additive effects 6221 | 2839 | 9060 | 8929 [| Additiveeffects 6221 | 2839 | 5316 | 850%
sesdngualues | 6221 | 2880 | 05 vomnance | ooz [N oo5; | sson
Dominance 0.922 0.176 1.098 10.8% Epistasis B » 0.000 0.0%
Epistasis - -- 0.000 0.0%

Note that individual locus variances are not affected by LD but across locus variances are

(because of non-zero covariances).
Whether V, increases or decreases depends on whether the favorable alleles are in repulsion
or coupling phase

Whether V), increases or decreases depends on whether d has the same sign for both loci.
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Phenotypic and Environmental Effects and Variances

Models for Environmental Effects

Phenotype for a quantitative trait is determined by genetic and environmental factors:
P=u+G+E

w includes the mean and systematic (environmental) effects
G = genotypic value
E = Random environmental effects

Partitioning of phenotypic variance
Phenotypic variance = var. of phenotypes in a pop. after removal/adjustment for syst. effects

= Vp = var(P-u) = var(G+E) = var(G) + var(E) + 2cov(G,E)

If genotypes are distributed at random relative to random environmental effects = cov(G,E)=0

-> Ve=Vg+ Ve=Vy+ Vp+V, + Ve

Relative importance of the genetic component

Genetic variance as a fraction of the phenotypic variance:

V,

Broad sense heritabili H? ==¢ - proportion of phen. var. in a pop. that is genetic
¥ Y
P
Narrow sense heritability h* =2 = proportion of phen. var. that is additive genetic
LY
P
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MODELS FOR TRAITS WITH REPEATED MEASURES

General environmental effects = Eg =Effects that are common to each measurement

Special environmental effects = Es = Effects that are specific to a given measurement

P;j= G;+ Eg, + Es; P;= /™ measurement of phenotype on i individual
G; and Eg; are common to all measurements on individual
Es;j = special envir. effect for /™ measurement on /" individual

This also allows random environmental variance to be separated into variances due to
General versus Special environmental effects:

Vp=Vs+ VEg + Ve Note: COV(EQ,ES)=O

Repeatability = r = correlation between repeated measures on the same individual

(Assume that Vg and therefore Vp is the same for each measurement)

cov(F;,Fy)  cov(F;,F) cov(F,Fy)
\/V3 r(P; )var(Py) VVeVe Vp

r =cor(P;, P) =

COV(P,'/', P,'k) = COV(G,’ + Eg, + ES,'j, G + Eg, + ES,'k)
= cov(G;,G)) + cov(Eg;,Eg)) + Cov(Esj,Esi)
= Vs + VEeg + 0 special env. effects are independent

=> repeatability =r= (Vs + Vgg) / Vo = prop. of Vp that is due to effects that are
consistent across measurements (G + EQ)

-> 1—-r=Vgs/ Vp = prop. of Vp that is due to effects that
differ between measurements (ES)
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CORRELATED TRAITS

Phenotypic correlation = correlation between phenotypes on traits 1 and 2 on same individual
= caused by genetics and environment

Phenotype trait 1 Pi=Ai+ Dy + 14+ E4
(Additive) genetic correlation = ra Environmental correlation
= Corr(A1,A2) =TE
Phenotype trait 2 P,=A+ Do+ 1 +E;
_Cov(P,R,) ro- Cov(A,,A;) ro- Cov(E,,E,)
0,0, A 0,0, F O O,
- Correlations between Traits
g: Trait 1 Trait 2
=
Breeding
value
Phenotype
Environ-
mental
factors
Trait 1

Genetic correlation — caused by - pleiotropic genes = genes with effect on both traits
- linkage — a gene that affects trait 1 is in LD with

a gene that affects trait 2
- transient correlation — disappears with loss of LD

- quantifies the overall effect on both traits, across all loci
=> ra = 0 does not imply that there are no pleiotropic genes

Environmental correlation — caused by random environmental factors that affect both traits
— measures the overall effect of all environmental factors

Some quantitative genetic math to show relationships among correlations:
Cov(P,,P,)=Cov(A +E,,A, +E,)=CoVv(A,A, ) +Cov(E, E,)
D 1,0p0p, =1,0,0, +I0: 0
> 1,0,0p, =, h,0,h,0p +r:€,0,€,05 e” = 1-h* = prop.of phen.var. that is not add.genetic

> r, =r,hh, +reee,
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Are two alleles the same? Identity By State (IBS) versus ldentity By Descent (IBD)

GENETIC RELATIONSHIPS AND INBREEDING

- IBS: if we can genotype individuals o and o’ for this locus (QTL), then we can directly determine
whether the alleles the two individuals carry are indeed the same
— if they are the same, this is referred to as the alleles being IBS.

- IBD: if we cannot genotype the locus (ie. the usual case), then we cannot determine IBS directly
but, if o and o’ have a common ancestor, than we can determine the probability that the two
alleles are identical because they may have originated from a common ancestor

IBD probabilities from pedigree:

Prob(op is IBD to o’p) = P(op = o’p)

= probability that alleles op and O’p
originated from the same allele
of the common ancestor

Alleles
Parents

Alleles
Offsorina

sp sm

dp dm

s\ X /d

op om
0

s’p s’m

s’\‘ X /d’

op om
b

0

dp dm

Example IBD probabilities, coefficients of coancestry and additive and dominance coefficients

Additive Dominance
Coancestry | relationship | relationship
IBD probabilities for pairs of alleles coefficient | coefficient | coefficient
Individual o — 0’ op—o’p | om—o’m | op—o’m | om-0’p foor loo’ Uoo’
Sire(o) — Offspring(o’) Yo 0 0 Vo Ya Yo
Dam — Offspring 0 V2 Vo 0 Ya iz
Paternal half-sibs 1A 0 0 s Va
Full sibs Vo V2 0 YVa iz YVa
Identical twins 1 1 0 Vo 1 1

loo

Coefficient of coancestry (also coeff. of kinship or consanguinity) between o and 0’ (See also Ch 5 p85)

= foo = probability that an allele drawn at random from o is IBD to an allele drawn random from o’
= average of the 4 possible IBD probabilities between alleles at o and o’

= 2fo0’ = coefficient of relationship = additive genetic relationship coefficient

NOTE: /.o is also equal to the coefficient of inbreeding of a progeny produced by o and o’

= probability that an individual’s alleles are IBD

From IBD probabilities to covariances of between relatives:

COV(Go,Go’) = roo'vA + uOO’vD

This equation applies to each locus that affects the trait but also to total genetic value;

summing variances over loci (Va = ZVa)), this equation also applies to multiple loci
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Thus, the genetic covariance (resemblance) between relatives is a function of their genetic
relationships and genetic variance components.

- the additive genetic cov. between relatives = genetic relationship x add. genetic var.= roo'Va

- relatives ‘share’ a portion r, Of their additive genetic variance because
they share a portion r,o Of their alleles
- the dominance genetic cov. betw. relatives = dom. relationship x dom. genetic var. = uq,o'Vp

ALTERNATIVE DERIVATION OF ADDITIVE COVARIANCES based on quantitative genetics algebra

P=A+E E includes D, |, environment
P0=Ao+Eo=1/2As+1/2Ad+RAS+RAd+EO
Y2 * breeding value of parents
» Breeding value = 2*E(Po-M) (by definition)
» Includes some dominance and epistatic effects

Model of phenotype:
Offspring phenotype:

RAs , RAg = random assortment / Mendelian sampling terms
- sampling of 1 of 2 parent alleles at each locus during meiosis
- by definition independent from other terms: Cov(As,RAs) =0

Without inbreeding: Var(RAs) = 4V Var(RAq) = 74aVa  (see derivation below)
With inbreeding:  Var(RAs) = 4(1-Fs)Va Var(RAq) = Ya(1-F4)Va
Thus: Var(Ao) = Var(Y2As + V2A4 + RAs + RAy) =

= YaVa + VaVa +74Va +7/4Va = V4 (no inbreeding or selection)

Single locus derivation of Var(RA)

Parent | Fre- Genotypic value | Offspring mean | Trans- | Fre- | Offspring | Mendelian
Geno- | quen- of parent phenotype mitted | quen- mean sampling
type cy [a=a+(g-p)d] = Y2"breeding allele cy | phenotype | term (RA)
value parent
AA p° | a| 2q(a-qd) qa Aq 1 qa 0
1
AA; | 2pq | d | (g-pat2qd | Yig-Pa { A % q¢ 7
Az Ve -po -0
AA; ¢ |-a| -2p(a+pd) -po Az 1 -po 0
E(RAs) = p?(0) + 2pqYa(Vaa) + 2pqVa(-Yaa) + q7(0) = 0
Without inbreeding: Var(RAs) = p?(0)? + 2pqYa(Vsa)* + 2pqVa(-Yaa)® + g?(0)
= Yapqo® = VaVa (Va = 2pqo?)

With inbreeding: Fs =Pr(two alleles in s are ibd) & RA; =0
1-Fs = Pr(two alleles in s not ibd) = RAs = as in Table above
Var(RAs) = Fs(0) + (1-Fs)VaVa = Va(1-Fs)Va
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