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Inbreeding and its Impact on Design of Breeding Programs 
Jack Dekkers 

 
Inbreeding = mating of individuals that are related by ancestry 
   à  may carry alleles that are identical by descent (ibd) (vs. by state) 
   à  increases probability that progeny will by homozygous 
 
Inbreeding coefficient  = probability individual’s pair of alleles at a locus are ibd 
    = coefficient of coancestry of parents 
 
Coefficient of coancestry individuals x and y 

 = prob( a random allele from x (at a given locus) is ibd to 
               a random allele from y) 

 
Additive genetic relationship x,y = 2 x coefficient of coancestry between x and y  
 
Effects of inbreeding à  increased homozygosity 

• Increased incidence of recessive disorders 
• Inbreeding depression à reduced phenotypic performance 
• Loss of genetic variance à reduction in rates of genetic improvement 

 
 
Genotypic frequencies and mean performance in a population with inbreeding 
coefficient F for a single gene with 2 alleles with inbreeding coefficient F  

p=freq(A1)     q=freq(A2) 
Genotype Frequency Value Frequency x value 

A1A1 p2      +pqF +a p2a     +pqaF 

A1A2 2pq -2pqF   d 2pqd -2pqdF 

A2A2 q2      +pqF - a -q2a     -pqaF 

  Sum = MF = a(p-q)+2dpq-2dpqF 

= a(p-q)+2dpq(1-F) 

 
Without inbreeding: mean = M0 = a(p-q)+2dpq 
 
Inbreeding depression = M0 – MF = -2dpqF 
 
Summed over loci (no epistasis): M0 – MF = -2FΣdpq 
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Impact of inbreeding on genetic variance: 
 
Infinitesimal genetic model 
 
No inbreeding: 2
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Only Mendelian sampling variance is affected by inbreeding, depending on 

inbreeding coefficient of parents, rather than inbreeding of the progeny 
 
PREDICTION OF RATES OF INBREEDING  
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Ne = Effective population size = number of individuals that would give rise to a rate 
   of inbreeding ΔF if  bred as an idealized population 

 

Idealized population -    Random mating, including selfing 
- No selection 
- Discrete (non-overlapping) generations 
- Random distribution of family size – each individual has  

equal probability of contributing progeny 
 
Factors affecting rate of inbreeding in a closed non-idealized population 
In a population that is not under selection: 

• # males (Nm) and females (Nf) used for 
breeding     ßà population size 

          ßà selection intensity 
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à Ne is less than the # parents; < Nm + Nf     
à Ne is driven primarily  
               by the smaller of Nm and Nf     
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• Variance of family size ßà unequal use of parents (and their progeny) 

- family size = number of progeny that become breeding parents 
      (Hill, 1979 Genetics 92:317) 
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  N    = Total population size (½N males, ½N females) 
 

  Vkm = Var(# progeny per male) 
 

  Vkf  = Var(# progeny per female) 
 

  Vkm and Vkf  affected by unequal use of individuals for breeding 
- selection 
- differential use of selected individuals 
 

  Mean family size = 2 (each parent à 2 progeny to maintain population size) 
 

Idealized population: distribution of family size = Binomial ≈ Poisson 

 àVkm = Vkf =  mean family size = 2   è  N
4

8NNe =
++

=
22

 

Variance of family size can be reduced (by the breeder) by ensuring that all 
selected parents equally contribute breeders for the next generation 
- within family selection – select best male and best female from each 

fullsib family  è Vk = 0 è Ne ≈  2N 
 

• Generation Interval    ßà shorter à greater rate of inbreeding per year  
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 Nc = total # progeny per year 
 L  = average generation interval (across males and females) 
 

Selection increases inbreeding through: (Verrier et al. 1990) 
• Probability of co-selection of relatives ßà correlation of the selection criterion 

                                                                                                            between relatives 
• Inheritance of selective advantage – progeny of good parents are more likely to be 

                                                                    selected themselves, as are their descendants 
                                                                 è increased variance of family size 
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More accurate methods to predict rates of inbreeding in populations under selection 
In part based on notes from Bijma and van Arendonk 

 

See Wray and Thompson (1990 Genet. Res. 55:41), Verrier et al. (1990) 
 

Previous methods are ‘single generation’ methods  
– account for differential contributions of ancestors to future generations through 

differential numbers of progeny that become breeding parents 
– do not account for additional differences in an ancestral contributions through 

differential numbers of grand progeny that become breeding parents 
  

Theory of long-term genetic contributions  
 Wray and Thompson 1990. Genet. Res. 55:41 Woolliams et al. 1999 Genetics 153:1009 
 Woolliams and Bijma 2000 Genetics 154:1851 Bijma and Woolliams 2000 Genetics 156:361 
 Bijma et al. 2000 Genetics 156:361 

),( 2, 1
tjr ti  = Genetic contribution of ancestor i born at generation t1 to an individual j 

born at generation t2 (t2>t1) 
 = proportion of genes of j expected to derive by descent from ancestor i. 
 

Note: Full-sibs share ½ of their genes but make no genetic contribution to each other. 
)( 2, 1
tr ti  =  Mean genetic contribution of ancestor i born at generation t1 to generation t2  

 = the average proportion of genes among individuals in generation t2 that are 
expected to derive by descent from ancestor i 

• E( )( 2, 1
tr ti ) = 

m2N
1

 for male ancestors  (Nm = # male ancestors) 

     = 
f2N
1

 for female ancestors 

• )( 2, 1
tr ti differ between ancestors due to differences in use as parents and 

differences in selective advantage 

• )( 2, 1
tr ti

i
∑ = 1 

• as t2- t1 increases, contributions from a given ancestor stabilize and become 

similar across individuals from generation t2  )),((raV 2, 1
tjr tij

à0 

• t2- t1à infinity, genetic contributions from a given ancestor are the same for all 
individuals in time t2 = long-term genetic contribution of ancestor i = ri 
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Table 1: Pedigree to illustrate concept of genetic contributions  
in which each generation contains 4 males and 4 females.  
The base population contains 8 individuals  
(1-4: males and 5-8: females). 
 
 Generation 1 Generation 2 Generation 3 
Sex Ind sire dam Ind Sire dam Ind sire dam 
Male 11 1 5 21 11 15 31 22 25 
 12 1 6 22 11 17 32 22 27 
 13 2 5 23 12 16 33 23 25 
 14 3 7 24 13 15 34 23 26 
Female 15 1 5 25 11 15 35 22 25 
 16 1 6 26 11 17 36 22 27 
 17 2 5 27 12 16 37 23 25 
 18 3 7 28 13 15 38 23 26 
 
Contribution of ancestors to offspring ( ),( 2, 1

tjr ti )  

and mean genetic contributions of each ancestor ( )( 2, 1
tr ti ). 

 Ancestors 
Offspring1 1 2 3 4 5 6 7 8 

  
 Generation 1 

11/15 0.5 0 0 0 0.5 0 0 0 
12/16 0.5 0 0 0 0 0.5 0 0 
13/17 0 0.5 0 0 0.5 0 0 0 
14/18 0 0 0.5 0 0 0 0.5 0 

Mean contribution 0.25 0.125 0.125 0 0.25 0.125 0.125 0 
  
 Generation 2 

21/25 0.5 0 0 0 0.5 0 0 0 
22/26 0.25 0.25 0 0 0.5 0 0 0 
23/27 0.5 0 0 0 0 0.5 0 0 
24.28 0.25 0.25 0 0 0.5 0 0 0 

Mean contribution 0.375 0.125 0 0 0.375 0.125 0 0 
  
 Generation 3 

31/35 0.375 0.125 0 0 0.5 0 0 0 
32/36 0.375 0.125 0 0 0.25 0.25 0 0 
33/37 0.5 0 0 0 0.25 0.25 0 0 
34/38 0.375 0.125 0 0 0.25 0.25 0 0 

Mean contribution 0.406 0.104 0 0 0.313 0.187 0 0 
 

1 Each generation consisted of a full sib male and female, which have equal contributions 
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• Use of long-term genetic contribution theory 
 

Asymptotic response to selection = sum of true breeding values weighted by long-term 
       genetic contributions 
 ΔG = Σrigi - Σ

N
1 gi  = long-term impact of a single round of selection 

- depends not only on selection in the initial generation but also 
on dissemination of genes from the selected parents in 
subsequent generations. 

 

Rates of inbreeding are related to variation in long-term contributions between ancestors 
 

 - Asymptotic ΔF = ¼ * sum of squares of long-term contributions     
      ΔF= ¼Σri

2 
 

Example: 20 selected parents per generation (ignoring that there are two sexes).  
Pedigree analysis quantifies the contribution of each parent to a particular generation.  
Their contribution will sum to 1; genetic contributions always sum to 1 per generation.  
 

Consider two extreme cases: 
 

1) the contribution of each individual is the same, r = 0.05 for all individuals 
 ΔF= ¼(0.052 + 0.052 + .. 0.052) = 0.0125 = 1.25% per generation 
 

2) contributions differ extremely between individuals: 
  r = 0.25 for the 4 best parents  r = 0 for the rest 

 ΔF = ¼(0.252 + 0.252 + .. 02) = 0.0625 = 6.25% per generation.  
 

 è variance in the contributions of ancestors causes higher inbreeding.  
 

Example: If there were 2 male and 2 female ancestors in a generation with contributions 
3/8, 1/8, 5/16 and 3/16 (note the 2 males sum to ½ and the two females sum to ½) then the 
estimate of ΔF attributed to that generation is  
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If the population were in a steady state we would expect approximately the same answer 
every generation and the average over generations would be the expected ΔF. 
 

The importance of relationship ΔF= ¼Σri
2   is: 

• It is general and applies to both selected and unselected populations. 
• It relates ΔF to terms that can be found in the relationship (A) matrix. 
• Predictive forms can be developed from the relationship. 
• Strictly it is an approximation, but the proportional error (an underestimate) is of the 

same order as those previously developed for unselected populations. 
• Its form will lead to insights into how optimal selection schemes work. 

3 
+  ΔF = ¼  
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HOW TO USE THESE RELATIONSHIPS TO PREDICT RATES OF 
INBREEDING FOR A SPECIFIED BREEDING PROGRAM 

 

Woolliams (1998): ΔF is related to squared expected long-term genetic contributions, 
making prediction of the variance of long term genetic contributions redundant. 
 

Following Woolliams et al. (1998), the (long-term) genetic contribution of an ancestor can 
be predicted by regression on its breeding value, using the model: 

 iiii grgrE βα +==)|(       
 

 ri = the expected genetic contribution of ancestor i 
 α = the expected genetic contribution for an average ancestor 

 ß = the regression coefficient of the genetic contribution on the breeding value 
(gi) of the ancestor.  

 

For discrete generations:    α is determined by the number of parents.      
   For male ancestors,   α = ½Ns 
   For female ancestors α = ½Nd 
 

ß describes that selective advantage influences the selection decisions in the 
offspring generation but also that the selective advantage is inherited, i.e. it 
has an influence beyond the offspring generation.  

 

The two mechanisms need to be described to enable the predictions: 
1) better parents have on average more offspring that are selected as parents.  
2) the selected offspring of better parents are on average better which also affect the 

genetic contributions.  
 

In short, the procedure is as follows.  
 

First, a regression model is used to predict the long-term contribution, 
)()( ggrE −+= βα  

 

 E(r) = expected contribution given the true BV of an individual 
 α = the contribution of an individual with an average BV  
 β = increase of the contribution of parents with a higher BV.  
 

 Second term accounts for parents with high BV having more selected offspring. 
 

Both α and β can be derived mathematically, but that is beyond the scope of this text.  
 

The next step is to calculate the square of the expected contributions: 

)()( 22222 −1+= ρσβα krE A  
 The second term = genetic variance of the selected parents 
 

 
So far we have calculated E(r)2, but in fact we need to calculate E(r2).  



8 

 

 E(r)2 = the square of the expected contributions  
 E(r2) = the expectation of the squared (actual) contribution.  
 

Under certain conditions E(r2) = 2E(r)2 , leading to the result that the rate of inbreeding is  
2

2
1 E(r)NF =Δ  

where N is the number of parents and E(r)2 is the square of the expected contributions.  
 

Note that the ¼ is replaced by ½ because we have replaced the square of the actual 
contributions Σr2 by the square of the expected contributions, NE(r)2. 

 
The above theory shows that selection strategies that increase the variance of contributions 
among parents lead to higher ΔF.  
 

Selection strategies that rely heavily on family information are an example. If  EBVs are 
largely based on family info, truncation selection on EBV à between family selection.  
 

In that case parents of successful families will have a large contribution, whereas parents 
of non-successful families will have no contribution at all, which increases ΔF.  
 
The expected long-term genetic contribution for a selected parent can be derived as a 
function of terms that are related to the Mendelian sampling component of the individual.  
 

For mass selection and sib indices it is sufficient to consider only the genetic merit as a 
whole, but for selection methods utilizing BLUP the terms should include both the EBV 
and the prediction error (Woolliams, 1998). This has been implemented in SelAction. 
 

For more complex breeding programs, the expected ΔF under random mating of selected 
animals can also be related to the sum of squared expected genetic contributions: 

 
( ) ( )∑=Δ

k
kik rEXFE 2
,2

1

 
where Σk = summation over all possible categories (e.g. sexes), Xk = # parents in the kth 
category;  ri,k = expected genetic contribution of the ith selected individual in category k.  

 

The expectation must include all the variables conferring selective advantage, such as the 
BV of mates. It has been shown that the expectation is tractable. 
 

In the simplest case of random selection, the ri,k are simply (2Ns)-1 and (2Nd)-1 and the 
derivations lead to Wright's formula. 
 

The genetic contributions can also be used to predict the rate of genetic gain (Woolliams, 1998), 

( )∑=Δ
k

kkk grEXGE )(
 

Woolliams et al. (1998) extended the method to situations with overlapping generations. 
When rates of inbreeding in selected populations can be predicted, predictions of long term 
response under the infinitesimal model become tractable.  
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Design of breeding programs with controls on inbreeding 
 Short-term response maximized by (ΔG = i r σg) : 

- select on BLUP EBV à maximum r 
- select only the best individuals – maximize i - subject to reproduction rate constraints 

 But this may not maximize long(er)-term response because of higher ΔF. 
 

Strategies to control inbreeding 
•  (Mate selected parents such that inbreeding of progeny is minimized) 

- has limited effect on long-term rates of inbreeding 
 

• Select more animals - increase population size   à increased costs 
- reduce selection intensity àreduced (short-term) response 

 

• Reduce probability of co-selection of relatives 
- impose restrictions on selection of relatives (e.g. 1/full-sib family) 
- increase h2 in genetic evaluation (affects both pedigree and progeny info) 

 - decrease weight on pedigree information 
 - control the average relationship among selected parents 
  - cost factor on average relationship (Brisbane and Gibson 1994) 
  - constraint on average relationship (Meuwissen 1997, JAS 75:934) 
 

• Introduce outside genetics 
 

Toro & Perez-Enciso 1990, GSE: 
 

 
 

 

w/in family 

w/in family 

Optimal 

Optimal 
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Quinton, Smith, Goddard. 1992. Comparison of selection methods at the same level of  
      inbreeding. J. Anim. Sci. 70: 1060.  
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Villaneuva and Woolliams (1997). Optimization of breeding programmes under index 
                                           selection and constrained inbreeding.  Genet. Res. Camb. 69:145 
 

Objective = maximize response (over planning horizon) with constraint on ΔF 
Parameters to optimize: 

• Population size 
• # sires and dams to select 
• Selection criterion to use 

(emphasis on family info)  
• Mating strategy 

 

Population size = 200 
Maximize average response from 5 -  
20 generations by optimizing 

- # sires selected 
- # dams/sire 
- weight on family vs. own 

performance 
 
 
 
 
 h2=0.1 h2=0.3 

 Constraint on Inbreeding Constraint on Inbreeding 

 None ΔF<1% ΔF<0.25% None ΔF<1% ΔF<0.25% 

ΔF/generation 2.09 1.00 0.25 2.00 1.00 0.25 

ΔG in generation 
20 

0.109 0.100 0.047 0.278 0.258 0.128 

# sires 22 32 69 21 30 68 

# dams/sire 1 1 1 1 1 1 

Relative weight on 
family info 

2.12 1.60 1.07 1.43 1.06 0.76 

Optimal weight 
based on sel. index 

9.6      
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Optimal Contribution Selection 
Selection while Controlling Inbreeding in Operational Programs 

Based on Meuwissen (1997). J. Anim. Sci. 75: 934.  
 
Meuwissen (1997) developed a method to directly control long-term rates of inbreeding 
while maximizing response to selection by formulating selection as a constrained 
maximization program: 
    Max 1+tg  = ct

’
tĝ   Subject to Q’ct = 

2
1

 

          ½ct
’Atct = 1+tC  

1+tg  = mean BV in the next generation 
 tĝ  = the vector of BLUP EBV of candidates for selection in generation t 
 ct = a vector of contributions of selection candidates to the next generation 

Q = a known incidence matrix for sex (the first column contains one for male  
candidates and the second column one for female candidates) 

2
1   = ⎥

⎦

⎤
⎢
⎣

⎡

2/1
2/1  and ensures that contributions of males and of all females sum to ½. 

 At = additive genetic relationship among selection candidates in generation t. 
1+tC  = average coancestry among all progeny in generation t+1 

= ½ weighted average genetic relationship among selected parents = ½ct
’Atct.  

= set equal to ΔF(t+1) when objective is to restrict rate of inbreeding per 
generation to ΔF and generation 0 is non-inbred  
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2
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λ0, and λ are LaGrangian multipliers, and λv’=[λ0, λ].  

Solving this system for ct results in:    ( )
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In order to obtain ct, values for λ0 and λ are needed. 
Constraint Q’ct = ½    à   0t

1
t
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The value for λ0 is used in the previous equation to obtain the value for λ. These two values can 
now be used to obtain ct. This ct may contain negative values for some animals with a poor EBV. 
Negative values of ct can be constrained to zero by eliminating those animals. 
 

A negative right hand sight for the last equation implies that ct’Atct/2=C t+1 cannot be met. So it is 
impossible to find a solution for ct for which the average coancestry between parents is less or 
equal to the desired level. The minimum average relationship that can be obtained by minimizing 
ct’Atct under the constraint Q’ct=½. This leads to the following minimum: .251’(Q’At

-1Q)-11. 
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Optimal contribution selection was extended to overlapping generations by 
Meuwissen and Sonesson (1998). J. Anim. Sci. 76: 2575. 

 
 	
  


