

Optimizing Breeding Programs

Effect of Reproductive Technologies and Measurement

Armidale Animal Breeding Summer Course 2014

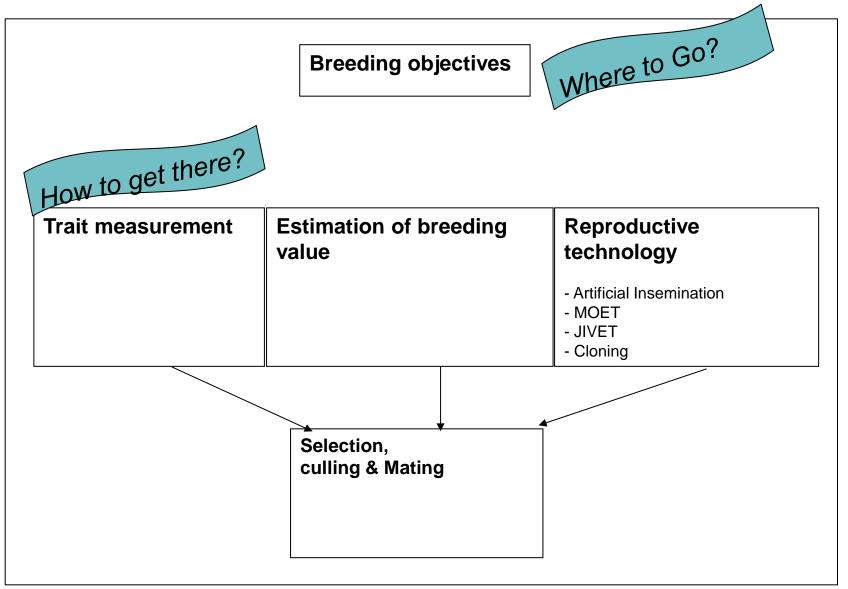
Decisions in breeding programs

Where to go?

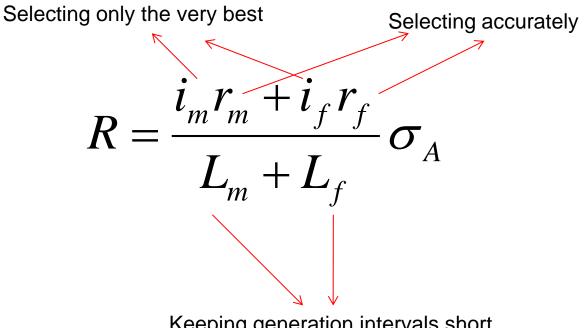
breeding objective (which traits)

Who and what to measure?

performance, DNA test


genetic evaluation

Who to select and mate?

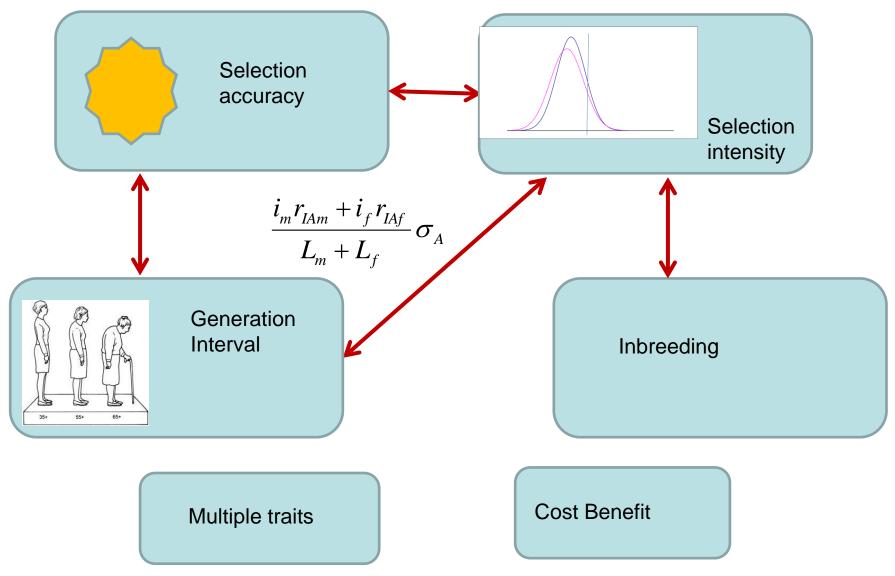

reproductive technol.

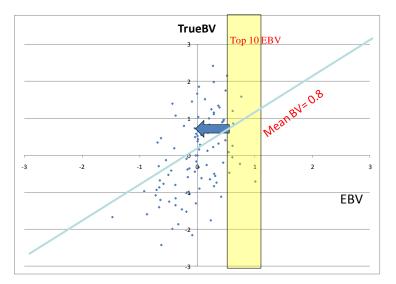
gains vs inbreeding

Animal Breeding in a nutshell

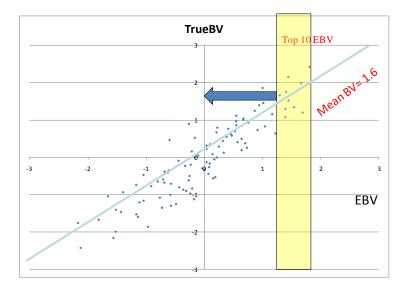
Making genetic progress is about

Keeping generation intervals short


Reproductive rates affect all of the above!

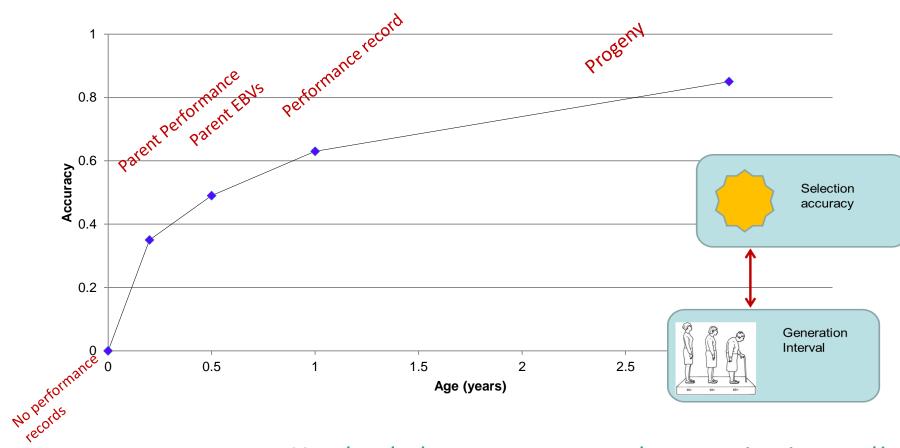

Aspects that need to be balanced:

• Selection accuracy versus generation interval


- $\frac{i_m r_{IAm} + i_f r_{IAf}}{L_m + L_f} \sigma_A$
- Short generation intervals are good for fast progress, but young breeding animals have lower EBV accuracy
- Selection accuracy versus selection intensity
 - Money available for testing (either performance or DNA) can be used to test a few animals accurately, or to test more animals with lower accuracy. For example, testing fewer young bulls but giving them more test progeny.
- Selection intensity versus generation interval
 - Selecting fewer animals for breeding each year and keeping those longer
- Selection intensity versus inbreeding
- The relative emphasis in selection for multiple traits
- Cost versus benefits

Aspects that need to be balanced

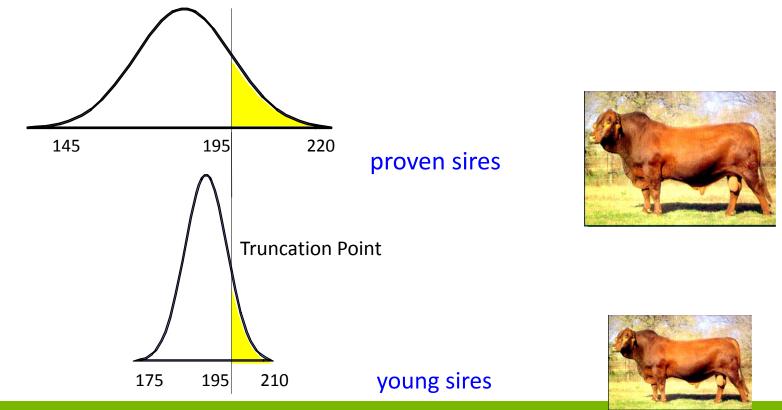
Accuracy = 45%



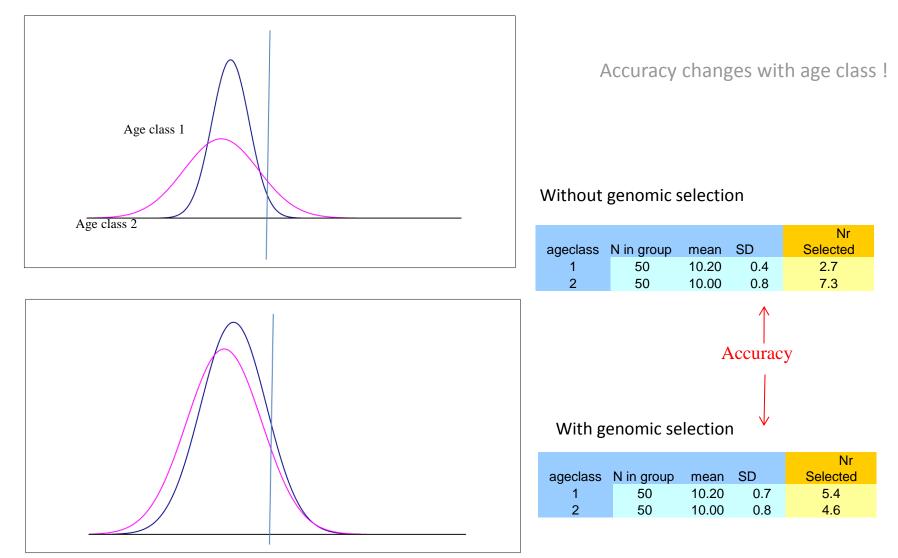
the more accuracy, the more response

Accuracy of predicting a breeding value

increases as an animal gets older



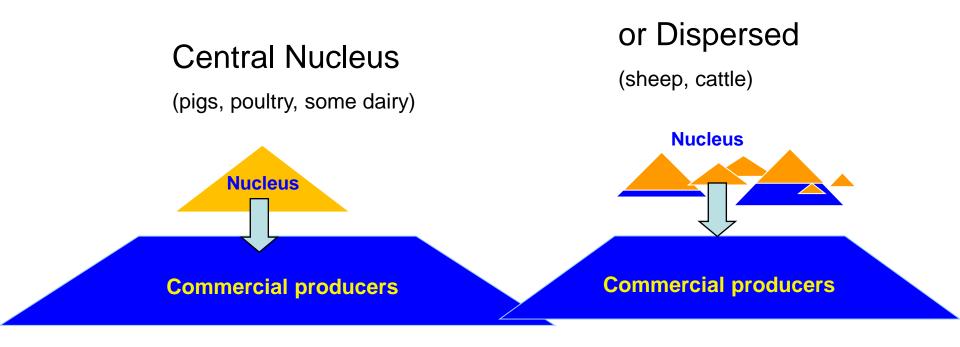
Assumed heritability = 25%


Need to balance accuracy and generation interval!

BLUP helps selecting between old and young bulls

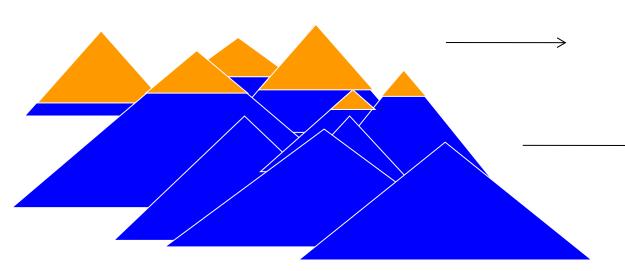
- EBVs can be compared directly over age classes
- Selection on BLUP EBVs optimizes generation interval

Optimizing age structure



Open nucleus systems

- Select the best animals from lower tiers to compete for being nucleus parents
- degree of 'openness depends on
 - difference between nucleus and commercial
 - spread of their breeding values
- Open to nuclei

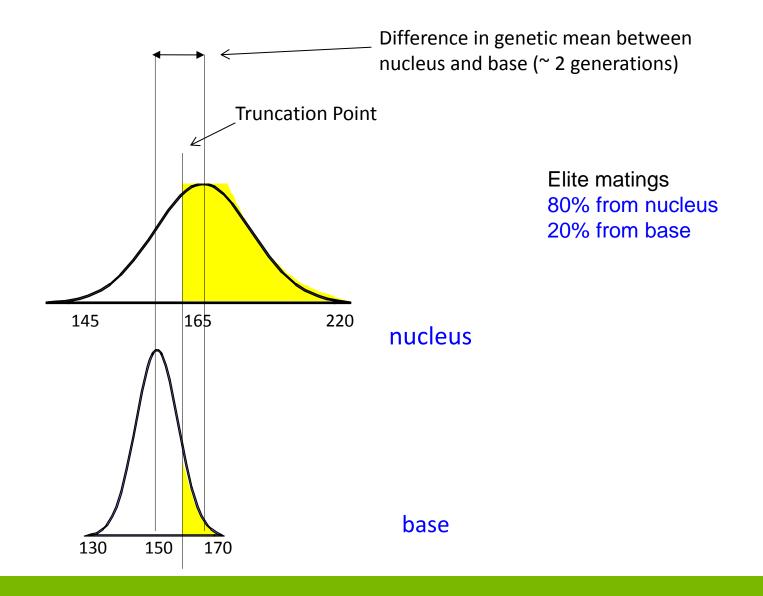

Two-tier breeding program

Dispersed Nucleus

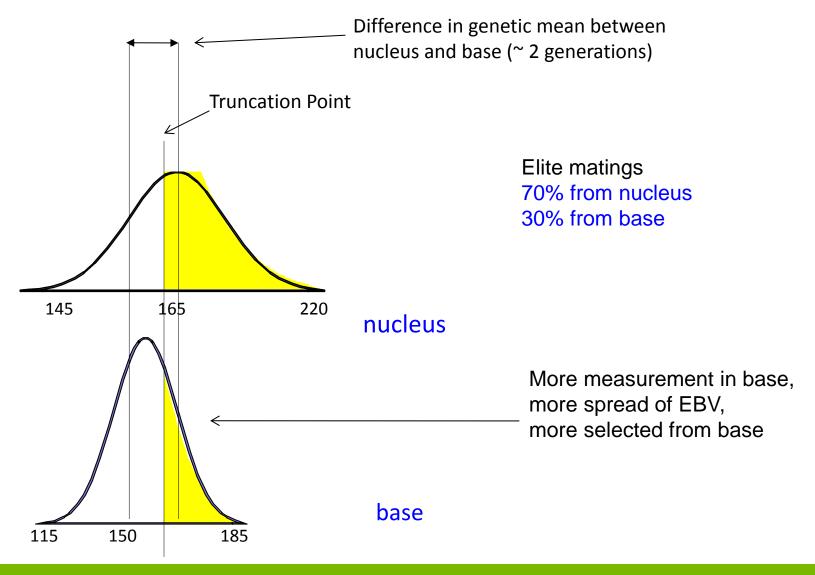
Nucleus: could be defined as

"the mothers and fathers of the future bulls"

Top studs


≻

Delivering the genetics of the future bulls


Other studs

Acquire their genetic from top studs Themselves being merely multipliers

Open Nucleus

Open Nucleus

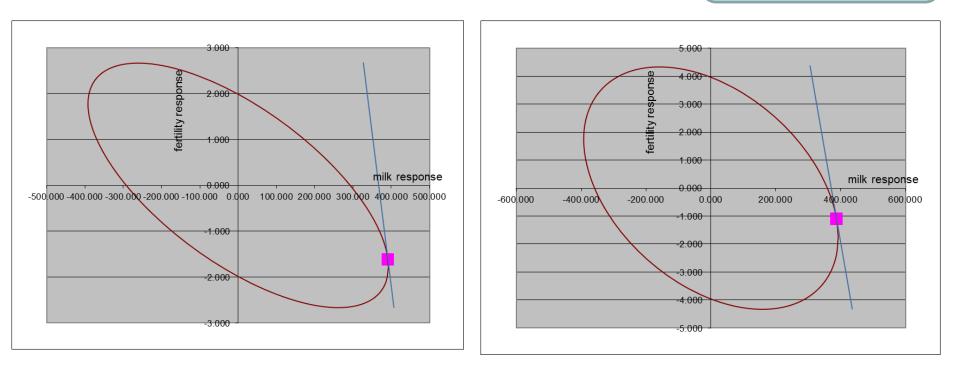
Best to select on EBV, irrespective of accuracy /genotyped or not / age

	birth year	genotyped	progeny	EBV	асс
Kevin	2009	Y	0	+124	71
Tony	2005	Ν	345	+119	97
Bob	2009	Ν	0	+117	63
John	2008	Ν	45	+113	85
Paul	2006	N	1087	+112	99
Geoff	2009	Y	0	+106	40
Malcolm	2007	Ν	67	+105	89

Example of BLUP selection								Selection				
Terminals - Top 1 Sires D	L 50 Stud of breeding	Wint	-	ysis I Ywt		E riday Pemd	, 15 June Carcase +	2001 Progeny	Inbreedir Coeff Ø	-		contractory and the second contractory was a contractory
161972 <mark>-1999-9</mark> 90196	HILLCROFT FARMS		14.95	14.94	-1.19	1.62	226.64	38	0.133	83	70	1619721998980093 163000199393012
162368 <mark>-1998-9</mark> 80211			12.39	12.69	-0.89	2.50	215.20	1148		97	96	1623681994940260 8600401992920
162204 <mark>-1999-9</mark> 90453			13.38	15.87	-1.18	1.11	211.75	224		93	89	8601221993930205 1619721995950
	HILLCROFT FARMS	5.15	14.40	16.00	-1.08	0.25	207.51	12		80	74	1630001993930134 1603361992920 inbreeding
161972 <mark>-1998-9</mark> 80527				10.97	-1.66	-0.47	204.10	25		85	76	1619721996960091 1630001993930
860122-1993-930205	OHIO			13.72	-1.60	0.49	203.76	1522		98 00	97 72	8601221992920200 8601221987870
161143-1999-990204			12.10		-0.49 -0.48	2.19 0.24	203.60 200.47	38		82 02	7	
160060 <mark>-1996-9</mark> 60004 161143-1999-990201			14.90 11.83		-0.40 -1.19	0.24 0.83	200.47 199.83	151 39		93 83	87 7	1632801992920016 1623541990900584 1623681998980211 613151995950042
	BURWOOD		11.05	8.82	-2.27	-0.55	198.82	380	0.003	05 96	92	2300091994940171 2300341994940314 These are sibs so
	FELIX	4.50 6.69	13.56	13.36	-0.59	0.53 0.61	197.98	56	0.003	30 70	52 63	1619721995950289 1600341994940020 might not select
	ANNA VILLA	6.30		11.69	-0.42	0.24	196.90	118		90	83	inight flot obloct
	BETHELREI		12.97	14.27	-1.03	0.14	196.85	24		82	74	8601221993930205 1622041996960579 all OF UTELLT as
	DERRYNOCK		11.20	10.10	-0.72	1.60	196.01	18		80		1623681998980211 1440001994940317 flock sire
161972-1996-960020	HILLCROFT FARMS		12.96	10.66	-0.80	0.36	195.20	83		88	75	1630001993930134
160185-1996-960001	JOLMA	6.19	10.29	10.42	-1.56	0.63	194.57	101		90	83	1630001993930134 1613151991910870
161235-1997-970830	POLLAMBI	7.10	10.69	10.35	-0.88	1.50	194.54	34		87	79	1700991993930002 1612351991910691
163677-1999-990307	FELIX	7.09		11.59	-1.29	-0.47	192.45	54		83	74	8601221993930205 1636771994940008
162368-1999-990290	KURRALEA	5.53	10.84		-0.62	1.59	192.11	68		69	62	1623681998980211 1630001993930160
	ADELONG			13.22	-0.80	-0.94	191.15	448		96	94	8600741993930189
	RENE	7.59	12.01	13.06	-0.50	0.99	190.92	12		71	60	1623681994940260 8600371992920165
	KURRALEA	6.58 5.50	12.13	7.96	-1.00	0.08	190.69	178		88	83	1640001993930411 8600401992920175
160034-1999-991208	MOSSLEY	5.52	13.45	10.27	-0.53	0.04	190.41 199.90	17	0.003	78	70	1621001998980130 1600341994940171
161437-1999-990006	MARBURN	5 41	10.97	10.93	-1 21	0.37	190 26	14	I	73	65	11604621994940012 1640001993930411

Balancing inbreeding and merit

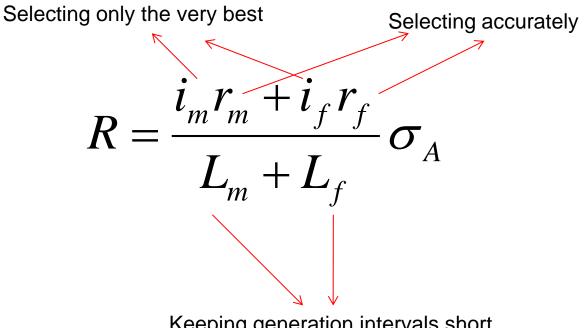
This graph will look different for each population


merit

inbreeding or co-ancestry

170

Selection for milk Yield and Fertility


Multiple traits

	economic	Ŭ	progeny	measured	response	(4 yrs)
	milk	fertility	milk	fertility	milk	fertility
left	0.2	3	50	10	391	-1.61
right	0.2	3	50	50	387	-1.09

Effect of Reproductive Technologies

Making genetic progress is about

Keeping generation intervals short

Reproductive rates affect all of the above!

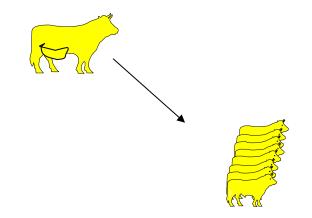
Reproductive technologies

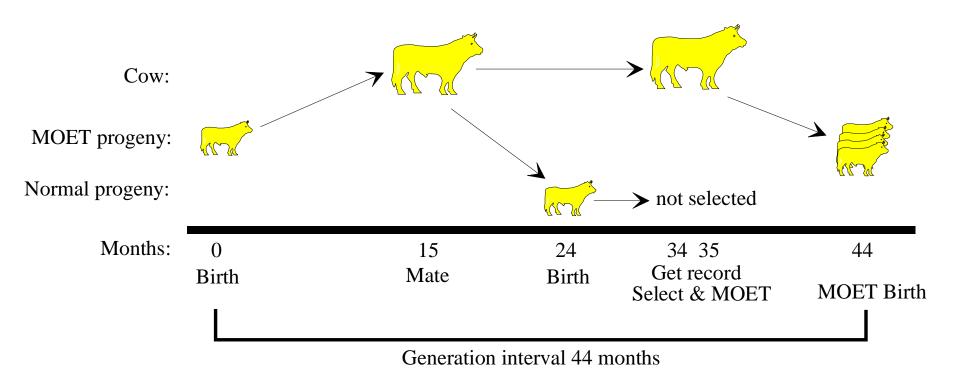
- Reproductive boosting
 - Artificial insemination, AI
 - Multiple Ovulation and Embryo Transfer, MOET
 - Oocyte Pickup
 - Juvenile In Vitro Embryo Transfer, JIVET
- Sexing of semen and embryos
- Cloning
- Whizzy Genetics breeding in a test-tube

Reproductive (boosting) technologies

- Increases selection intensities
- Increases accuracy of EBVs
- Decreases generation intervals

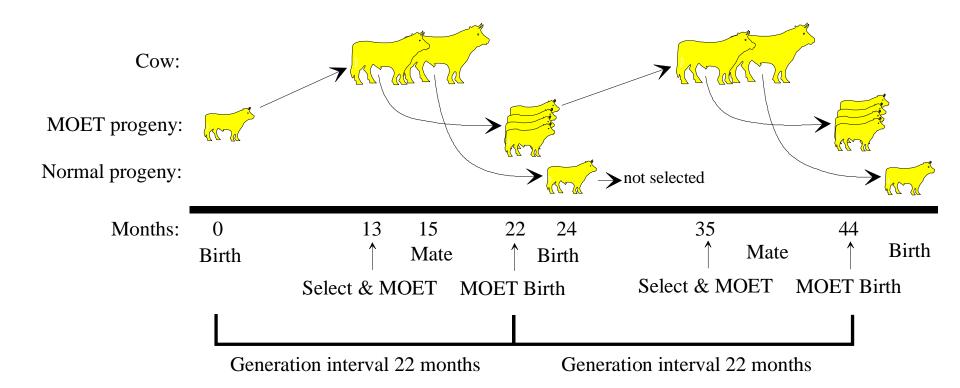
Increases inbreeding


Artificial Insemination


- More intensive use of best sires
- Use of overseas bulls
- Establish links between herds
- Progeny testing
- More rapid dissemination of superior genes

Multiple Ovulation and Embryo Transfer - MOET

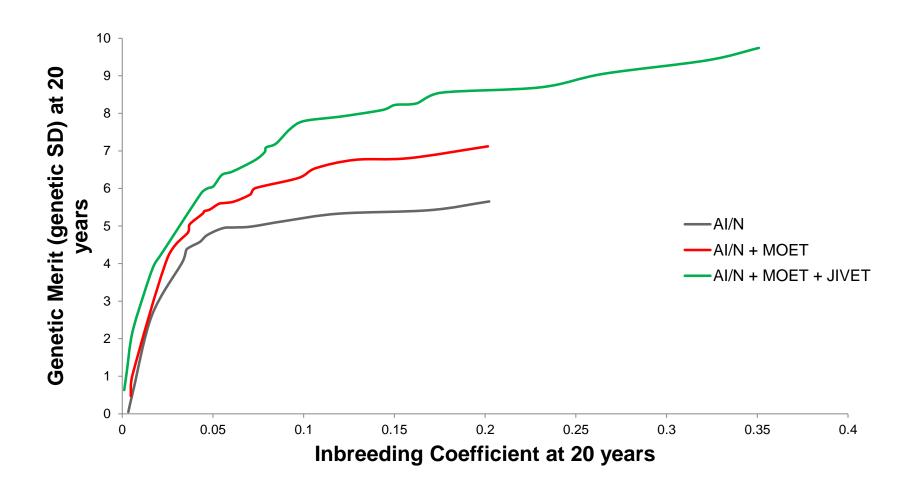
- More intensive use of best cows
 - "turns a cow into a sow"
- Use of overseas cows



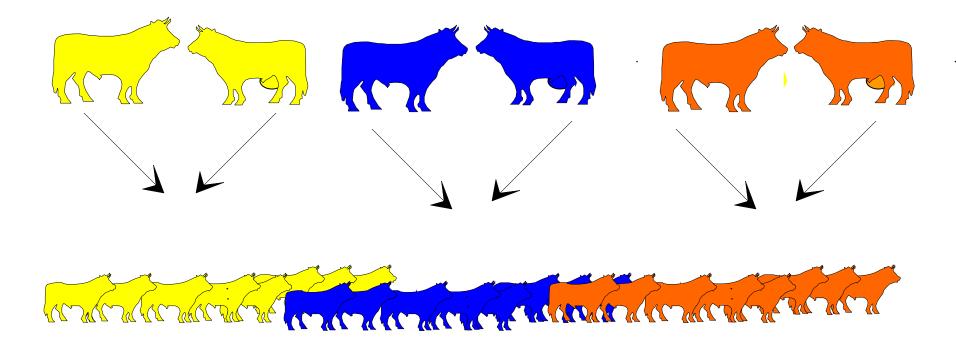
Adult dairy MOET scheme

More offspring of top cow after testing it

Juvenile dairy MOET scheme


More offspring of top cow *before* testing it Select base on parent average

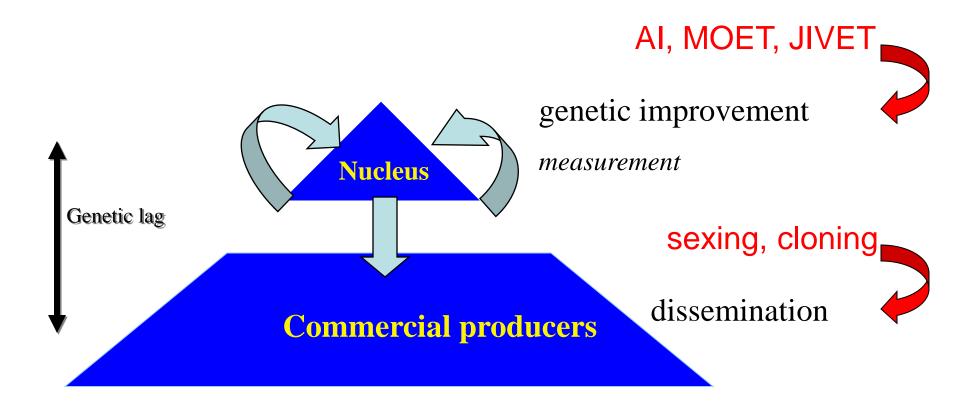
Genetic gain versus genetic diversity


- Early selection can only be based on family information
- Sustainable breeding programs require optimal selection balancing genetic gain and genetic diversity
- Potential short term benefits from reproductive technologies are inhibited by the need to maintain diversity

Genetic Gain vs Inbreeding After 20 Years

Tom Granleese et al., AAABG 2013

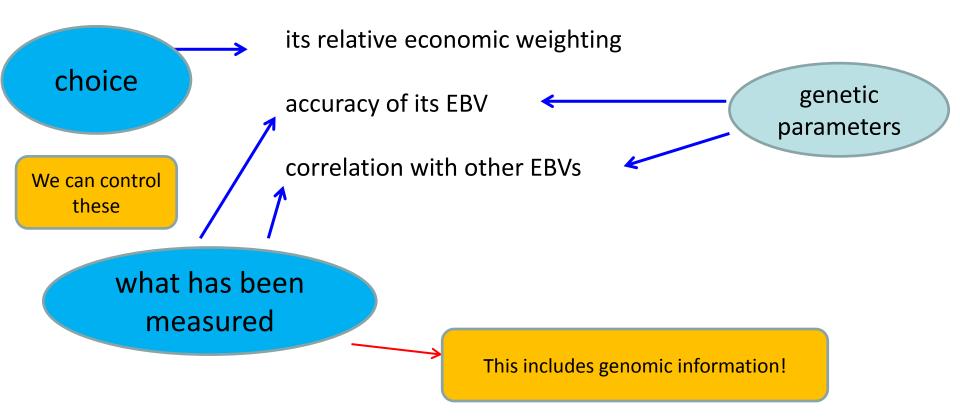
Between versus within family selection


<u>Own information</u> (performance or *genotype*):

More variation within families

More within-family selection – *less inbreeding*

Advantage of genomic selection


Reprod technol. In a breeding design context

Effect of Measurement

Some important points about MT selection

1 The ultimate response of a trait will depend on:

Selection for milk Yield and Feed Intake

economic	weights	progeny	measured	response	(4 yrs)
milk	feed	milk	feed	, milk	feed
0.2	0	50	-	1.23	0.56
0.2	0	50	50	1.23	0.59
0.2	-0.2	50	-	1.23	0.56
0.2	-0.2	50	50	0.97	0.16
0.2	-0.3	50		1.23	0.56
0.2	-0.3	50	50	0.52	-0.20
0.2	-0.3	50	10	0.79	0.14
				_	\sim

To achieve response for a trait, we need to give it some weight but we also need some data!

Decision Support

Where to go?

Who and what to measure?

Who to select and mate?

BreedObject, Indexes

Not much

EBVs, Indexes, TGRM

Tactical Decisions

VS

Strategic Decisions \rightarrow Prediction and Simulation models

Optimizing Phenotyping

Cécile Massault, Brian Kinghorn and Julius van der Werf

Maximize the accuracy of selection candidates (offspring) We have \$\$ for 15 phenotypes, who?

	Structure	# GP	# sires	# dams	# offspring	Far	nily siz	ze
PED1	HS	66	3	30	30	10	10	10
PED2	FS	12	3	3	30	10	10	10
PED3	HS	66	3	30	30	2	10	18
PED4	FS	12	3	3	30	2	10	18

Pedigree structure	Heritability	TACT	RAND	OFFS	SIRE
	0.1	63	33	51	63
PED1	0.5	69	38	60	69
	0.8	72	40	62	69
	0.1	73	63	71	69
PED2	0.5	84	75	84	80
	0.8	84	76	84	80
	0.1	66	32	61	64
PED3	0.5	71	40	69	69
	0.8	73	42	70	71
	0.1	77	67	75	73
PED4	0.5	85	77	84	82
	0.8	85	77	82	81

Need to consider

Added value to a family Merit of the family Size of the family Relatedness to other candidates

Predict future potential gain:

 \rightarrow Merit versus diversity

Evaluating Breeding programs

- Deterministic vs Stochastic Simulation
- Optimization strategies