Inbreeding and its Impact on Design of Breeding Programs
Jack Dekkers

Inbreeding = mating of individuals that are related by ancestry
-> may carry alleles that are identical by descent (ibd) (vs. by state)
-> increases probability that progeny will by homozygous

Inbreeding coefficient = probability individual’s pair of alleles at a locus are ibd
= coefficient of coancestry of parents

Coefficient of coancestry individuals x and y
= prob( a random allele from x (at a given locus) is ibd to
a random allele from y)

Additive genetic relationship x,y = 2 x coefficient of coancestry between x and y

Effects of inbreeding = increased homozygosity
* Increased incidence of recessive disorders
* Inbreeding depression = reduced phenotypic performance
* Loss of genetic variance = reduction in rates of genetic improvement

Genotypic frequencies and mean performance in a population with inbreeding
coefficient F for a single gene with 2 alleles with inbreeding coefficient F

p=freq(A,) q=freq(A,)

Genotype Frequency | Value Frequency x value
AA, p2 +pqF +a pza +pqaF

AqA; 2pq -2pqF d 2pqd -2pqdF
AsA, q +pgF |-a -q’a -pqaF

Sum = My | = a(p-q)+2dpq-2dpqF
= a(p-q)+2dpq(1-F)

Without inbreeding: mean = My = a(p-q)+2dpq
Inbreeding depression = My — Mg = -2dpqF

Summed over loci (no epistasis): My — Mg = -2F2dpq



Impact of inbreeding on genetic variance:

Infinitesimal genetic model

Noinbreeding: o ="(1-k 1} )o; +V(l-k,r; Yo, +'20, o, =Dbasepop. var.
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With inbreeding: Mendelian sampling variance = (1- F, )% o, +(- Fy))Va oL
= (1%, +Fy )0y,
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Only Mendelian sampling variance is affected by inbreeding, depending on
inbreeding coefficient of parents, rather than inbreeding of the progeny

PREDICTION OF RATES OF INBREEDING

AF = Ft+1 _Ft _ 1
1-F, 2N

e

N, = Effective population size = number of individuals that would give rise to a rate
of inbreeding AF if bred as an idealized population

Random mating, including selfing

- No selection

- Discrete (non-overlapping) generations

- Random distribution of family size — each individual has
equal probability of contributing progeny

Idealized population

Factors affecting rate of inbreeding in a closed non-idealized population

In a population that is not under selection: 200
* # males (N,,) and females (Ny) used for Ne
breeding < - population size
< > selection intensity 150 1
1 1 1 .-
- * 100 #2277
N, 4N, 4N, —o—Nf=100
1 1 —0—Nf= 50
AF= —+— 50
8N, 8N, : = == Nm+Nf
> N, is less than the # parents; <N,, + Ny . (5')/ = = = Nm+Nf
= N, is driven primarily ' ' ‘ ' '
by the smaller of N,, and Ny 0 20 40 Nm 60 80

100




* Variance of family size <> unequal use of parents (and their progeny)
- family size = number of progeny that become breeding parents
(Hill, 1979 Genetics 92:317)

N, ~ 8N 3> AF- 1T _ Vin+Vi+4
Vin + Vi +4 2N 16N

e

N = Total population size (*2N males, /2N females)
Vim = Var(# progeny per male)
Vit = Var(# progeny per female)

Vim and Vi affected by unequal use of individuals for breeding
- selection
differential use of selected individuals

Mean family size = 2 (each parent = 2 progeny to maintain population size)

Idealized population: distribution of family size = Binomial = Poisson

_ 8N _N
2+2+4

Variance of family size can be reduced (by the breeder) by ensuring that all

selected parents equally contribute breeders for the next generation

- within family selection — select best male and best female from each

2 Vim = Vig = mean family size=2 = N,

fullsib family =2 V., =0=> N, = 2N
* Generation Interval < > shorter > greater rate of inbreeding per year
~__ 8N.L >  AFivr= 1 = V.. +V,+4
TV +V, +4 Y7 oN, T 16N L2

N, = total # progeny per year
L = average generation interval (across males and females)

Selection increases inbreeding through: (Verrier et al. 1990)
* Probability of co-selection of relatives <-> correlation of the selection criterion
between relatives
* Inheritance of selective advantage — progeny of good parents are more likely to be
selected themselves, as are their descendants
=» increased variance of family size



More accurate methods to predict rates of inbreeding in populations under selection
In part based on notes from Bijma and van Arendonk

See Wray and Thompson (1990 Genet. Res. 55:41), Verrier et al. (1990)

Previous methods are ‘single generation” methods
— account for differential contributions of ancestors to future generations through
differential numbers of progeny that become breeding parents
— do not account for additional differences in an ancestral contributions through
differential numbers of grand progeny that become breeding parents

Theory of long-term genetic contributions
Wray and Thompson 1990. Genet. Res. 55:41  Woolliams et al. 1999 Genetics 153:1009
Woolliams and Bijma 2000 Genetics 154:1851 Bijma and Woolliams 2000 Genetics 156:361
Bijma et al. 2000 Genetics 156:361

rf»tl (] )1 2) = Genetic contribution of ancestor i born at generation ¢, to an individual j
born at generation ¢, (,>t;)
= proportion of genes of j expected to derive by descent from ancestor i.
Note: Full-sibs share % of their genes but make no genetic contribution to each other.

Vi, (t 2) = Mean genetic contribution of ancestor i born at generation ¢, to generation ¢,

= the average proportion of genes among individuals in generation #, that are
expected to derive by descent from ancestor i

1
* E(7, (, )) =N for male ancestors (N,, = # male ancestors)
=N ; for female ancestors

o Ty (t 2 )differ between ancestors due to differences in use as parents and
differences in selective advantage

o E ri,tl (12): 1

1

* as b- t; increases, contributions from a given ancestor stabilize and become

similar across individuals from generation, ¥ 3} (7, (J,1,)) >0

* - t;=> infinity, genetic contributions from a given ancestor are the same for all
individuals in time #, = long-term genetic contribution of ancestor i =1;



Table 1: Pedigree to illustrate concept of genetic contributions
in which each generation contains 4 males and 4 females.

The base population contains 8 individuals

(1-4: males and 5-8: females).

Generation 1

Generation 2

Generation 3

Sex Ind sire dam Ind Sire dam Ind sire dam

Male 11 1 5 21 11 15 31 22 25
12 1 6 22 11 17 32 22 27
13 2 5 23 12 16 33 23 25
14 3 7 24 13 15 34 23 26

Female 15 1 5 25 11 15 35 22 25
16 1 6 26 11 17 36 22 27
17 2 5 27 12 16 37 23 25
18 3 7 28 13 15 38 23 26

Contribution of ancestors to offspring (77, (J,t 2 ))

and mean genetic contributions of each ancestor (77, (¢ 2 ) ).
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Offspring’ 1 2 3 4 5 6 7 8
Generation 1

11/15 0.5 0 0 0 0.5 0 0 0

12/16 0.5 0 0 0 0 0.5 0 0

13/17 0 0.5 0 0 0.5 0 0 0

14/18 0 0 0.5 0 0 0 0.5 0

Mean contribution 0.25 0.125 0.125 0 0.25 0.125 0.125 0
Generation 2

21/25 0.5 0 0 0 0.5 0 0 0

22/26 0.25 0.25 0 0 0.5 0 0 0

23/27 0.5 0 0 0 0 0.5 0 0

24.28 0.25 0.25 0 0 0.5 0 0 0

Mean contribution 0.375 0.125 0 0 0.375 0.125 0 0
Generation 3

31/35 0.375 0.125 0 0 0.5 0 0 0

32/36 0.375 0.125 0 0 0.25 0.25 0 0

33/37 0.5 0 0 0 0.25 0.25 0 0

34/38 0.375 0.125 0 0 0.25 0.25 0 0

Mean contribution 0.406 0.104 0 0 0.313 0.187 0 0

! Each generation consisted of a full sib male and female, which have equal contributions




* Use of long-term genetic contribution theory

Asymptotic response to selection = sum of true breeding values weighted by long-term
genetic contributions

AG=Zrg;- 2 % g; = long-term impact of a single round of selection

- depends not only on selection in the initial generation but also
on dissemination of genes from the selected parents in
subsequent generations.

Rates of inbreeding are related to variation in long-term contributions between ancestors

- Asymptotic AF = %4 * sum of squares of long-term contributions
AF= Y42 l'l'z

Example: 20 selected parents per generation (ignoring that there are two sexes).
Pedigree analysis quantifies the contribution of each parent to a particular generation.
Their contribution will sum to 1; genetic contributions always sum to 1 per generation.

Consider two extreme cases:

1) the contribution of each individual is the same, = 0.05 for all individuals
AF=Y(0.05% + 0.05% + .. 0.05%) = 0.0125 = 1.25% per generation

2) contributions differ extremely between individuals:
r=0.25 for the 4 best parents r = 0 for the rest
AF = 4(0.25> + 0.25* + .. 0°) = 0.0625 = 6.25% per generation.

=» variance in the contributions of ancestors causes higher inbreeding.

Example: If there were 2 male and 2 female ancestors in a generation with contributions
3/8, 1/8, 5/16 and 3/16 (note the 2 males sum to %2 and the two females sum to %) then the

estimate of AF attributed to that generation is
2

2 2 2
3
AF =" E +l + | — i = 0.072
8 8 16 16
If the population were in a steady state we would expect approximately the same answer
every generation and the average over generations would be the expected AF.

The importance of relationship AF= ViZr; is:
* [t is general and applies to both selected and unselected populations.
* [t relates AF to terms that can be found in the relationship (A) matrix.
* Predictive forms can be developed from the relationship.
* Strictly it is an approximation, but the proportional error (an underestimate) is of the
same order as those previously developed for unselected populations.
* [ts form will lead to insights into how optimal selection schemes work.



HOW TO USE THESE RELATIONSHIPS TO PREDICT RATES OF
INBREEDING FOR A SPECIFIED BREEDING PROGRAM

Woolliams (1998): AF is related to squared expected long-term genetic contributions,
making prediction of the variance of long term genetic contributions redundant.

Following Woolliams et al. (1998), the (long-term) genetic contribution of an ancestor can
be predicted by regression on its breeding value, using the model:

E(rlg)=1n=a+pfg
r; = the expected genetic contribution of ancestor i
o = the expected genetic contribution for an average ancestor

R = the regression coefficient of the genetic contribution on the breeding value
(g:) of the ancestor.

For discrete generations: « is determined by the number of parents.
For male ancestors, o = %N
For female ancestors o = *2Ny

3 describes that selective advantage influences the selection decisions in the
offspring generation but also that the selective advantage is inherited, i.e. it
has an influence beyond the offspring generation.

The two mechanisms need to be described to enable the predictions:

1) better parents have on average more offspring that are selected as parents.

2) the selected offspring of better parents are on average better which also affect the
genetic contributions.

In short, the procedure is as follows.
First, a regression model is used to predict the long-term contribution,
Efr)=a+p(g-2)
E(r) = expected contribution given the true BV of an individual

a = the contribution of an individual with an average BV
p = increase of the contribution of parents with a higher BV.

Second term accounts for parents with high BV having more selected offspring.
Both a and S can be derived mathematically, but that is beyond the scope of this text.
The next step is to calculate the square of the expected contributions:

E(ry’ =a’ + frog(1-kp?)

The second term = genetic variance of the selected parents

So far we have calculated E(#)%, but in fact we need to calculate E(r).



E(r)* = the square of the expected contributions
E(r*) = the expectation of the squared (actual) contribution.

Under certain conditions E(+°) = 2E(r)* , leading to the result that the rate of inbreeding is
2
AF = Y NE(r)
where N is the number of parents and E(r)” is the square of the expected contributions.

Note that the % is replaced by 72 because we have replaced the square of the actual
contributions 2r* by the square of the expected contributions, NE(r)’.

The above theory shows that selection strategies that increase the variance of contributions
among parents lead to higher AF.

Selection strategies that rely heavily on family information are an example. If EBVs are
largely based on family info, truncation selection on EBV = between family selection.

In that case parents of successful families will have a large contribution, whereas parents
of non-successful families will have no contribution at all, which increases AF.

The expected long-term genetic contribution for a selected parent can be derived as a
function of terms that are related to the Mendelian sampling component of the individual.

For mass selection and sib indices it is sufficient to consider only the genetic merit as a
whole, but for selection methods utilizing BLUP the terms should include both the EBV
and the prediction error (Woolliams, 1998). This has been implemented in SelAction.

For more complex breeding programs, the expected AF under random mating of selected
animals can also be related to the sum of squared expected genetic contributions:

)13 el

where 2 = summation over all possible categories (e.g. sexes), X; = # parents in the k"
category; r;; = expected genetic contribution of the i"™ selected individual in category k.

The expectation must include all the variables conferring selective advantage, such as the
BV of mates. It has been shown that the expectation is tractable.

In the simplest case of random selection, the r;; are simply (2N)" and (2Ny)"' and the
derivations lead to Wright's formula.

The genetic contributions can also be used to predict the rate of genetic gain (Woolliams, 1998),
E(AG) = ZXkE(rkgk)

Woolliams et al. (1998) extended the method to situations with overlapping generations.
When rates of inbreeding in selected populations can be predicted, predictions of long term
response under the infinitesimal model become tractable.



Design of breeding programs with controls on inbreeding

Short-term response maximized by (AG =11 0,) :
- select on BLUP EBV = maximum r
- select only the best individuals — maximize i - subject to reproduction rate constraints

But this may not maximize long(er)-term response because of higher AF.

Strategies to control inbreeding

* (Mate selected parents such that inbreeding of progeny is minimized)
- has limited effect on long-term rates of inbreeding

* Select more animals - increase population size > increased costs
- reduce selection intensity =>reduced (short-term) response

* Reduce probability of co-selection of relatives
- impose restrictions on selection of relatives (e.g. 1/full-sib family)
- increase h” in genetic evaluation (affects both pedigree and progeny info)
- decrease weight on pedigree information
- control the average relationship among selected parents
- cost factor on average relationship (Brisbane and Gibson 1994)
- constraint on average relationship (Meuwissen 1997, JAS 75:934)

* Introduce outside genetics

Toro & Perez-Enciso 1990, GSE:

Optimal weight given to family information
Table I. Expected and observed cumulative selection response, Rg and R,, and inbreeding
coeflicient (%), Fg and F,, after 5 generations of selection, as a function of the weight

given to family information, A. The initial additive variance was 50.
Standard errors ranged from 0.24 to 0.28 (R,), and from 0.16 to 0.43 (Fy).

A Rg Ro Fg Fo
h2 =0.10 0 win family .64 6.26 12.86 10.65
1 13.80 11.74 13.63 14.65
2 17.22 13.79 19.32 21.45
3 18.45 15.27 23.81 26.28
4 18.80 14.97 26.87 30.03
5 18.88 14.89 28.98 32.39
6 18.85 - 14.88 30.48 34.37
7 18.77 14.46 31.55 35.06
6.33 Optimal 18,83 15.00 30.85 34.52
h? = 0.30 0.0 w/in family 12.16 11.81 12.86 10.06
1.0 23.72 16.87 15.38 12.97
1.5 26.14 19.62 19.08 17.22
2.0 27.27 21.62 22.24 25.06
2.5 27.65 21.50 24.71 26.90
3.0 27.73 . 21.73 26.64 29.06
3.5 27.68 21.70 28.14 30.08
4.0 27.57 21.36 29.36 31.94
3.73 Optimal 27.64 21.09 28.71 31.92




Table IL. Expected and observed cumulative selection response, Rg and R,, and

Restriction on the distribution of family size

inbreeding coefficient (%), Fg and F,, after 5 generations of selection, as a function of

family size. The initial additive variance was 50, h? = 0.10.

Standard errors ranged from 0.21 to 0.32 (Ro), and from 0.16 to 0.43 (Fy).

Case Distribution of Rg R, Fg Fo
family size
1 44000000 17.42 12.77 42.76 41.40
2 43100000 18.17 13.94 35.81 35.88
3 42200000 17.87 13.85 33.26 33.88
4 42110000 17.78 14.85 30.59 31.94
5 33200000 17.30 13.72 30.59 31.17
6 33110000 17.21 14.34 27.80 28.60
7 41111000 16.38 13.48 27.80 28.62
8 32210000 16.91 14.99 24.87 26.56
9 32111000 16.24 14.32 21.79 24.06
10 22220000 14.91 12.66 21.79 22.89
11 22211000 14.85 13.18 18.57 20.24
12 31111100 14.23 12.78 18.57 20.17
13 22111100 13.56 12.22 15.20 16.81
14 21111110 10.83 9.65 11.66 13.27
15 11111111 5.90 5.54 7.96 9.18
Opt. 18.83 15.00 30.85 34.52

Table III. Expected and observed cumulative selection response, Rg and R,, and
inbreeding coefficient (%), Fg and F,, after 5 generations of selection, as a function of

family size. The initial additive variance was 50, h? = 0.30.
Standard errors ranged from 0.17 to 0.27 (R,), and from 0.16 to 0.43 (F,).

Case Rg R, Fg Fo
1 24.48 18.85 42.76 40.61
2 26.17 20.17 35.81 35.06
3 25.93 20.77 33.26 32.75
4 26.03 20.38 30.59 3L1.77
5 25.35 20.53 30.59 30.79
6 25.45 20.84 27.80 28.48
7 24.29 19.95 27.80 29.31
8 25.21 20.42 24.87 26.26
9 24.49 20.66 21.79 24.19

10 22.27 18.86 21.79 21.74

11 22.71 19.21 18.57 20.15

12 21.89 18.86 18.57 20.47

13 21.13 19.08 15.20 17.89

14 17.51 16.28 11.66 13.44

15 10.81 10.56 7.96 9.23

Opt. 27.64 21.09 28.71 31.92
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Minimum coancestry matings

The observed genetic progress attained during the first 5 generations of selection,
both with random, Rg, and minimum coancestry matings, Ryc, together with
the corresponding inbreeding coefficients, Fg and Fjsc, are shown in Table IV
(Aop was used). The selection response obtained was similar in both cases, as
expected in a strictly additive model. However, minimum coancestry matings
dramatically reduced inbreeding, compared with random mating. Nevertheless, it
should be noted that this reduction was mainly due the one generation delay in the
initial appearance of consanguinity.

Table IV. Observed cumulative selection response after 5 generations of selection with
random mating, R, minimum coancestry mating, Rjrc, and mate selection, Rpsg,
together with their respective inbreeding coefficient (%) Fgr, Farc and Fiyrg. The initial
additive variance was 50. :

Generation Rp Raro Ruyrs Fpg Fyeo Fys
R? =0.10

1 3.71 3.86 2.76 8.49 0.00 3.01

2 6.58 6.53 5.74 15.89 8.54 7.87

3 9.48 9.08 8.53 22.54 14.10 13.56

4 12.27 11.98 11.64 28.88 19.08 18.73 "«
5 15.00 14.10 14.45 34.52 24.08° - 23.77"
A% =0.30

1 5.26 5.65 4.96 7.87 0.00 3.03

2 9.54 9.64 9.90 14.44 7.21 8.00
3 14.51 16.68 14.38 21.01 12.48 13.19

4 17.43 17.79 18.49 26.43 17.03 17.81

5 21.09 21.34 22.31 31.92 21.78 22,92

Standard errors in the fifth generation ranged from 0.23 to 0.28 (Rr and Rpsc), 0.80
(Rums) and 0.40 (Fg, Fye and Fyrg). .

Mates selection

Table I'V shows the observed response, Rjss, and the inbreeding coefficient, Fss.
It can be seen that, while conforming with inbreeding restrictions, response was not
smaller than that attained under the optimum unrestricted scheme, Rg.

11



Quinton, Smith, Goddard. 1992. Comparison of selection methods at the same level of
inbreeding. J. Anim. Sci. 70: 1060.
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ABSTRACT: Animal geneticists predict higher
genetic responses to selection by increasing the
accuracy of selection using BLUP with information
on relatives. Comparison of different selection
methods is usually made with the same total
number tested and with the same number of
parents and mating structure so as to give some
acceptable (low) level of inbreeding. Use of family
information by BLUP results in the individuals
selected being more closely related, and the levels
of inbreeding are increased, thereby breaking the
original restriction on inbreeding. An alternative
is to compare methods at the same level of
inbreeding. This would allow more intense selec-
tion (fewer males selected) with the less accurate

methods. Stochastic simulation shows that, at the
same level of inbreeding, differences between the
methods are much smaller than if inbreeding is
unrestricted. If low to moderate inbreeding levels
are targeted, as in a closed line of limited size,
then selection on phenotype can yield higher
genetic responses than selection on BLUP. Extra
responses by BLUP are at the expense of extra
inbreeding. The results derived here show that
selection on BLUP of breeding values may not be
optimal in all cases. Thus, current theory and
teaching on selection methods are queried. Revi-
sion of the methodology and a reappraisal of the
optimization results of selection thecry are re-
quired.
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Villaneuva and Woolliams (1997). Optimization of breeding programmes under index
selection and constrained inbreeding. Genet. Res. Camb. 69:145

Objective = maximize response (over planning horizon) with constraint on AF

Parameters to optimize:
* Population size
* # sires and dams to select
* Selection criterion to use
(emphasis on family info)
* Mating strategy

Population size = 200

Table 1. An example of the maximization procedure

.'Ill.ﬁ‘r ﬁ" = —-:Il'r'ir']' h;':-il:- = ﬂ-'? ﬂ”d m(."l.ﬂl:l'l = ﬁG:ﬁ.ill:_ﬂﬁf.‘

Hence, for a restriction of AF < 1%, the scheme for
A = 7-4 would be expected to give the greatest value
of AG ., by using 30 sires (N,) with a mating ratio
(d) of 1 and a relative weight (b, = b,) of 1-04 for

the family means

o A O,  AG.., AF N d b,=b
Maximize average response from 5 - : 1'}} — — 1 —
20 generations by optimiing 0N e e 18
- # sires selected 20 0274 0312 001910 21 1 133
_ # dams/sire 30 0256 0304 001612 23 1 1-25
- weight on family vs. own 74 020 0373 oo 30 1 104
performance 556 —0009 0132 000253 67 1 07
557  —0009 0130 000249 68 1 0-76
h*=0.1 h*=0.3
Constraint on Inbreeding Constraint on Inbreeding
None | AF<1% |AF<0.25% |None |AF<1% |AF<0.25%
AF/generation 2.09 1.00 0.25 2.00 1.00 0.25
AG in generation 0.109 0.100 0.047 0.278 0.258 0.128
20
# sires 22 32 69 21 30 68
# dams/sire 1 1 1 1 1 1
Relative weight on 2.12 1.60 1.07 1.43 1.06 0.76
family info
Optimal weight 9.6
based on sel. index
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Optimal Contribution Selection

Selection while Controlling Inbreeding in Operational Programs
Based on Meuwissen (1997). J. Anim. Sci. 75: 934.

Meuwissen (1997) developed a method to directly control long-term rates of inbreeding
while maximizing response to selection by formulating selection as a constrained
maximization program:

Max Z,., =¢ 8, Subjectto  Q’c,= %
5¢, A= C,.,
g,,, = mean BV in the next generation
g, = the vector of BLUP EBV of candidates for selection in generation ¢
c, = a vector of contributions of selection candidates to the next generation
Q = a known incidence matrix for sex (the first column contains one for male

candidates and the second column one for female candidates)

1/2 o
% = [1/2 and ensures that contributions of males and of all females sum to Y.
A, = additive genetic relationship among selection candidates in generation .
C,,, = average coancestry among all progeny in generation ¢+1

= 5 weighted average genetic relationship among selected parents = Y4¢, Ac,.
= set equal to AF(z+1) when objective is to restrict rate of inbreeding per
generation to AF and generation 0 is non-inbred

= Maximize H, = c;gAt - %(C;Atct - 26”1 )— (CtQ - % )A-V for ¢, Ay, and A
Ao, and A are LaGrangian multipliers, and A,’=[Ao, A].
At_l (g\.t - QA\))
24,

Solving this system for ¢, results in: ¢, =

In order to obtain ¢, values for Aoand A are needed.
Constraint Q’¢c, =% 2 QA/'QA =Q'A/'g, -14,
Constraint ¢’Ac/2=C 1 > 8C, A2 =Q'A'g, -14,
Al A -1 -1 va-1AaTl A 4 -1 A
Solving forhy =2 A= g‘(A‘ __At Q(Q A Q) Q'A, )gt

8C, -1(Q'A7'Q) "1

The value for A is used in the previous equation to obtain the value for A. These two values can
now be used to obtain ¢,. This ¢; may contain negative values for some animals with a poor EBV.
Negative values of ¢, can be constrained to zero by eliminating those animals.

A negative right hand sight for the last equation implies that ¢, A¢/2=C ., cannot be met. So it is
impossible to find a solution for ¢, for which the average coancestry between parents is less or
equal to the desired level. The minimum average relationship that can be obtained by minimizing
¢’ A, under the constraint Q’¢=¢. This leads to the following minimum: .251°(Q’A,'Q)'1.
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Table 1. The average coancestry of the parents of 3.00 | i 1 o
generation t, the inbreeding in generation t, and the . : e
genetic gain from generation t — 1 to t, when the 2.40 & T e
average coancestry was limited to 025 (t - 1) and | _ £ P
genetic contributions were optimized within i 1.80° T T :
each generation for both sexes® i L,+’ |
£ 120! : '
Generation Coancestry Genetic 60 - :
(t) parents Inbreeding gain ’ : _
2 025 D 38‘} n.....l. P I P PRI R Y I.—A_AJ
K] 050 029 Jz22 .00 A0 20 .30 .40
4 075 052 203
[ 100 076 318 Average inbrgeding coeflicient
6 125 100 287
U 150 127 303 Figure 1. Genetic and inbreeding levels in generation
§ 175 150 301 10 with inbreeding levels constrained to .1 and .2 and
9 200 175 31l 8
10 :225 :202 :315 with optimal genetic contributions (A), optimal selection
- of sires and dams but with equal contributions of
Average of 100 replicated simulations of the breeding scheme. selected sires and selected dams @), and BLUP selection
The standard errors of the inbreeding and genetic gain were approx-
imately 0011 and .011, respectively. The coancestry did not vary, |With selection of (from left to right) 32, 30, 26, 20, 18, 16,
because it was constrained. 12, and 10 sires and equal numbers of dams (+).

Table 2. Optimal numbers of parents selected when the number of offspring per
sire and per dam are equal. For comparison, the numbers according to
Wright's (1931) random mating formula are given

AF = 0252 AF o = 01252
Generation Sires Dams Sires Dams
2 10 10 21 20
3 10 10 19 19
4 10 10 18 19
5 a9 g 18 18
G a9 g 18 17
T a g 17 17
2 8 B 17 17
q 8 8 16 17
10 8 8 17 16
Wright's formula 10 10 20 20b

*AF,; = the initial rates of inbreeding; in later generations AF increased to .0303 and .0137.

rE'sE{_:Stively.
right’s formula is AF = 1/8n; + 1/8ny, where the numbers of males (ng and females (ng are
assumed equal.
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Optimal contribution selection was extended to overlapping generations by
Meuwissen and Sonesson (1998). J. Anim. Sci. 76: 2575.

Table 1. Parameters of the closed nucleus breeding schemes

Constraint on inbreeding

Mo. of new progeny per yr (males and females)
Size of unrelated base population

Mo, of years evaluated

Involuntary culling rate of males and females
Voluntary culling rate

Age at which females completed lactation records

Mo, of test daughters of bulls with unrelated cows outside the nucleus

Age at which progeny test became awvailable

Reproductive rate of males and females within nucleus
Mo. of sires and dams selected in BLUP selection schemes

Genetic. and permanent and temporary environmental variances

5 oor 25%fyTr
256 or 512
5 ® (No. of new progeny)
20
e
negligible
2, 3, and 4 yr®
0 or 100
5 yr?
unlimited
equal and such that
inbreeding constraint holds
3, .2, 5

TWhen the animals are selected for this information, the offspring are born 1 yr later (i.e., the
generation interval is 1 yr longer than the age at which the information becomes available).
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Figure 1. Genetic level (G) and inbreeding coefficient
(F) for optimal contribution selection (OC) and BLUP-
EBV selection of 64 sires and 64 dams. Averages of 50
simulations with 256 new progeny per year without
progeny test of young bulls (G-OC = A; G-BLUP = e; F-
OC X, F-BLUP = m).

Table 2. Genetc level (G) and inbreeding coefficients (F) at yr 20 when nucleus
herds were selected with the optimal contribution method
and with selection for BLUP-EBV®

Optimal Contribution BLUP
New progeny per yr, Size of progeny fest, G, G,
no. of animals no. of records opunits  F apunits  F
Constraint on AF per year = 005
256 0 2.52 A0 20 10
100 112 08 20 0
512 0 28 Al 43
100 146 09 2 m
Constraint on AF per year = 0025
256 0 224 05 163 05
100 28 04 17 0
3l2 0 263 05 206 05
100 3 0 2n b

Table 3. Number of animals selected and generation intervals at yr 20 with the optimal contribution and
BLUP selection, where numbers selected were chosen to achieve the inbreeding constraing

Optimal Contribution

ELUF

Mew progeny Size of Selected Gen. Interval Selected Gen. Interval
per yr. progeny test, sires/dams. sires/dams. sires/dams, sires/dams,
no. of animals no. of records no. of animals T no. of animals yT
Constraint on AF per year = .005
256 1] 19.2/5.3 2747 64/64 27133
100 2.8M4.5 6.2/4.5 G4/64 3.2/3.1
512 0 24.6/5.3 2.9/4.5 BO/BOD 2.5/3.2
100 2758 6.0¢4.4 BO/BOD 3130
Constraint on AF per year = 0025
256 0 349114 2.9/4.5 105/105 2833
100 T.6/10.1 6.0/4.4 95/95 .13
512 0 45.2/13.2 2.6/4.5 1307130 2.6/3.2
100 6.4/9.7 6.0/4.5 125125 3141
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