

Application of Evolutionary Algorithms

 to solve complex problems in

Quantitative Genetics and Bioinformatics

27 to 29 January 2010

Armidale Animal Breeding Summer Course 2010

University of New England

by

Cedric Gondro and Brian Kinghorn

The Centre for Genetic Analysis and Applications

University of New England

3

Course schedule

Wednesday - 27/01

09:00-09:10 Introduction to the course (CG)

09:10 - 09:30 A brief overview of evolutionary algorithms (BK)

 Problems not for EC

 Problems for EC

 Architecture for solving problems

09:30 - 10:30 Heuristics and evolutionary computation (CG)

 What are heuristics?

 Deterministic versus stochastic methods

 From random search to simulated annealing

 Evolution of evolutionary computation

 Types of EC and choosing a method

10:30 - 11:00 Real life applications - demonstration of software in practice (BK)

11:00 - 11:30 Morning tea

11:30 - 12:30 EC framework (CG)

 Evolution and population genetics 101

 Skeleton of an EA (canonical GA)

Parameters: population size, mating schemes, selection, mutation,

recombination

 Introduction to fitness and objective functions

12:30 - 13:30 Lunch

13:30 - 15:00 Practical 1 (CG, BK)

 A trivial GA example - play with different parameters

 Modify objective functions in code (maximize, minimize, etc)

15:00 - 15:30 Afternoon tea

15:30 - 17:00 Differential Evolution (BK)

 How does DE work?

 Parameter settings

Course Schedule

4

Thursday - 28/01

09:00 - 11:00 Practical 2 (BK, CG)

In vivo demonstration of Differential Evolution

Simple application of Differential Evolution

11:00 - 11:30 Morning tea

11:30 - 12:30 Genetic Programming (CG)

 Overview of GP

 Gene Expression Programming

 Selection and search operators

 Fitness and bloat

12:30 - 13:30 Lunch

13:30 - 14:15 Problem representation (BK)

 Moulding the solution space

14:15 - 15:00 Managing constraints (BK)

 The need for constraints

 How to apply constraints

 Hard and soft constraints

15:00 - 15:30 Afternoon Tea

15:30 - 17:00 Practical 3 (BK, CG)

 Discuss and start work on group project topic

Friday - 29/01

09:00 - 10:00 Changing the goal posts (BK)

 Changing on the fly

 Managing change of direction

 Opportunities

10:00 - 10:45 Improving performance (CG)

 Self-evolving parameters

 Multicriteria optimization

 Hybrid algorithms

 Parallelization

10:45 - 11:15 Morning tea

11:15 - 12:15 Diagnosing convergence (BK)

 Criteria for stopping

 Maximum solutions

12:15 - 13:15 Lunch

13:15 - 14:30 Applications in bioinformatics, systems biology and Alife (CG)

 multiple sequence alignment

 optimization of microarray experimental designs

 model discovery and parameterization

 Alife virtual agents

14:30 - 15:00 Afternoon Tea

15:00 - 16:45 Practical 3 continued (CG, BK)

 Continue work on group project topic

16:45 - 17:00 Course wrap up

5

Lecturers

Cedric Gondro is a Lecturer at the University of New England in Australia.

Cedric's research interests include:

 Evolutionary Computation and Artificial Life for optimization of biological

problems

 Computational methods and statistical analysis of high-throughput genomic

data

 Systems biology

 Bioinformatics, evolution and population genetics

Brian Kinghorn is a Professor at the University of New England in Australia.

Brian's research interests include:

Theoretical quantitative genetics and design of animal breeding programs including

 Integration of different technical, logistical and cost issues into a unifying

dynamic decision framework.

 Information systems to aid detection of genes of major effect and to exploit

molecular techniques.

 Exploiting novel reproductive techniques.

 Computer simulation of animal breeding programs

Industry application of breeding programs

And, of course Evolutionary Computation

Brian Kinghorn

The Centre for

Genetic Analysis

and Applications

University of New

England

Homestead 32

Armidale, NSW

2351 Australia

bkinghorn@une.edu.au

+61 2 6773 2718

Cedric Gondro

The Centre for

Genetic Analysis

and Applications

University of New

England

Homestead 35

Armidale, NSW

2351 Australia

cgondro2@une.edu.au

+61 2 6773 3978

And most importantly, both are aficionado motorcyclists!

7

Table of contents

Course schedule ... 3

Lecturers .. 5

Table of contents .. 7

Chapter 1: A brief overview of evolutionary algorithms ... 11

Pontifications ... 11

Problems not for evolutionary algorithms ... 11

Problems for evolutionary algorithms ... 12

The architecture of an evolutionary algorithm, in a nutshell. .. 12

Aim of the course ... 13

Postscript: Let your computer make you famous. .. 14

Chapter 2: Heuristics and evolutionary computation ... 15

Introduction .. 15

Evolutionary algorithms are heuristic methods. Hmm, what are heuristics? 16

Deterministic versus stochastic methods ... 16

Types of optimization strategies – how to solve a problem ... 17

Non EC stochastic heuristic methods .. 18

Evolution of evolutionary computation ... 19

Types of Evolutionary Algorithms and problem matching ... 19

Evolutionary Programming (EP) ... 20

Evolution Strategies (ES) ... 20

Genetic Algorithms (GAs) ... 21

Genetic Programming (GP) ... 22

Learning Classifier Systems (LCS) ... 22

Differential Evolution (DE) ... 22

Which one do I use? ... 22

Concluding remarks ... 23

Chapter 3: From in vivo to in silico ... 25

Evolution and population genetics 101 .. 25

Evolutionary Algorithms ... 25

Computational representation and implementation ... 26

Population .. 27

Selection ... 27

Generation structure ... 28

Fitness .. 28

Table of contents

8

Search operators ... 28

Crossover ... 29

Mutation ... 29

Concluding remarks ... 30

Chapter 4: Differential Evolution .. 33

Introduction .. 33

How simple is DE? .. 34

How does DE work? .. 34

How to make a challenger? .. 35

Choice of CR and F.. 36

Extra mutation .. 36

Chapter 5: Genetic Programming .. 39

Introduction .. 39

Overview of genetic programming .. 39

Gene Expression Programming ... 40

Heads and tails ... 40

Selection and Search Operators ... 42

Mutation ... 43

Crossover ... 44

Fitness and Objective Functions .. 44

Bloat ... 45

Chapter 6: Introduction to problem representation .. 47

Introduction .. 47

Example 1: No problem representation filter needed ... 48

Example 2: Find a good-fitting equation using GEP .. 48

Example 3: A mate selection driver .. 48

Example 4: Choosing p animals out of a group of size n ... 50

Example 5: Assigning animals into groups .. 52

No-Man‟s land ... 54

Chapter 7: Managing constraints ... 55

Introduction .. 55

Ask yourself – do I need this constraint? ... 55

How to apply a constraint. ... 56

Hard constrains and soft constraints .. 57

Chapter 8: Changing the goal posts ... 59

Introduction .. 59

Changing “on the fly” .. 60

Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics

9

How to manage change of direction .. 61

Opportunity for changing direction ... 63

Ownership of the solution .. 64

Chapter 9: Improving performance .. 67

Introduction .. 67

Multicriteria optimization .. 67

Multicriteria fitness example - simple scaling ... 68

A suggestion... 68

Parallelization .. 68

Self-evolving parameters ... 69

Hybrid Evolutionary Algorithms ... 70

Hybrid Differential Evolution and Gene Expression Programming Algorithm 70

Chapter 10: Diagnosing convergence .. 73

Introduction .. 73

Criteria for stopping ... 73

A predicted asymptotic maximum solution ... 74

Example ... 75

No guarantee!! ... 76

Appendix .. 77

Chapter 11: Applications in bioinformatics, systems biology and Artificial Life 79

Introduction .. 79

Bioinformatics – multiple sequence alignment.. 79

Population Initialization and structure .. 80

Search operators ... 80

Bioinformatics – optimization of cDNA microarray experimental designs 81

Design problem .. 82

Population (design) representation .. 82

Selection ... 83

Crossover ... 83

Mutation ... 84

Systems biology – model reconstruction and parameterization .. 85

Parameterization of S-systems in yeast.. 85

Model reconstruction and parameterization of the lac operon in E. coli 87

Artificial life – population genetics dynamics ... 89

Conclusion ... 91

References .. 93

11

Chapter 1: A brief overview of
evolutionary algorithms

Brian Kinghorn

Seek, and you shall find

Pontifications

This course aims to empower its participants by sharing some knowledge and skills that have

greatly benefitted the presenters.

The development of evolutionary algorithms is not a hard science – there are tips and tricks,

and opportunities for tweaking. There is an art to developing and using these algorithms, and

much of the content of this course relates to personal experience and discoveries made in

applications related to quantitative genetics and bioinformatics. However applicability is

very wide indeed.

The process of evolution has brought about great complexity in a simple manner. Biology is

mind-bogglingly complex, even to our shallow level of understanding. How could all of this

have happened? How could massive sequence and other components be derived to result in

life as we see it? Working with evolutionary algorithms to solve complex problems gives

some intriguing insight – it helps to give realization that indeed complex outcomes can come

from a relatively simple process.

As practitioners setting out to solve complex problems, we are not constrained to the systems

of replication and propagation that we see in biology. We can engineer our own systems to

give faster and more robust evolutionary change towards solutions for the prevailing problem.

We can target our outcomes in a more controlled yet flexible manner than in biological

evolution. We can explore the changes that could be made, and use this information to help

set target outcomes for our prevailing problems – we can make a steering wheel.

Problems not for evolutionary algorithms

Many problems in quantitative genetics and bioinformatics can be solved by an appropriate

evolutionary algorithm. We could find the mean, rather than calculating it. We could solve

BLUP by finding (rather than numerically calculating) the set of solutions that minimizes

least squares while satisfying constraints on variance. But these would not be the best uses of

evolutionary algorithms.

Chapter 1: A brief overview of evolutionary algorithms

12

It is usually the case that if a solution can be calculated using a closed-form equation, or

derived numerically through integration or some form of iteration, then that calculation or

derivation will be the method of choice, because of speed if not precision. Exceptions can

occur when the method makes assumptions that may be unreasonable.

Moreover, problems that can be solved by iterative sampling methods, such as Gibbs

Sampling, might be hard to beat with an Evolutionary Algorithm.

Exceptions to all of the above might occur when the calculation method is complex, or

otherwise difficult to code into a program for analysis. As will be seen, with some EA code

in your toolbox there can be surprisingly little work required to solve, for example, a multiple

regression.

If you don‟t know whether there is a method to calculate an answer to your problem, then you

can be lazy, and resort directly to using an evolutionary algorithm.

Problems for evolutionary algorithms

Evolutionary algorithms are useful for problems for which no mechanistic method is

available – or when unreasonable assumptions need to be made. Problems for which you

cannot calculate or derive a solution. Problems for which you have to find a solution.

[Could we calculate the nucleotide sequence required to make a given organism? Much

easier to find it ... for an organism with the same properties.]

Aspects of problems that lend them to EA solution include:

Assignment of individuals into groups, wherever simple ranking and truncation will

not work. This usually involves interactions, whereby whether an individual should

be in a group depends on what other individuals will be in that group. Example:

developing multiplex groupings for genotyping.

Problems where thresholds are involved, for example when the value of a solution

depends on whether certain thresholds have been passed, or the fate of an individual

depends on passing one or more thresholds. Example: Supply chain optimizing to

target multiple product end-points and/or turnoff dates.

Combinatorially tedious problems, where many combinations of components can

exist. Example: The setting up of animal matings.

The architecture of an evolutionary algorithm, in a nutshell.

1. Problem representation: If needed, write an algorithm to produce the input

variables/states (“Phenotypes”) from a vector of simple numbers (“Genotype”). An

example is given by Kinghorn and Shepherd (1999) who convert such a vector into a

Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics

13

pattern of mating and selection (see Chapter 6). This algorithm should ideally produce

only legal solutions to the problem.

2. Objective function: This should be able to return a single value (“Fitness”) that

represents the value of a single solution. The single solution is represented by variable

input values (eg. selection index weights) and/or states (eg. a vector of animals that

should be selected).

3. Optimization engine: This is the heart of an Evolutionary Algorithm – it is where

operations such as recombination and mutation are carried out, to make genotypes of

progeny out of the genotypes of parents. However, the optimization engine is quite

simple „on the outside‟. It generates vectors of numbers (“Genotypes”) and seeks the

vector that gives the highest fitness. The next four chapters will introduce you to these

methods and related approaches.

Aim of the course

We hope that you leave this course with the knowledge and skills needed to apply an

evolutionary algorithm to any suitable problem that confronts you. There is now a small

band of animal breeding scientists who use these tools on a regular basis, and we hope you

will join us.

1. Problem

Representation

2. Objective

function

3. Optimisation

engine

“Genotype”
Raw variables

for each solution

“Phenotype”
Usable

variables or

states

“Fitness”
value for each

solution

Chapter 1: A brief overview of evolutionary algorithms

14

Postscript: Let your computer make you famous.

The author was writing a program to optimize development of a new composite breed. But it

was not going well. Some bugs were causing breed proportions to jump all over the place –

not settling down nicely to optimal proportions. After some detective and debugging work

there was a sudden understanding – the program was thinking outside the box and doing the

best thing possible – a periodic rotational cross.

Just think of that – your optimization program finds a way of doing things – perhaps a

concept that has not been thought of before. You get the Nobel Prize while the poor

computer is being carted off to the dump.

15

Chapter 2: Heuristics and evolutionary
computation

Cedric Gondro

Don't think just guess - but be smart about it

Introduction

At the end of the day, this course is about solving problems. Most people are interested in the

solution and don‟t much care about how to get to it, even though much time and energy can

be spent trying to solve the problem.

In the previous chapter we saw problems that are suitable for evolutionary computation (EC)

and problems that are not. Part of the art of problem solving is identifying the best way to do

it: most accurate, most repeatable, fastest and most computationally efficient and, why not,

easiest. Before you start coding an evolutionary algorithm (EA) make sure this is the best

approach. Maybe the most efficient way of solving your problem is just to knock on the door

of the next office!

But some problems are really hard to solve. Not infrequently because we do not understand

what we are really trying to solve. A very nice side effect of EAs is that they can help us

understand the nature of the problem we are tackling – more about this in the end of the

chapter. Back to the subject. Problems can be complex because the number of potential

solutions is astronomical – it is impossible to evaluate all possible solutions and pick the best

one. The relationships, the interactions, the structure of the problem is so convoluted that a

model of the problem (remember that a model is a simplification of reality) does not reflect

the properties of the problem, thus is useless. The solution changes over time or in different

scenarios (GxE anyone?). Too many constraints in the system. For example, female matings

in a breeding program; or if you think back to your college days, the juggling between the

subjects you wanted to take and the days/times of the week they were offered. Add in the

prereqs and all the times that you did not want have classes (it was college after all!) and you

have a heavily constrained problem. For these types of problems, chances are that an EA is a

good alternative.

[An aside: Evolutionary Computation is the field of study and an Evolutionary Algorithm is a

method. As an analogy, think of Animal Breeding and BLUP).

Chapter 2: Heuristics and evolutionary computation

16

Evolutionary algorithms are heuristic methods. Hmm, what are
heuristics?

Evolutionary algorithms are heuristics. The term heuristic comes from the Greek word

heuriskein which means to discover. It is associated with the process of gaining knowledge or

some desired result by intelligent guesswork rather than by following some pre established

formula. Think of it as a trial-by-error approach to learning. It essentially is an approach to

learning by trying without necessarily having an organized hypothesis or way of proving that

the results proved or disproved the hypothesis. The later is probably the key message here:

with EAs you do not know if your solution is the best possible one, and even if it is, you

cannot prove it (except for trivial examples).

Deterministic versus stochastic methods

Heuristic methods can be based on deterministic or stochastic methods. Deterministic

methods behave predictably, which basically means that you will always get the same output

for a particular input. A mathematical function is a typical example: for any given input the

function will yield the same output. If this is translated to a computer you have a

deterministic algorithm, which is just a description (the sequence of steps/states) of how the

above mentioned function will obtain the output. Deterministic algorithms are ideal to solve

problems, they provide a cookbook view to problem solving (who does not have a copy of

Numerical Recipes?), all you have to do is go to the kitchen and pick the subroutine. But

functions are not heuristics. In heuristic terms think of an exhaustive search starting at zero

and testing all possible integers up to 10000, one at a time- it‟s deterministic in the sense that

you can predict the states of the algorithm and the output will always be the same.

The downside of a deterministic approach is that frequently there is no algorithm for a

specific problem or it is computationally unfeasible – increase the limit of the solution space

in the previous example to all positive integers (that will surely give you some time to fetch a

cup of coffee!). This later class of problems is referred to as NP-complete. NP stands for non-

deterministic polynomial time and it just means that as the problem increases in size the

resources needed to solve the problem grow very rapidly. This term is commonly associated

with EAs, but all it boils down to is that the problem has a large potential solution space.

On the other hand, stochastic methods use algorithms for which, given a certain input state, it

is not possible to determine the output state. This just means that the results are not

predictable. EAs are stochastic algorithms and that is why the solution cannot be proved right

or wrong. And this is of course the main negative aspect of stochastic methods: there is

always some degree of uncertainty (distrust if you prefer) in the results, a lingering feeling

that maybe it could just do a bit better. Another problem with stochastic methods is that in

general they are slower than their deterministic counterpart. And last, the lack of repeatability

of results – many runs should be performed to get a better estimate of the range of results and

their repeatability. Narrow spread of results and repeatability are two key features that should

be considered when selecting an EA.

Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics

17

Types of optimization strategies – how to solve a problem

If asking the guy in the office next door does not work, then you might actually have to try to

solve the problem yourself. Most of the problems we encounter can be represented as an

optimization problem.

There are different classes of optimization problems: assignment, model parameterization,

model discovery, combinatorial and minimax, just to name a few. Selection of the best

method for a certain optimization problem is not trivial. The no-free-lunch (NFL) theorem

(Wolpert and Macready 1996) essentially states that there is no optimal method for solving

all types of optimization problems. A method adequate for a certain class of problems may

breakdown with a different problem. A wide range of global optimum finding methods such

as dynamic programming and linear programming are available for specific types of

optimization problems, these are traditional deterministic methods that are guaranteed to

converge on the global optimum. Traditional methods can be split into two main classes, the

algorithms that evaluate complete solutions and the algorithms that evaluate partial solutions

(Michalewicz and Fogel 2000). In the first class are exhaustive search, gradient methods and

linear programming. These can be applied to specific domains; for smooth differentiable

problems a gradient approach is suitable, linear programming is well tailored for a problem of

linear variables. As mentioned above, for a small confined search space exhaustive search is

adequate.

The second class of methods evaluates partial solutions and builds on them; these include

greedy algorithms, dynamic programming and branch-and-bound algorithms. As an example

dynamic programming is efficient in pair-wise alignment of amino acid or nucleotide

sequences.

Regrettably most of the above algorithms are confined to particular classes of problems

which frequently cannot be applied to real-world problems. Real-world optimization

problems tend to exist in a non-linear, discontinuous and complex landscape. Further, the

systems can be dynamic with objectives shifting over time thus demanding that the

optimization method be capable of modifying its strategy in situ. Other common difficulties

are the presence of noise in the available information and lack of knowledge about the nature

of the problem itself (Michalewicz and Fogel 2000).

These difficulties can hinder the adoption of global optimum finding algorithms, even though

they have been successfully adopted to solve a wide range of specific problems. EC

algorithms offer a compromise solution. Whilst not guaranteed to converge on optimal

solutions they can be used on a wider range of problems albeit at the sacrifice of efficiency.

This loss of efficiency is particularly evident in simple scenarios for which specifically

tailored optimum seeking algorithms are available. Thus, classes of problems for which

specific algorithms are available should not be solved through ECs for they will not be able to

solve these problems faster or with higher precision (Schwefel 2000). A common approach to

solving a complex problem is to linearize it or make use of some other simplification method

that will allow the problem to be solved by an available optimum seeking method. However

these simplifications can yield results that are further away from the true answer than an

approximate result obtained through an EC approach. Even with quite incorrect initial

conditions, an EC approach can still produce reasonable results (Schwefel 2000). EC methods

are not guaranteed to converge on an optimal solution. But worse, it is also not possible to

evaluate how close to optimal a result is. Attempts to develop a formal analytical framework

Chapter 2: Heuristics and evolutionary computation

18

for EC are still incipient, mainly due to the fact that EC methods present the same analytical

difficulties of the problems they are used to solve – complex, noisy, dynamic and non-linear

(Forrest 1993). Probably the greatest limitation to the use of EC methods is the

dimensionality problem. As the number of variables increases the computational effort can

increase exponentially. But, since by their very nature EC methods are well suited for

parallelization and there is a growing interest in developing parallel algorithms, the

importance of this problem is becoming less significant.

Non EC stochastic heuristic methods

Before delving into EC it is worth briefly mentioning some related methods. There are many

others (tabu search, ant colony optimization, swarm optimization, etc), I have selected the

simplest ones because they build naturally into the EC framework.

Random Search – this is probably the simplest implementation of a stochastic algorithm. It is,

as the name implies, simply a random search of the solution space. If exhaustive search is

unfeasible, one could try to sample a subset of the solution space at different points and

try/hope to obtain a reasonable answer. This is of course evidently suboptimal and various

immediate improvements can be considered. For example, do not select the same sample

twice, or even better, try to divide the solution space into regions and sample from each of

these regions to obtain a better coverage.

Random Walk – can be seen as an extension of random search. Instead of selecting a single

point in the solution space and then moving on to another independent point, one could select

a point and then randomly move away from it while the solution is improving (obviously

questions such as step size and in which dimension to move creep to mind).

Hill Climbing – with random walk the most obvious problem is that it is very easy to

overshoot the solution or choose a bad path. This can be balanced out with hill climbing in

which from a starting point the algorithm will test the nearest neighbors (not necessarily all if

the dimensionality is too high) and move in the best direction until it cannot find any

neighboring solution better than the current one. Of course overshooting is a concern because

the concept of neighbor depends on the step size. The first improvement that can be

considered is to reduce the step size and start again from the previous best point and repeat

this process until the step size is zero and no further improvements are attainable. Of course

this works fine for smooth surfaces with a single peak, as soon as the adaptive landscape

becomes more complex, hill climbing can get stuck at a local optimum. In the figure below it

is easy to see that in the first scenario hill climbing would be efficient, but this is not the case

for scenario 2. A work around local optima entrapment in hill climbing is to use stochastic

hill climbing. Implementations vary widely, but consider starting many climbs from different

regions of the solution space or from time to time add a bit of random walking to try to break

out of the entrapment.

Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics

19

Simulated Annealing (SA) – an adaptation of the Metropolis-Hastings algorithm, it is

probably the most widely used optimization heuristic. SA uses an analogy to metallurgy

which involves heating and controlled cooling of a metal. An easy example is shown by

Palshikar (2001). The basic concept is to start with a random solution and replace it by a

randomly chosen neighbor with a given probability. This probability depends on the

difference in fitness of each of these solutions (more on fitness in the next chapter) and a

temperature parameter. Initially the temperature is set very high (the probability of selecting

the alternative solution is very high, or even one) and gradually decreased so that the

probability of choosing the alternative solution becomes very small. This means that initially

only solutions that are very significantly better than the current solution are accepted and as

the temperature decreases the algorithm tends to behave more and more as a hill climbing

algorithm. But let‟s get started in EC…

Evolution of evolutionary computation

Computational intelligence is a field of computer science that uses biology as a source of

inspiration for solving real world problems or mimicking biology in silico. Evolutionary

Computation, alongside Artificial Life, Swarm Optimization, Fuzzy Systems and Artificial

Neural Networks is a subfield of Computational Intelligence and the umbrella under which

reside closely related stochastic methods of simulating evolution. The main branches of EC

are Evolutionary Programming (EP), Evolution Strategies (ES), Genetic Algorithms (GA),

Genetic Programming (GP) and Learning Classifier Systems (LCS). EC is a young field; the

term was coined in 1991 in an attempt to unite the different branches. The origins of using

computers as a means to emulate and understand evolution dates back to the late 1950s and

early 60s through the pioneering work of Bremermann, Fraser and Friedberg. The different

EC branches evolved quite independently from each other, despite having much in common.

The current trend is to merge the best aspects of the different branches and develop solid

theoretical foundations for the entire field (De Jong et al. 2000).

De Jong (2006) poignantly split the history of EC into the Catalytic 60s – when computers

started to become available, the Explorative 70s – development of what was to become the

various branches of EC, the Eplorative 80s – practical application of the methods, the

Unifying 90s – pragmatism over ideology, the best aspects of each method are integrated into

unified algorithms. Currently EC is not only a rich community in its own right but it is also

widely adopted across the most diverse disciplines.

Types of Evolutionary Algorithms and problem matching

Evolutionary Computation is about solving problems. An optimal solution implies absolute

knowledge of the problem, but frequently knowledge of the problem‟s domain is incomplete

and sparse, the solution space is unknown and data sources are noisy. In other types of

problems optimality may vary over time or there are multiple optimal solutions. And,

sometimes problems are heavily constrained and simply finding a single set of parameters

that comply with the bounds is unwieldy. Biological problems seem to fall under all these

categories, they have large search spaces, are non-linear, complex and open-ended, available

data is noisy and incomplete and, they are interlinked and constrained by the components of

Chapter 2: Heuristics and evolutionary computation

20

the system. For such complex problems a compromise must be sought. Instead of

deterministic algorithms which yield optimal solutions but can only be used in specific and

frequently unrealistic problems, stochastic algorithms that are not mathematically guaranteed

to converge on a optimal solution can be adopted (Michalewicz and Fogel 2000).

Evolutionary Computation falls under this last category. EAs are a group of stochastic

problem solving methods loosely inspired on evolutionary processes such as selection,

mutation and crossover. All algorithms have in common the use of populations of candidate

solutions which reproduce, compete, and are subjected to selective pressures and random

variation – the four basic elements of evolution (Atmar 1994).

Below we briefly describe the main branches of EC. The purpose is neither to provide a

comprehensive overview nor to suggest that these are the correct methods for a given EA; the

sole intent is to give a taste for the different variants. Keep in mind that EC is evolving

rapidly, the binning below is simply for didactic purposes, at the end of the day you should

pick the aspects of each method that seem best suited to your needs and use them. Remember:

adapt the method to the problem and not the problem to the method.

Evolutionary Programming (EP)

EP in its basic form consists of generating an initial population μ and a fitness value is

assigned to each individual. The iterative loop (each loop is commonly referred to as a

generation) usually consists of duplicating each parent μi until a predefined number λi of

offspring are generated. The offspring are modified through a mutation process – commonly

a Gaussian distribution with zero mean and variance of one, crossover is not used in classic

EP. All offspring are evaluated as to their fitness and along with the parental population a

selection operator is used to cull the population size back to μ. EP shares more than a few

similarities with ES. The main difference between EP and other EC methods is the global

optimization method employed by EP. No attempt is made to break the problem down into

subcomponents; the fitness evaluation is based solely on the whole organism. In this sense

the genotype is of little importance and focus is on optimization of the phenotype, for this

reason crossover is not used in EP. A further distinction is that traditionally EP uses

continuous-valued variables instead of the discrete representation common in GA. Current

versions of EP are self-adaptive, with the mutation parameters (variance, covariance)

adapting to the current state of the population. A good overview of EP is given by Bäck

(1996), Fogel (1999) and Porto (2000).

Evolution Strategies (ES)

ES were initially developed to solve technical optimization problems. There are two main

general notations for the strategy: (μ + λ) where the ES generates λ offspring from a parental

population μ and selects the best μ from all μ+λ individuals. Alternatively the (μ , λ) strategy

generates λ offspring from μ parents and selects the μ best from the λ offspring. Weak

selective pressures seem to yield a better response thus the μ/λ ratio should not be too small.

Of course, a 1:1 mapping of μ:λ reduces the algorithm to a random walk. Typically ES use

crossover between two randomly selected parents to generate the offspring; commonly

adopted is the multipoint crossover. After crossover the offspring are mutated. ES mutation

schemes are not particularly straightforward; each organism, besides the element that maps

their position in the search space, can have several parameters controlling the mutation

Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics

21

distribution which customarily follows a multivariate normal distribution with zero mean and

a covariance matrix that is symmetric and positive definite. At least two mutation parameters

are commonly used: angles (σ) and standard deviations (ω). These mutation parameters can

be self-adaptive as in EP algorithms. The original ES strategy was (μ + 1) with a single

replacement per iteration loop which is called steady-state (an analogy to overlapping

generations) in opposition to the generational approach. Even though the steady-state

approach is the preferred choice for other EC methods, modern ES adopt a generational

approach similar to EP.

As with Evolutionary Programming, ES does not attempt to break down the problem into

smaller subcomponents. Optimization is solely based on the phenotypic values of the

organism. Schwefel and Rudolph (1995) and Rudolph (2000), provide an overview of ES.

Genetic Algorithms (GAs)

The most widely disseminated EC branch, GAs date back to the seminal work of Holland

(1975). GAs distinguish themselves from the other methods by the emphasis that is placed on

crossover. Traditionally GA organisms are represented as linear bitstrings which are referred

to as chromosomes; this is the canonical GA (Holland 1975; Goldberg 1987). The value in

each position of the bitstring is an allele (0 or 1) and the position itself is a gene or locus. The

combination of values (alleles) in the bitstring (chromosome) maps to a phenotypic

expression, such as a parameter to be optimized. From the above it is clear that GAs operate

at two structural levels: a genotypic and a phenotypic one. Selection operators are carried out

based on the overall chromosome value (phenotype) while search operators act on the

genotype, modifying the chromosome which may or may not change the phenotypic

expression.

GAs are the class of EC which most closely mimic evolutionary processes at a genetic level.

Crossover swaps chromosome parts between parents to form the offspring and mutation

changes the value of alleles at randomly selected loci. From this notion derives the concept of

schema in GAs (Holland 1975); a good solution consists of a set of good small building

blocks. Thus, the assumption is that the chromosomes in the population are formed by small

schemas that add up to yield the final fitness. Under the schema model, crossovers between

good schemas are preserved since they increase the overall fitness of the chromosome while

crossovers which break up a good schema are eliminated since they reduce the fitness. This

assumes that the GA will concentrate on searches which are optimally allocated. The schema

theory has been under attack recently, with many arguments for and against but still limited

solid proofs (Whitley 2001; Langdon and Poli 2002). To the author‟s knowledge no work has

attempted to describe schema theory within the framework of quantitative genetics; such a

study might evidence the appearance and maintenance of haplotypes and linkage

disequilibrium studies could provide a more in-depth understanding of the dynamics of GAs.

Crossover is often regarded as the main search operator of a GA, with mutation seen more as

a mechanism of ensuring a robust gene pool to be explored by crossover (Eshelman 2000).

Chapter 2: Heuristics and evolutionary computation

22

Genetic Programming (GP)

Often regarded as a specialization of Genetic Algorithms, GP has evolved to become a

branch of EC in its own right. Initially GP was devised as a method to optimize data

structures as executable computer programs with the fitness value assigned based on the

results obtained when executing the instructions contained in each member of the population.

In this context, GP evolves populations of computer programs or other algorithmic processes

to solve a specific problem (Banzhaf et al. 1998; Koza 1989; Koza 1992; Koza 1994; Koza et

al 1999; Koza et al 2003).

We will be discussing GP in details in chapter 5 and particularly Gene Expression

Programming which is the author‟s favorite flavor of GP.

Learning Classifier Systems (LCS)

Good references to LCS are Wilson (1994), Smith (2000) and Vlachos et al. (2004) for an

application of LCS in biology. LCS are more of a concept than an actual algorithm; they can

be seen as a hybrid between a machine learning technique and a GA. LCS is a rule-based

system which uses agents that receive an external signal (message), process it and produce a

response. The genetic material consists of a set of rules which map an input (detector) to an

output (effector), modifying the behaviour of the agents to environmental changes. The GA

component of the LCS is to adapt the rules to obtain a desired behaviour from the agents.

Differential Evolution (DE)

DE (Storn and Price 1997) is not a branch of EC in its own right, but it has been widely

adopted in our group to solve quantitative genetics problems. DE can be seen as a parallelized

simulated annealing algorithm that lies on the intersect between real-valued genetic

algorithms and evolution strategies. In chapter 4 DE will be discussed in-depth.

Which one do I use?

The NFL theorem applies to EAs. No single approach is always superior for all problems or

can solve any type of problem. The choice of an appropriate EA depends on the nature of the

problem at hand. There have been advances in developing a formal framework for EC but

largely the field is still anchored on a trial-and-error approach. There are no widely applicable

rules for selection of population parameters apart from the collective empirical experience of

practitioners. The current drive is to use self-evolving parameters and let the system figure

out what is best (more in chapter 9).

On the bright side, the methods are robust and even suboptimal parameter selection can still

lead to good results. As a rule of thumb, GAs are well suited for discrete problems such as

sorting, ranking or allocation problems; EP and ES are a good first choice for continuous

problems such as model parameterization; GP allows tackling problems such as model

discovery. Within each EC branch there is vast number of different algorithms. Selecting the

best one for a given task can be quite daunting. From a practical standpoint considerations of

Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics

23

ease of implementation, computational and convergence speeds and repeatability of results

are important.

Concluding remarks

In a nutshell, Evolutionary Computation uses computer algorithms which search through

complex solution landscapes. A population of candidate solutions is created, a fitness value is

assigned to each member of the population and depending on their fitness value an organism

has a higher or lower probability of being selected to remain in the population and generating

offspring. New members are created through crossover and mutation thus exploring the

solution space.

We have seen when to use and when not to use EAs, but before we get our hands dirty and

start coding EAs there‟s still one last question: why use Evolutionary Algorithms? Basically,

it is just because they present various characteristics that are advantageous for solving

optimization problems. Michalewicz and Fogel (2000) summarized these advantages as:

1. Simplicity. The concept and the implementation of EAs are simple.

2. Broad applicability. Virtually any problem can be addressed by EAs.

3. Hybrid methods. EAs allow integration with other methods.

4. Parallelism. The structure of EAs makes them particularly well suited for

parallelization.

5. Robust to changes. Changes in the target system do not render the algorithm useless.

6. Self adaptation. The parameters of the EA can evolve alongside the solutions.

7. Solve problems with no known answers. Probably the greatest advantage of EAs; if an

evaluation of goodness of fit of a solution is possible, EAs can be used.

Nevertheless EAs are not a magic bullet. You will have to think about how to present the

problem to the algorithm, in chapter 6 problem representation will be discussed. Even more

fundamentally you will have to understand what the problem really is. A nice side effect of

EAs is that they show you things that you did not know – as mentioned in the previous

chapter, they can show solutions which had not previously been considered or show problems

in the model which you were not aware of – at the end of the day you and the computer will

have learnt something about the problem!

25

Chapter 3: From in vivo to in silico

Cedric Gondro

It's been good for 3 billion years - it's good enough for me

Evolution and population genetics 101

Evolution can be seen as a dynamic and opportunistic optimization process. Effectively it is a

method to search through a vast solution space and find a solution that allows organisms to

survive and reproduce in a certain environment. It is dynamic in the sense that solutions

(organisms) can change to adapt to environmental changes and it is opportunistic in the sense

that solutions are not necessarily globally optimal but rather tend to move to the next

available solution that ensures viability, even if in detriment of a more globally optimal

solution. Interestingly enough, the high-level rules that govern evolution and account for the

great variability of organisms are quite straightforward. Organisms – which can be seen as

candidate solutions – evolve through random variation due to mutation, crossover and

manipulations on their genetic material; these candidates are subjected to selective pressures

which evaluate their adaptiveness and determine their capacity of generating descendants,

thus propagating better fit genotypes into the future generations. These characteristics are the

inspiration of Evolutionary Computation.

Evolutionary Algorithms

EC tries to mimic the mechanisms of biological evolution to solve complex problems

(Mitchell and Taylor 1999; Fogel 2000a; Fogel 2000b). Even though specific

implementations can vary significantly and algorithms are not constrained to using only

biological mechanisms, there are three common features which are shared by the different

branches of EC (Bäck 2000):

1. A population. A number (n) of candidate solutions (representations of the problem)

compete against each other to remain in the population and generate offspring. Since

ECs use populations, they can be seen as a parallelized search of the solution space.

2. Selection. Organisms from the population pool are selected for culling or reproduction

based on their fitness. Fitness is a function measurement of how good a representation

is at solving the problem. The two most adopted methods for assigning fitness are as a

direct mapping to the problem or as a relative measurement of performance in relation

to the remainder of the population. Arguably, the choice of a fitness function that

clearly states the problem is the most important step in determining the success or

failure of the EC algorithm.

Chapter 3: From in vivo to in silico

26

3. Search operators. EC uses stochastic methods to solve a problem; these biologically

inspired operators provide the variability necessary for the EC population to explore

different areas of the solution space. The two main sources of variability are mutation,

which are randomly generated new sources of variability and crossover, which

exploits the available variability within the population to form new combinations of

candidate solutions.

Thus, a general EC algorithm combines these features and through iterations improves the

overall fitness of the population, gradually converging on a solution. The following steps

form the general structure of an EC algorithm:

1. Create an initial population – randomly or based on prior information

2. Assign a fitness value to all organisms (also referred to as chromosomes)

3. Select organisms for reproduction based on their fitness and a selection scheme

4. Create descendants from the selected parents

5. Modify the descendants with the search operators

6. Evaluate the fitness of the descendants

7. Cull organisms from the parental population and replace them with the descendants

according to the selection scheme

8. Repeat from step 3 until a termination criterion is met, for example, a specified

number of iterations or a predefined fitness value is reached

Computational representation and implementation

An appropriate choice of representation for the populations is crucial for an EA and largely

depends on the nature of the problem. A parameterization problem is usually represented as a

real-valued vector; if using an ES or EP the vector consists of the solution vector and

variability parameters. Finite-state representations are also frequent with EP. A GA

classically uses binary strings. GP has to store information on the functions, the terminals and

the relations between the two; lists, stacks, parse-trees and vectors are commonly used.

The choice of programming language is of secondary importance to the algorithms and they

can usually be easily ported between languages. Without swimming in the dangerous waters

of defending a specific language, I am rather fond of C# because it‟s a modern fully object-

oriented language which allows rapid development of GUIs and algorithms with a low

overhead. BK prefers VB.Net (and for exactly the same reasons!). On the downside both C#

and VB are slower than either Fortran or C under the latest release of the .Net platform. EAs

can also be easily written for Matlab, R and even Excel. The bottom line is that EAs can

probably be coded into just about anything. The choice depends on what the objectives are.

Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics

27

Population

The population structure and size varies according to the type of EA used. Normally an initial

population is randomly created or seeded from some previous set of candidates (e.g. for a

multiple sequence alignment problem, an EA converges faster and more efficiently if the

initial population is formed by all possible pairwise alignments).

Population sizes also vary according to the type of problem and algorithm. As a rule of thumb

Differential Evolution works well with smaller populations (10-20) whilst GAs and GPs need

large population sizes (100-1000, or even 10,000).

Selection

Selection is an integral component of all EC methods. Through selection, solutions with a

higher fitness are emphasized in the population. There are several selection operators (Bäck

et al. 2000a) but all essentially select better solutions for reproduction and delete less fit

solutions which are replaced by the offspring of the better performing ones. Selection does

not generate new solutions; it simply directs the evolution of the population. Of notice is that

not only the best organisms are always selected; the process is stochastic, which can allow

inferior solutions to be selected over better ones with a low probability. This preserves the

diversity of the population and avoids a premature convergence on local optima. The main

selection methods are proportionate, rank-based, Boltzmann and tournament.

Proportionate selection assigns a probability of generating offspring based on the relative

fitness of the organism. The simplest form of proportionate selection is roulette wheel; where

each solution is assigned an area in the wheel proportional to its fitness – fitter organisms

have a bigger area and consequently a higher probability that the wheel when spun will stop

in their area.

Rank-based selection ranks the entire population based on their fitness and then assigns a

selection probability based on these ranked values.

Boltzmann selection uses a probability distribution with a T term similar to the temperature

term in the Boltzmann distribution which decreases as the iterations progress; initially all

solutions have similar chances of being selected since a large T is used but as T reduces the

stringency increases and only better solutions are chosen.

Tournament selection chooses a certain sample size from the population to compete and the

ones with the highest fitness are selected; the selective pressure is defined by the size of the

tournament. Tournament selection is rapidly becoming the selection method of choice for EC

applications. There is no need to evaluate the entire population or maintain population

statistics which makes the selection process faster. For the same reasons it is also well suited

for parallel implementations. The major drawback of roulette wheel is avoided; in which the

size of the areas rapidly become the same as the population converges on a solution, forcing

the use of a fitness scaling mechanism between the upper and lower limits of the fitness range.

Tournament selection is inherently noisy and can rapidly lead to a loss of diversity. To

counterbalance this effect small tournaments are preferred in association with slightly higher

mutation rates. Hancock (2000) presents a comparison of the different selection mechanisms.

Chapter 3: From in vivo to in silico

28

Generation structure

EC uses two generational structures: steady-state and generational:

1. Steady-state uses an overlapping generation approach in which parents and offspring

simultaneously compete in the population. Tournament selection is typically steady-

state with only a few new organisms in each generation.

2. The generational approach uses non-overlapping populations with the offspring

entirely replacing the parental population.

Steady-state runs tend to have a higher variance, thus in small populations the effect of drift

in more pronounced and can lead to the loss of variability. To counteract this effect, larger

populations should be used in steady-state systems.

Fitness

Selection operators act on the fitness of the organisms. Fitness is arguably the most important

aspect of any EA, if the fitness function is not well constructed the whole EA will breakdown.

The fitness function can be seen as a measure of the probability that an organism will survive

and reproduce in the population. The selection scheme and the fitness function are

inextricably connected. A good fitness function should allow for a range of intermediary

values which can be explored by the EA. All-or-nothing fitness functions are ineffective for

an EA which must be capable of evaluating if a certain solution is better or worse; the less

granular the fitness function, the higher the probability that the EA will converge on an

adequate solution.

At this point it is important to highlight the distinction between fitness and objective function.

The fitness function maps to the objective function which is external to the EC and depends

on the nature of the problem. The terms fitness and objective function are frequently used as

synonyms, especially when the mapping between the fitness function and the objective

function is 1:1. On the other hand, if a population scaling scheme is adopted it is quite clear

that fitness and objective function are necessarily distinct. In summary, the objective function

assigns a value to an organism which can be directly translated as its fitness or which can be

mapped to a fitness value based on the fitness function of the EA. All this might sound rather

pedantic, but the message is that you can either directly link selection with the problem or

you can use a completely independent method to select the population.

Search operators

Mutation and crossover are the main search operators used in EC. Their main function is to

modify candidate solutions to explore the solution space. Frequently both are used in an EA

and the parameter settings for these operators are critical for a successful run. High mutation

rates can reduce the method to a random search. If too low, there will be little variability or

loss of variability in the population. The same applies to crossover, if too high good

Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics

29

constructs will be broken up. If too low there will be little exploration of the search space. A

balance always has to be achieved between the two search operators as well as the selective

pressure that is applied and the population size that is used. These are the four main

parameters in an EA.

Crossover

Crossover is a search operator that does not generate new sources of variability in the

populations albeit introducing new variation. It operates by combining parts from two or

more parents to generate one or more offspring. The drive behind crossover is to generate

new variability in the population by manipulating the component sources of variation to

explore new combinations which might be better solutions to the problem. There are many

different crossover algorithms depending on the EC method and the representation of the

problem: binary strings, real-valued vectors, finite-state machines or parse trees. Booker et al.

(2000) reviewed different crossover methods. The most straightforward crossover is used in

the canonical GA and is a good model to illustrate the principle. In the figure below a one-

point crossover in a binary GA is depicted.

One-point crossover in a binary genetic algorithm. A breakpoint is randomly selected and the two

chromosomes swap bitstrings after the breakpoint. Crossover is a search operator which explores

available population variability by testing new combinations. No new allelic variability is generated

through crossover but it does generate new variation in fitness values.

Briefly, two parents are selected for crossover, a breakpoint in the chromosome is randomly

determined, and from the breakpoint onwards the two chromosomes swap the remainder of

their bitstrings. The figure shows how crossover can produce an offspring with a higher

fitness than the parents. Consider that the trivial objective function of a GA is to maximize

the number of ones in the binary string. The parents have respectively seven and six ones in

their strings and, in the example, their offspring have eight ones, after crossover.

Mutation

In contrast to crossover, mutation generates new allelic variability in the population. The

general principle is that new offspring are created by a stochastic change to a single parent.

Like crossover there is a plethora of mutation algorithms for the different EAs (Bäck et al.

2000c). For example, a real-valued EA would change the value at a selected allele with a new

randomly selected value. Again, the canonical GA is the most pictorial example of mutation.

The following figure shows a point-mutation bit-flip in which an allele of a parent is

randomly selected to be flipped. The most common approach is to assign a small uniform

probability that mutation will occur and test each position of the bitstring; if the mutation

operator returns true the bit at the position is flipped. Notice that mutation can also produce

Chapter 3: From in vivo to in silico

30

an offspring with a higher fitness than the parent. After mutation the offspring has eight ones

instead of seven.

Point-mutation bit-flip in a binary genetic algorithm. New offspring are produced by a random change to

the parent. In the example allele at position 4 mutated and flipped from zero to one. Mutation is a source

of new variability in a population.

Mutation is an important operator to generate new sources of variability and expose new

areas of the solution landscape whilst crossover can only shuffle available variability.

Consider that in the example in the figure above no member of the population had a one in

allele four; no amount of crossover would generate a solution with one in this position, thus

an optimal solution would be unobtainable.

The interplay between mutation and crossover is paramount to the success of the EA.

Mutation feeds new variability into the system and crossover tries to combine it into useful

combinations.

Concluding remarks

Evolutionary algorithms are primarily computational methods designed for optimization of

complex problems with large search spaces. There is no optimal method for solving all types

of optimization problems. An algorithm adequate for a certain class of problems may

breakdown under a different problem.

The framework for developing suitable EA algorithms for a given problem can be broken

down into the following steps:

1. Nature of the problem – to solve a problem it is necessary to understand it. This may

sound like a tautology, but EAs need to be able to evaluate how good a solution is, if

not in absolute terms, at least in relation to other candidate solutions. If a problem is

well understood, a more reliable/realistic method to evaluate solutions can be

developed.

2. Modeling of the problem – optimization is not carried out on the problem itself but on

a model of the problem. This is an important distinction; a solution can be perfect for

the model but, for the real problem, it is only as good as the model itself. Thus again

the importance of understanding the nature of the problem. Knowledge of the problem

allows the development of a model that captures and reflects its essential

characteristics.

3. Objective function – arguably the most important component of EAs. The objective

function is a measurement of how well a solution fits the model of the problem and is

used to assign a fitness value to candidate solutions, either through, for example,

Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics

31

direct 1:1 mapping or rank based selection (based on the relative performance of

solutions within the population).

4. Development of an evolutionary algorithm – depending on the problem a certain EA

will be better suited than others. For example, it is now generally accepted that the

original binary Genetic Algorithm is inefficient to solve real valued numerical

problems. Alternative methods such as Differential Evolution, discussed in the next

chapter, are faster and yield better solutions. Two other important aspects are the

design of efficient search operators (we will see many examples during the course)

and how to present the problem to an EA, ideally in a parameterization that

automatically accommodates constraints (in chapter 7 we will discuss how to manage

constraints).

33

Chapter 4: Differential Evolution

Brian Kinghorn

Vive la difference!

Introduction

BK escaped from the office for a cup of

coffee and a browse through the motorbike

magazines at the Student Center, Colorado

State University in March 1997. This action

changed his life.

Within a week or so the massive

Colorado Beef Cow Production Model

was being optimized, with relative ease.

“With relative ease” are the operative

words here. Differential Evolution is an

EA that is small – it can be as small as

one page of code – and simple to

implement. It fulfills the job of “3.

Optimisation engine” in this diagram

from Chapter 1:

What does “Differential” mean? This

comes from the way that the algorithm matches the size of mutations to the amount of

variability in the current generation of solutions. This is done individually for each parameter

1. Problem

Representation

2. Objective

function

3. Optimisation

engine

“Genotype”
Raw variables

for each solution

“Phenotype”
Usable

variables or

states

“Fitness”
value for each

solution

Chapter 4: Differential Evolution

34

to be optimised, as we will see in more detail in the exercise. This makes the algorithm more

adventurous at early stages, while it is looking for general regions in which good solution

might lie. As it begins to hone in on one or a few promising regions, it takes smaller and

more measured steps. This can give an appropriate blend of robustness and speed of progress

at all stages of the optimization. DE is generally found to perform well compared to other

more bloated alternatives (eg. Mayer et al 2005).

How simple is DE?

Adapted from Price and Storn (1997)

… small, simple and effective.

How does DE work?

DE uses “tournament selection”. There is a population of solutions – typically of size 10 or

so. Think of 10 chairs, each with a “title holder” (actually a solution) standing on that chair.

A title holder can keep its position on its chair for as long as it is able, over many cycles or

“generations”. In each generation, a challenger solution is made for each of the chairs, to

challenge the title holder in a one-on-one tournament. If the challenger is a better solution

than the title holder, it climbs on the chair as the new title holder for that position in the

population. It is a good thing to let the challenger win even if it is only equal in value to the

title holder – better to keep things moving.

Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics

35

All we need is a class full of volunteers, 4 chairs, 4 dice, 2 coins and lots of pieces of

paper … later on.

Differential Evolution
Constructing a challenger

5 0 2 9

Parameter (jth “locus”)
1 2 3 4

7 4 7 2

3 2 8 5

8 6 4 4

4 0 5 7

„Individual‟ or „Title holder‟

„Challenger template‟

„Mutators‟

„Challenger‟

„Allele‟ = value for parameter 1 in this challenger solution
4 = 3 + F*(8 – 7) at F=1

In the

code:

c

i

b

a

j =

Use Title Holder‟s allele with probability CR

How to make a challenger?

A challenger is to be constructed for each title holder. This is where the “Differential” bit

comes in. First choose three title holders that are different from the one to be challenged

(This makes the minimum populations size = 1+ 3 = 4). Call the solutions for these title

holders A, B and C.

We make the solution for the challenger equal to C, but then we change (mutate) it according

to the Difference between A and B:

Challenger solution = C + F*(A – B)

… where F is a tuning parameter described below, typically between 0.2 and 2.0 in value.

This oversimplifies the basic DE as invented by Price and Storn. We still need

“Recombination” or “Crossing over”.

Chapter 4: Differential Evolution

36

Solutions A, B and C are actually vectors of parameters that are needed to describe a solution.

So, for example, C = (c1, c2, … , cL) where there are L parameters that describe a solution.

[L stands for Loci]

A useful strategy is to make some use of parameters of the title holder to be challenged. If

this is the i
th

 population member, s/he will have parameters I = (i1, i2, … , iL).

So we cycle through the parameters (j=1 to L) and allocate parameter values to the challenger

as follows:

With probability CR : Challenger solution = cj + F*(aj – bj)

With probability (1-CR) : Challenger solution = ij

The latter scenario has taken place in the example in the PowerPoint slide above, with the

allele „0‟, colored red, being inherited by the challenger directly from the Title holder that it

is going to challenge.

Choice of CR and F

If F is large, the algorithm is more adventurous – casting more widely to find solutions that

might be good. This is useful in the early generations, helping to give some initial coverage

of the solution space. However, it will usually slow down convergence once there is a decent

hill to climb – too much distraction in outlandish areas.

One strategy is to keep F high (say between 1 and 2) for the first several hundred generations

(more or less for bigger and smaller problems). Much of this tuning work can involve trial

and error.

I use a periodic change in F – to “have your cake and eat it”. Some generation are

adventurous, but most are conservative:

'these bits vary 'mutation' every few generations ...

If generation Mod 4 = 0 Then F = 1 Else F = Fhold

If generation Mod 7 = 0 Then F = 4 Else F = Fhold

For CR I use about 0.4. Trial and error. But …

'Usually good to start higher ...

If generation > 500 Then CR = 0.2 Else CR = 0.4

Extra mutation

I find that “Out of the box” Differential Evolution can get stuck on a local optimum rather

more easily that is desirable. This is at least partly because all population members converge

on this part of the solution space, and the mutation generated is reduced to such small levels

that it is essentially impossible to get away from this location.

Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics

37

This is easily fixed by randomly introducing other forms of mutation. First of all, it makes

sense to keep “Pure DE” in some generations …

' Pure DE most generations

If generation Mod 3 = 0 Then DiffOnly = 1 Else DiffOnly = 0

If MyRnd.NextDouble < CR Or k = loci Then

 If MyRnd.NextDouble < 0.9 Then ' do DE ~prob=.9

 allele(j) = parentallele(c, j) + F * (parentallele(a, j) - parentallele(b, j))

 ElseIf MyRnd.NextDouble < 0.5 Then ' make proportional mutation ~prob=0.05 (But

no good if stuck at value of zero)

 allele(j) = parentallele(c, j) * (0.9 + 0.2 * MyRnd.NextDouble)

 Else ' make absolute mutation ~prob=0.05

 allele(j) = parentallele(c, j) + 0.01 * F * (parentallele(a, j) + 0.01) *

(MyRnd.NextDouble() - 0.5)

 ' ... could make this a function of mean solution rather than an arbitrary +0.01

 End If

Else

 allele(j) = parentallele(i, j) ' or no change depending on CR

End If

Note that this is not “The Correct Way” of doing these things. In this business one is free to

express one‟s own opinion and ideas. But you should test your ideas for speed and

robustness of convergence. That can take quite a bit of investigation!

39

Chapter 5: Genetic Programming

Cedric Gondro

Why not evolve the model as well?

Introduction

So far we have focused on numerical optimization. For example, we have a certain model and

we want to parameterize it or we have an assignment problem and we want to allocate

resources to the different classes. But what if, say, we have observed data in an experiment

but don‟t have an underlying model to explain the observations? What we want is to discover

the model itself. That‟s were GP comes in handy, using the same EC concepts we have seen

so far, it can be used for model construction (and for good measure parameterization as well!).

Overview of genetic programming

Often regarded as a specialization of Genetic Algorithms, GP has evolved to become a

branch of EC in its own right. Initially GP was devised as a method to optimize data

structures as executable computer programs with the fitness value assigned based on the

results obtained when executing the instructions contained in each member of the population.

In this context, GP evolves populations of computer programs or other algorithmic processes

to solve a specific problem (Banzhaf et al. 1998; Koza 1989; Koza 1992; Koza 1994; Koza et

al 1999; Koza et al 2003).

Original implementations of GP used tree-structured representations implemented in LISP.

Tree-structures have the terminal nodes of the tree containing inputs (referred to as terminals)

and the internal nodes holding functions. This type of construct demands significant overhead

to ensure viability of the trees (handle, for instance, division by zero or infinite loops) or

correct tree structures which can break-up due to mutation and crossover.

Currently LISP implementations are rarely used and alternative language implementations

such as C++ are used. The same applies to new GP structures developed to improve on the

original Tree-GP. Alternative methods are numerous (as everything else in EC!) and include

Linear-tree Genetic Programming (Kantschik and Banzhaf 2001), Linear Genetic

Programming (Nordin 1994), Linear Page-based Genetic Programming (Heywood and

Zincir-Heywood 2000) and Gene Expression Programming (Ferreira 2001). GP uses

crossover and mutation in a similar fashion as GAs. Commonly crossover involves swapping

entire subtrees between parents. The figure below illustrates a typical tree GP and crossover

between two parents. Mutation replaces a subtree with a random subtree of a randomly

defined depth. GP structures use variable-length representations which have a tendency to

grow in tree depth through the addition of subtrees of functions and terminals which

contribute only slightly to improve the fitness. This growth is referred to as bloat and is an

Chapter 5: Genetic Programming

40

active field of research in the GP community. A common practice is to place a cap on tree

depth (Langdon and Poli 2002).

Crossover in a tree GP. Crossover between parents A and B generate offspring C, the function set is

{*,+,/,-} and the terminal set is {2,0,1,5}. The trees code for A=(5*0)-(1*2); B=(5+0)+(1/2); C=(5*0)-(5+0).

Gene Expression Programming

We will focus on Gene Expression Programming – GEP (Ferreira 2001; Ferreira 2002). GEP

is very straightforward to implement, fits well with modelling problems and is the author‟s

favourite!

GEP is a variant of Genetic Programming that instead of coding structures as non-linear

entities, the typical parse-trees of GP; it uses linear strings of fixed size which are translated

into non-linear entities of different sizes and structures. This two-step approach allows GEP

to be viewed as a hybrid between Genetic Algorithms and Genetic Programming. GEP has

essentially three main advantages over GP. Firstly, it allows implementation of the

straightforward search methods common to GAs whilst maintaining the structural complexity

attainable through GP. Secondly, all linear strings either code for valid structures or can be

repaired with little overhead; such is not the case with GP where the parse-trees can easily

breakdown into invalid structures and complex search operators must be used to ensure tree

viability. The need to preserve valid tree structures limits search operators mainly to

crossover between tree branches of the same arity. The third advantage of GEP is that it

allows for more parsimonious solutions in contrast to GP where the entire parse-tree is the

solution and the tendency is to bloat the tree to the maximum allowed size once the

population stops evolving.

Heads and tails

The linear strings of fixed size in GEP are referred to as chromosomes. Each chromosome

has n genes with a head and a tail. The head consists of terminals and functions and the tail

only of terminals. Terminals are numerical variables or constants, and functions are

mathematical operators. The size of the head is a user-defined parameter while the tail is a

Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics

41

function of the size of the head such that 1)1(nht , where t is the tail size, h is the head

size and n is the highest arity of the set of functions.

Each gene (h+t) can be translated into an expression tree (ET) from the coding region of the

gene, referred to as an open reading frame (ORF) in a loose biological analogy. An ORF can

be of the same size of the gene or smaller, in the last case there are non-coding regions

downstream of the gene. The size of an ORF depends on the position and relationships

between functions and terminals on the gene. This is a simple matter of looking at each

position on the gene starting from zero and if in that position there is a function its arity is

added to a counter. When the counter value becomes smaller than the current position all

terminal nodes in the ET are filled with terminals and no further functions can be added to the

ET.

In summary a GEP structure consists of a chromosome with genes of fixed size which code

for ORFs of variable sizes that are translated into expression trees (ETs). Search operators act

on the gene structure (genotype) while selection acts on the expression trees (phenotype).

To illustrate these concepts consider the following equation:

)(*)(dcbay

This simple algebraic expression can be split into a set of terminals T={a,b,c,d} and a set of

functions F={+,*,-). This equation can be represented as the ET:

Expression tree of equation y = (a+b)*(c-d). Terminal set T={a,b,c,d) and function set F=(+,*,-}.

The ORF for this equation can be constructed copying the values of the nodes from top to

bottom and from left to right, resulting in the string { * + - a b c d }.

The figure below shows an example of this ORF as part of a gene of size 21. The head size of

this gene is 10 and consists of terminals and functions. The tail (in bold) is formed

exclusively with terminals and, from our example is of size 11 since the function of highest

arity is two. Note that the break off point in the gene is position 6, since in this position the

total arities of the functions add up to 6 and the total number of elements is 7. Evidently from

the tree above it is clear that no further function could be added to the expression tree. Thus a

gene of size 21 can code for an ORF of size 7.

Chapter 5: Genetic Programming

42

GEP gene of size 21 with head (h) of size 10 and tail (t) of size 11. t = h(n-1)+1. The highest arity of the

function set is 2, thus n = 2.

At this point it should be clear that the tail is important to ensure integrity of the tree structure.

By having a tail with only terminals, even if the head is solely formed of functions, there are

enough terminals available to form complete trees with terminals in the outer nodes. In this

scenario the gene and the ORF are of the same size. The value of the function with the

highest arity is important to ensure tails with sufficient terminals for any combination of

functions.

Selection and Search Operators

Originally GEP uses roulette wheel selection. The author tends to use the currently preferred

tournament selection since it permits better control of the selective pressure and allows for a

smoother evolution.

As we mentioned the distinction between head and tail is an important component of GEP.

Tail integrity (only terminals in tail) must be preserved and search operators need to be used

accordingly. GEP uses a wide range of search operators: mutation, insertion sequence

transposition, root insertion sequence transposition, gene transposition, one and two-point

crossover and gene crossover (Ferreira 2001).

Before discussing search operators let‟s look at how they can modify the structure of ETs yet

still preserve structure integrity. For our example consider a mutation operator. Mutation

randomly changes the value in a gene position with another value given a certain probability.

Since gene structure must remain intact, mutation in the head can replace the original value

with either a terminal or a function; in the tail section only terminals can be used. The

following figure shows a point mutation in position 4 in which a terminal (b) was replaced by

a function (*), as a result instead of the ORF of length 7 a new ORF of length 15 is created. A

new expression tree is created and the resulting equation is also very different. Notice that

tree viability is still preserved.

Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics

43

Effect of mutation on the GEP structures. A single point mutation can completely change the size of

ORFs, the ETs and the final product. In position 4 a terminal (b) mutated to a function (*) as shown in

Gene B. From this mutation a new ORF was created of size 15 (shaded grey) replacing the original ORF

of size 7, and a new tree (new segments shaded grey). The final products are shown under Equation. Tails

in bold font.

Even though the original GEP employs several search operators, the operators described

below are adequate for most tasks. This choice was based on better convergence in test cases

or simple computational efficiency. The operators can be subdivided into mutation and

crossover.

Mutation

Two types of mutation work well: point mutation and block mutation. Point mutation

replaces a single position with another random element from the function or terminal set in

the head or just from the terminal set in the tail. Block mutation replaces a randomly defined

number of positions (up to 20% of the gene size is reasonable) with new random elements;

again, maintaining tail integrity. The probability of block mutation at 10% of the point

mutation probability is an adequate starting point.

Chapter 5: Genetic Programming

44

Crossover

Crossover can consist of one, two and three-point crossover, with an equal probability for

each method.

1. One-point crossover cuts both parents at the same position and the remainder of the

gene downstream from the cut point is swapped to form the offspring.

2. Two-point crossover selects a block of the same size, starting at the same position in

both parents and this block is swapped in the offspring.

3. Three-point crossover is a simple extension of two-point crossover where instead of

one block being swapped, two blocks are swapped (notice that for three-point

crossover four cut points are necessary).

The first two methods are common operators in GEP, the third is a new extension used by the

author. Three-point crossover is the most disruptive operator employed and is used to replace

transpositions, gene crossovers and gene transpositions which are excessively disruptive for

most cases.

Fitness and Objective Functions

The same guidelines for fitness and objective functions discussed so far are still valid. But

GEP (and all GP flavours for that matter) have some additional considerations.

Even though GEP will mostly yield valid trees, it is still possible that non viable structures

will appear. These could be a division by zero or the square root of a negative number. These

invalid organisms can be assigned a highly negative fitness value so that they are rapidly

removed from the population. The same approach can also be employed for unstable

equations that overflow. Fitness evaluation tends to be the most time consuming aspect of

GEP, mainly because of the structure checks.

A good example of where tree structures can break down is with the use of time-delays in

differential equations. A time-delay can be viewed as an operator that takes two arguments,

on the right-hand side a list of, for example, the concentrations of a component over time and

on the left-hand side a delay (t-τ), and returns the concentration at the delay point.

An option for incorrectly placed time-delay operators instead of assigning a low fitness value,

to the GEP string, is to repair it and ensure a viable solution. Such repairs can be carried out

probabilistically, either replacing the time-delay operator with another randomly selected

operator or replacing the right-hand side with a concentration and the left-hand side with a

valid delay.

A last aspect of the fitness function is constraint-handling. A simple way of handling

constraints is to set values that do not meet the constraints with the average value of the

constraint range defined for the parameter, instead of penalizing the entire function. This

approach ensures that a higher proportion of the population is formed of organisms that meet

Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics

45

the constraint criteria. In chapter 7 we will see more advanced approaches to handling

constraints.

Bloat

Bloat is a common phenomenon in Evolutionary Algorithms of variable length, particularly

Genetic Programming and its variants. This essentially is the growth in the length of

organisms which does not necessarily reflect an improvement in their respective fitness.

Frequently the growth consists of regions that do not alter the structure of the solution giving

raise to inert regions referred to as introns. An example are long trees attached to an addition

branch that result in zero: they do not alter the value of the solution.

Bloat. The shaded tree is inert and does not alter the final value of the organism. A) A bloated parse-tree

with 15 nodes. B) The same tree can be reduced to 5 nodes.

A common cause of bloating in EAs is attributed to convergence. If the algorithm ceases to

find better solutions or evolution slows down, there will be a greater number of similar

solutions and the entire population tends to grow to the maximum allowed size.

Several approaches have been suggested to reduce bloat. Common techniques include

maximum size and tree depth limits (Koza 1992) used in almost all GP applications, a fitness

function weighted by the size of the solution (Banzhaf et al. 1998) and code editing to

identify non-coding regions and prune them out (Blickle 1996).

47

Chapter 6: Introduction to problem
representation

Brian Kinghorn

Making complexity out of simplicity

Introduction

This is our pattern for a problem optimization system, from Chapter 1:

To let the optimization engine operate simply and effectively, we need to let it work with a

set of simple variables to represent each candidate solution – such as a vector of real numbers,

a vector of integers, or perhaps a mixed vector.

1. Problem

Representation

2. Objective

function

3. Optimisation

engine

“Genotype”

Raw variables

for each solution

“Phenotype”

Usable

variables or

states

“Fitness” value

for each solution

Chapter 6: Introduction to problem representation

48

Example 1: No problem representation filter needed

In simple cases, such representations can be used directly to evaluate a solution through the

objective function (or the criterion that acts for the objective function) – an example of that is

in our first optimization example, to find that maximizes

. is a simple vector of real numbers.

Example 2: Find a good-fitting equation using GEP

However, other problems are more complex and need some form of problem representation.

Gene Expression Programming (Chapter 5) is a nice example:

In this case the relatively simple system that the optimization engine handles is the

“Genotype” and this represents the “Phenotype” – an equation whose form and parameters

are to be optimized.

Problem representation “converts genotypes to phenotypes” and involves some kind of

filtering system.

Example 3: A mate selection driver

Here is another example – optimizing Mate Selection using the filter suggested by Kinghorn

and Shepherd (1999)

Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics

49

We have to decide which males to mate to which females, subject to a number of constraints,

such as the maximum number of mate allocations per candidate. Early efforts by Ross and

Brian were not effective – we tried various approaches, such as directly optimizing the matrix

of mating instances. However, almost all solutions thrown up by a genetic algorithm broke

constrains, and had to be aborted or “fixed up” (see “Managing Constraints” later on).

However, the following filtering idea will only result in legal solutions for the pattern of mate

allocation:

Table 1. This table illustrates the components to be optimised for

mate selection - they are underlined.

 Female

 1 2 3 4 …

Male

No

of

uses
Ranking

criterion Rank
1 0 1 1

1 2
5.32

2.16

2

3
  

2 0 - -

3… 1 7.64 1 

From Kinghorn and Shepherd (1999): “The mate selection driver shown in Table 1 was

developed to conduct the search across all legal mating sets. The underlined figures in Table

1 drive the three matings noted, and these are the values to be optimised. “No. of uses”

(second column for males, second row for females) is the number of matings for which each

animal should be used, and this in turn drives selection, including extent of use of each

animal. An animal is culled if this is set to zero. “Ranking criterion” is simply a real number.

It is ranked to give the column “Rank”. This in turn drives the mate allocation. The first

ranked male mating is the single mating from male 3. He is thus allocated to the first

available female mating (the one nearest to the left) - the one mating from female 1. The

second ranked male mating is the first mating from male 1. He is thus allocated to the second

available female mating (the one second nearest to the left) - the one mating from female 3.

The third ranked male mating is the second mating from male 1. He is thus allocated to the

third available female mating - the one mating from female 4.”

And this Powerpoint slide underlines the parameters that have to be optimized:

Chapter 6: Introduction to problem representation

50

Parameters for mate selection

 Male candidates

1

2

3

4

…

2

0

1

0

…

 Female candidates

101

102

103

104

…

1

0

1

1

…

 Ranking criterion

1
st
 male mating

2
nd

 male mating

3
rd

 male mating

…

5.32

2.16

7.64

…

Parameters to

be optimised

This problem representation works very nicely when coupled to a DE optimizer – as used in

Total Genetic Resource Management (See www.xprime.com.au). GenMate, as used at PIC,

uses a more involved problem representation that accommodates grouping constraints (eg

that certain classes/groups of male can only mate with certain classes/groups of females),

while only producing legal solutions that conform to the grouping constraints.

In both these cases, the number of matings per candidate should sum to the overall total target

number of matings, or total per group/unit/farm, and this needs to be managed separately.

However, given a legal pattern of “No. of uses”, a proper mate selection driver will only

produce legal mating sets. This greatly increases the robustness and speed of the Mate

Selection optimiser.

Example 4: Choosing p animals out of a group of size n

How should we represent which animals get chosen? We could have a vector with one

element for each animal, and values 0 and 1 mean unselected and selected respectively.

Two drawbacks here:

1. We need to constrain to p animals chosen. Whether we allow a solution to have a 1 in

a certain location depends on the values at other locations.

2. The response surface is not a good shape for efficient climbing, as there are no

intermediate values. A “good” animal is either in or out. There is no such thing as a

solution being close to letting the good animal in – an attribute for which its progeny

solutions might benefit.

http://www.xprime.com.au/

Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics

51

A better problem representation involves optimizing a vector of real numbers, one per animal.

Here is an example solution at the “Genotype” stage, before the “problem representation filter”

is applied:

Animal 1 2 3 4 5 6 7 8 9 10

Real

number
6.91 7.43 3.23 1.88 8.97 3.76 6.92 4.46 8.44 2.12

To invoke the filter, rank animals on these numbers:

Animal 5 9 2 7 1 8 6 3 10 4

Real

number
8.97 8.44 7.43 6.92 6.91 4.46 3.76 3.23 2.12 1.88

And choose the top p animals as the solution to be evaluated. This is the “Phenotype”. So if

p = 4 our vector of numbers represents a solution “Choose animals 5, 9, 2 and 7 to be in the

group”.

[Note that this could be a good or a bad solution – that is for the objective function to decide.

All we are dealing with here is a system to produce “legal” solutions.]

As for the drawbacks noted above.

1. Notice that we do not have to worry about constraining the number of animals chosen

to p. That happens ~automatically. [In fact we could add p to the list of variables to

be optimized, and let group size and group membership be co-optimised.]

2. Notice in the example given that animal 1 just lost out on group membership by a

small margin of 0.02. However, if this is in fact a good animal that actually belongs

in the optimal solution, then this solution will be better exploited. For example, if it is

chosen as a template to make a new challenger in DE, then animal 1 has a better

chance of making it into new solutions because of its high value in this solution. [A

vector of real numbers contains more information than a vector of 0‟s and 1‟s, and

this is of real value to the optimization system.]

Making a response surface that is better for climbing will be a bit more clear in the next

example.

Chapter 6: Introduction to problem representation

52

Example 5: Assigning animals into groups

We can base this on the same example. The third row is group number:

Animal 5 9 2 7 1 8 6 3 10 4

Real

number
8.97 8.44 7.43 6.92 6.91 4.46 3.76 3.23 2.12 1.88

Group 1 1 1 2 2 3 3 3 4 4

Notice that group sizes can be different – and with a bit more work we can make number of

groups and group sizes variable and to be optimised. But let‟s stick to 4 groups of sizes 3, 2,

3 and 2, as in the table.

In this case we have:

“Genotype”: {6.91, 7.43, 3.23, 1.88, 8.97, 3.76, 6.92, 4.46, 8.44, 2.12}

… which filters to …

“Phenotype”: (5,9,2), (7,1), (8,6,3), (10,4)

We can take steps to improve the response surface:

Consider that our example is quite a good solution – the best in the current generation of our

optimization engine, and the second best possible solution. Assume that animal 5 should be

swapped with animal 4 to get the best solution. To progress to the best solution animal 5 has

to be lucky to make the big jump (and both mutation rate and variation among solutions could

be low at this stage of convergence), or it has to navigate its way through the possibly deep

“valley” of poor solutions while it belongs to groups 2 and 3.

What we can do to help is to order the groups such that groups 1 and 4 sit adjacent to each

other. The only basis to do this sort of thing is prior knowledge about the attributes of each

group. For example, if groups are farms, we might order these according to pasture quality,

average milk yield, mean EBV, or some index of such things. What we are doing here is

trying to make a response surface with fewer valleys or less deep valleys. The practical

outcome is faster convergence.

The possible downside here is less adventurous coverage of the solution space in early

generations (but after the optimization has started).

We can take further steps to improve the response surface:

Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics

53

An additional trick that would help solve our hypothetical case is to turn the linear structure

into a circle, joining groups 1 and 4:

Here is our solution in a circle, with group shown by color (group 4 is dark red). Upper

numbers are animal numbers and lower numbers are their “Genotype” numbers.

To jump directly from group 1 to group 4 we can simply rescale. For example, if the only

change were to the Genotype value of animal 5, by adding 2 (from 8.97 to 10.97) then we

subtract 10 (taking 10 to be the “12 o‟clock value” on our scale) to give 0.97. [Animals with

negative numbers get these subtracted from 10, to go anticlockwise on the clock face.]

Animal 5 then goes to the bottom of the list and pushes all the other animals up one place –

giving some extra work to be done. However, the many small corrections needed can be

handled more easily that a big move for that one animal, especially for a problem with many

animals.

Such flexibility in the filtering system makes an optimization less prone to getting stuck at a

suboptimal solution.

4

1.88
10

2.12

3
3.23

6
3.76

8
4.46

1
6.91

7
6.92

2
7.43

9
8.44

5
8.97

Chapter 6: Introduction to problem representation

54

No-Man’s land

The strategy just described can make it too easy for an animal to jump between the two most

extreme solutions – if we are close to the optimum, a high proportion of mutations can be

deleterious because of this. The solution is no-man‟s land.

For example we reserve the values between 9 and 10 as belonging in no man‟s land. An

animal that ends up here can be allocated to the nearest group (the first or the last).

However, a better strategy is to send him to the nearest group with a probability

, where d is distance to the boundaries (0 and 9 in our case). Use any

chance to use randomness in your algorithm. It does help.

4

1.88
10

2.12

3
3.23

6
3.76

8
4.46

1
6.9
1

7
6.92

2
7.43

9
8.44

5
8.97

No man's
land

55

Chapter 7: Managing constraints

Brian Kinghorn

Those that trespass will be penalized. Or otherwise fixed up.

Introduction

Many problems involve constraints on the solutions. Here are some examples that are

imposed by simple logic:

1. The number of mates to allocate to a bull should not be negative.

2. The amount of feed to offer an animal should not be negative.

3. The date to wean should not be before birth date.

4. A natural mating bull can be used on a maximum of one farm at a time.

And here are some examples that might be imposed by the stakeholder(s):

1. Maximum breeding herd size should be 200 females mated.

2. The maximum acceptable coancestry among parents in this mating round is 0.1.

3. The maximum number of individuals in a group for pooled tissue quantitative

genotyping is ten.

4. The maximum permissible number of genetic marker mismatches per animal (various

applications …)

This chapter discusses two key approaches to handling constraints

Ask yourself – do I need this constraint?

Quite often, constraints are requested/applied by stakeholders because they think that

solutions that break that constraint will not be so good. That is not “thinking outside the box”!

You might get a surprise and discover a solution that breaks your preconceived constraints,

but is in fact desirable for reasons that are good and useful (see “Let your computer make you

famous.” in Chapter 1).

Investigate the impact of removing constraints that are not needed to give a feasible solution.

If these constraints were well-founded, then the optimal solution should not break them if the

objective function is sufficiently comprehensive.

Chapter 7: Managing constraints

56

How to apply a constraint.

There are two approaches to applying a constraint:

Penalise: Apply penalty in the objective function to solutions that break constraints.

The penalty should be sufficiently large to prevent the optimal solution being

one that breaks the constraint.

Fix: If the constraint is on the variables passed to the objective function, you can

choose to change these appropriately before passing them to the objective

function.

Both of these approaches have their merits, as discussed here:

The simplest form of constrain is to set bounds for variables, and these can be easily fixed, as

in DE_Demo …

 For j = 1 To loci

 If allele(j) < MinVal(j) Then allele(j) = MinVal(j)

 If allele(j) > MaxVal(j) Then allele(j) = MaxVal(j)

 Next

… before allele() gets evaluated in the Criterion subroutine. Setting values exactly to the

boundaries is simple but not the best strategy. See “Assigning animals into groups” in

Chapter 6.

Table 1 in Chapter 6 gives a more comprehensive example. If we freely optimize the number

of uses of each candidate animal, then virtually every solution will be illegal, because the

number of uses per sex will only rarely total to the desired number of matings. So, if we use

the Penalise strategy, the program will spend ages working on illegal solutions. Better to Fix

the variables (number of uses) before hand. This can be done by finding the number of uses

over (or under) the total target and implement a repeatable strategy to deal these out to (or

withdraw from) the candidates available. This can be done separately for each sex of parent.

1. Problem

Representation

2. Objective

function

3. Optimisation

engine

“Genotype”
Raw variables

for each solution

“Phenotype”
Usable

variables or

states

“Fitness”

value for each

solution

“Fix” ?

“Penalise” ?

Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics

57

“Fixing up” is the better strategy for most “logical” constraints. Fix them up before going to

the objective function. However, you must do this in a repeatable manner. If two solutions

have exactly the same “unfixed” set of parameters, they should have the same “fixed” set of

parameters.

When fixing solutions in this manner there is some danger that the strategy you use prevents

good exploration of the solution space. Take care not to “Fix” parameters to the same sort of

region, for example at the boundaries of constraints.

The big advantage of the “Penalise” strategy is that it so easy to apply…

If (ConstraintBroken) fitness = fitness – 999999

… that should cure the problem!

If it is difficult or impossible to logically fix a solution set so that it is rendered legal, or

otherwise does not break a constraint, then penalisation can be used. Penalisation is easy to

implement, but it makes for much slower convergence if most solutions are illegal.

Hard constrains and soft constraints

In some such cases all solutions break one or more constraints in the first generation(s) of

optimization, This is why it can be useful to apply “softer” penalties – so that the

optimization engine can give reward to solutions that break fewer constraints, and eventually

it finds solutions that break no constraints. You might have to play with constraint penalties

to help a complex optimization to “get off the ground”. A „hard constraint‟ would allocate

the smallest possible fitness. That is rarely needed.

Softer constraints can also be useful to get the optimization going well in the middle phase of

optimization. For example, there could be a solution that just breaks a constraint, but is much

better in other respects than any other fully legal solution. Letting it in to play a role can

speed up optimisation. In this case it pays to take account of how much the constraint is

broken by – a small misdemeanor is more easily corrected in the game of evolution:

If (Para> ParaConstraint) fitness = fitness – 99*(Para – ParaConstraint)

If the final best solution breaks a constraint, then this is most easily fixed by changing the “99”

weighting on the fly (See Chapter 8).

59

Chapter 8: Changing the goal posts

Brian Kinghorn

The best direction to take depends on how far you can go in each direction.

Introduction

While an optimisation is running it is possible to view key aspects of the currently best

solution in a visual manner. Here are some example interfaces:

By using a stochastic optimization algorithm, an optimal solution is not immediately

„calculated‟, but intermediate forms are generated as evolution progresses. This is in fact

very useful, as the pattern of this progression across the solution space is very informative to

the user. It helps in visualizing the domain of possible outcomes (“the Response Surface”),

and shows the compromises made when the user is overly dogmatic about achieving

preconceived targets or maintaining preconceived constraints ... “Gosh – if I relax my desires

a bit on this aspect over here, look how much more I can make on these aspects over there!”

Chapter 8: Changing the goal posts

60

All this is done on the basis of the practitioner‟s exact prevailing scenario/animals – and it

can be very educational indeed.

This sort of exercise often leads the user to doubt the suitability of the objective function

initially chosen.

This change of heart rarely comes as a surprise or disappointment. In complex problems the

objective function can cover a range of largely disjointed issues, and is often formed with

more subjectivity and guesswork than objectivity. It is also true that the best direction to go

in depends on how far you can go in each direction – and this does not become evident until

an optimisation tool is used flexibly – to “change the goalposts on the fly”.

Changing “on the fly”

The process is quite simple. The user can „change the goalposts‟ by, for example, altering a

constraint or a weighting in the objective function, or setting a target state for a key issue or

variable. The software is engineered such that the optimization analysis is interrupted, the

objective function changed, all current solutions are evaluated using this new function, and

the analysis restarted. This process should be transparent to the user.

Here are some relevant highlights in the DE_Demo example:

Space to store last good solution …
 Sub DE()

 Static GoodFit() As Single ' For reloading new solutions on change

of goalposts

Seed the last good solution into the re-started optimisation …
 For i = 1 To popsize

 For j = 1 To loci

 parentallele(i, j) = 0 + 10 * Rnd()

 If i = 1 Then parentallele(i, j) = GoodFit(j) ' Make first

population member same as last good solution

… and note in the code that the fitness value for this “GoodFit” is recalculated using the

newly set objective function.

After optimization is interrupted or otherwise finished, store the best solution …
 For j = 1 To loci

 allele(j) = parentallele(Best, j)

 GoodFit(j) = progenyallele(Best, j)

 Next

Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics

61

How to manage change of direction

The simple approach is to change the weightings in the objective function. Here is an

example from the DE_Demo program:

The graphic shows the optimal solution for two key components, selection response and

inbreeding, as a small white dot in a sea of red. The red dots have been left by all the

candidate solutions that have been tested by the optimization, and this shows the response

surface for just those two components – it shows where you can go.

The relevant code in the objective function (subroutine Criterion) is:

 Fitness = 0

 Fitness = Fitness + WeightSel * SelectionResponse

 Fitness = Fitness + WeightInb * Inbreeding

 Fitness = Fitness + WeightPad * nPaddocks

… where eg. WeightSel is the weight on selection response and SelectionResponse is the

selection response that has been calculated for the prevailing solution.

Chapter 8: Changing the goal posts

62

So – how best to change direction? If we want to aim for a solution at a particular place on

the response surface, we could try playing with the weightings to try to get there. But there is

a much better way of navigating …

GET THE COMPUTER TO DO THE WORK. If you know where you want the white dot to

be, make an objective function that will take it there in a direct manner. This is virtually a

one-liner …

Fitness = -(OptSel - PicX(SelectionResponse)) ^ 2 - (OptInb - PicY(Inbreeding)) ^ 2

Here, PicX(SelectionResponse) is the X-axis pixel location of the prevailing solution‟s

predicted selection response. OptSel is the previously captured X-axis pixel location of the

mouse click that the user made on the graph - on or near the response surface. That mouse

click also initiated a “Change of goalposts”. So Fitness is simply the negative of the

Euclidean distance between the solution location and the mouse click location. Maximising

Fitness minimizes this distance.

Here is a result:

Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics

63

Notice that the white dot is at the edge of the solution space – it has moved to the most

extreme point that it can, adjacent to the mouse click location. However, in doing so it has

ignored the component objective “Number of paddocks”, which settles on a value of 6. This

is the same as the number of sires: one sire per mating paddock.

So a simple extension might be to make a tick box that, when checked, constrains the number

of paddocks to the value chosen – or two tick boxes to invoke chosen upper and lower limits.

Then, with a few clicks on the graph, the user will see the reduced response surface for

selection response and inbreeding – reduced because of the constraint(s) on number of mating

paddocks.

If you can think of it, you can do it !

Aside: Note that changing the goal posts is very different from directly fiddling with

the parameters to be optimized! Changing the goalposts is much more powerful – the

optimization engine does the work of pushing in the direction of the prevailing

objective function. We just have to move the target around to get the result we desire.

As someone once put it, “Using the tactical approach is like driving a good car in a competitive

race. We have control of the steering wheel, accelerator and brakes, and we can drive in a manner that

is fast, yet safe, economical and in the proper direction. We no longer need to have our head under the

bonnet, monitoring every piston beat, and missing opportunities to overtake or avoid crashes. To make

the most of mate selection, we should let it monitor the piston beats, and give it good head to find the

best way ahead. There is plenty of opportunity to do test laps of the circuit before committing to a

decision - if it does something we do not like, we need to adjust the way we steer it, rather than getting

out and pushing it round the track.”

Opportunity for changing direction

There can be amazing opportunities to change the solution from what an initial objective

function might dictate. Take this hypothetical example:

Predicted response in Trait A

Predicted

total $

economic

response

0 5 10 15 20 25 30 35 40

100

90

80

70

60

50

40

30

20

10

0

Chapter 8: Changing the goal posts

64

The selection index calculation tells us that we must aim for a response of 25 units in trait A.

But when we look at the graph we can see that we can aim anywhere between about 10 and

35 units of response in Trait A, and suffer little theoretical drop in predicted total dollar

response.

Why would we decide to deviate from the 25 figure? There are many possible reasons, and

they mostly have to do with:

1. Oversimplification of the economic model. We usually assume linearity, when in fact

economic contours are more correctly curved. The value of a Kg increase in milk

yield depends on what changes are also made in protein percent. A desired gains

approach can help resolve this.

2. Probably more importantly, we have additional information that is not available to the

analysis. For example, if we adopt the “25” figure, we might also get a negative

predicted response in Trait B, or a negative selection index weight on Trait C, and our

customers (who are always right) might not understand or like that, and be put off our

breeding program. With little compromise in predicted total dollar response, we

might be able to keep everyone happy.

Ownership of the solution

With frequent manipulation of the objective function in this way, the user can explore the

most exciting parts of the response surface, learn much about the problem in the context of

the prevailing example, and develop confidence that the solution finally accepted is a good

one. “Ownership” of the accepted solution is a very important phenomenon, especially for

thinking practitioners:

Attitudes

Flexible

Scientific tools

Application

Constraints

A Dynamic Tactical Decision System

Judgement

Possible
outcomes

Data, Knowledge

and Science

Accepted outcome

There is a point to underline here. When properly managed, this process constitutes a vehicle

whereby scientists can bring the maximum possible power of their science into direct

practical application. This is because the „scientific‟ components of an objective function

will always compete to be exploited as much and as appropriately as possible in the face of

Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics

65

compromises, mostly realistic and useful compromises, imposed by practitioners. The

alternative is to mix science and practice in a somewhat arbitrary manner, which all too often

leaves science both misunderstood and ineffective.

67

Chapter 9: Improving performance

Cedric Gondro

Evolving evolvability

Introduction

We have covered a wide range of EAs in the previous chapters and some practical

considerations on how to get the best out of them. In the next chapter we will cover how to

decide that enough is enough - diagnosing convergence. But there still are some pressing

issues, for example, what to do when you want the best product and the lowest price!? No,

there are no miracles, but you can think of ways to handle multicriteria problems (especially

the ones that conflict with each other). And how about making the runs go faster? Your code

is already as streamlined as it gets, what can you do? Easy, more computers, of course -

parallelization! And when you are fed up of tinkering with population parameters, a bit more

mutation, a little less crossover - try self-evolving parameters, let the EA find what the ideal

settings are. And our last topic covers what to do when part of your problem is ideal for one

method and the other part fits perfectly into another algorithm - hybrid evolutionary

algorithms.

Multicriteria optimization

In multicriteria (or multiobjective) optimization the fitness function is even more critical as

there usually is no unique solution to a problem but rather a Pareto front of solutions. Since

objectives can conflict, improvements in one objective can degrade another one. Different

combinations of values for the different objectives can yield the same total fitness; this

implies that there is no unique optimal solution to the problem but rather a set of solutions

with the same fitness (Pareto-optimal set). More formally a solution is Pareto optimal if there

is no feasible set of variables which would improve a criterion without simultaneously

decreasing at least one other criterion. An example of such a problem is an optimization

problem in microarrays in which a balance must be found between the number of slides (cost

constraints) and the experimental questions (information constraints). With few slides the

costs are low but there is not enough information to address the experimental questions; on

the other extreme there is surplus data but at a very high cost (we will discuss this example in

chapter 11).

A common approach to multi-objective optimization is to use a weighting scheme for the

different objectives (Zitzler et al. 2000; Van Veldhuizen et al. 2000). There are several

approaches to the weighting scheme, these methods range from a fully self adaptive approach

– the scheme evolves alongside the EA in the same fashion as mutation parameters in ES – to

a user-defined approach where the user modifies weights based on personal preferences. In

Chapter 9: Improving performance

68

this case, weightings can be varied in the light of the response surface of component

outcomes generated during analysis – as discussed in the last chapter, the best direction to

take depends on how far can be gone in each direction.

Multicriteria fitness example - simple scaling

Consider an EA that is trying to simultaneously fit time series data for various correlated

functions. A simple fitness function is a measurement of goodness of fit between the

predicted values of the model at a given time and the observed values such that

n

i

m

j ijij

x

f

i

yx
2

2)(
*1

Where the upper term is the sum of the squares of differences between the observed (xij) and

predicted (yij) values at time point j and the lower term is the variance of the observed data (xi)

for each component (i) of the system. The use of the variance in the lower term scales the

sum of squared deviations so that excessive emphasis is not given to a particular equation in

detriment of the others. Fitness is treated as a maximization problem with worse solutions

having highly negative values (due to the minus one multiplier) and the better organisms

having values closer to zero, which is the maximum fitness.

A suggestion

When working with multicriteria problems it is worthwhile storing all equivalent solutions

either to make a decision based on any available additional information (or even a whim!) or

get a better understanding of the potential scope of solutions. A good tutorial for multicriteria

optimization is found in Coello Coello et al (2007) and Zitzler et al. (2004).

Parallelization

Probably the greatest limitation to the use of EC methods is the dimensionality problem. As

the number of variables increases the computational effort can increase exponentially. EAs

cannot compete in terms of speed with strong harm approaches. But by their very nature EC

methods are well suited for parallelization - they are commonly referred to as embarrassingly

parallel due to the ease with which they can be split into smaller problems. This ease meets

heads on the current trend of low cost clusters and multi core processors and can potentially

shift the time-cost balance since parallelization of deterministic (e.g. dynamic programming)

algorithms is not a trivial task.

The main constraints to parallelization are not the EAs but getting processors/computers to

communicate with each other. On up side, higher level APIs are making parallel

programming easier. Under Windows WMI can be used to connect across computers and

under .NET the remoting library is very handy.

Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics

69

In EC terms, an algorithm can be parallelized by simply running independent jobs in each

machine (yes, this still is parallel computing!). Due to the stochastic nature of EAs multiple

runs of a job are always mandatory to ensure reliability of results. It can be very time saving

to run all repeats at the same time (especially if the run takes a week or two).

More realistic parallelization can be achieved at the population, individual or fitness level

through different models. The two main models are:

 Master-slave model: run the population on one machine and calculate the fitness on

other machines. Here the population manipulations (the EA per se) runs on a single

node but the fitness evaluation (which in more cases than not is the most demanding

task) is spread out across the computational resources. This model is particularly

efficient with overlapping generations since there is no need to keep the population

synchronized.

 Island model: each processor runs its own population and from time to time migrants

move from one machine to the other. This model allows different areas of the search

space to evolve concurrently whilst still allowing a certain level of gene flow which

will have smaller or larger influence in the acceptor population depending on the

differences between fitness. If the migrants move between neighbors the model is

termed stepping stone.

A complete overview of parallel EAs is given in Nedjah et al. (2006).

Self-evolving parameters

Parameter setting has always been a concern in EAs. The methods are quite robust to

parameter settings but nevertheless they can influence convergence times and even define if

the algorithm will get entrapped in a local optimum or not, as illustrated in the figure below.

Unfortunately, except for simple scenarios there are no formal methods of determining

adequate parameters.

Fitness contours for populations of size 10 (1), 100 (2) and 1000 (3).The lower fitness values represent better

results.

An alternative is to concurrently evolve the solution and the parameters. In effect this is what

DE does (remember the Differential?). Self-evolving parameters are part of evolutionary

strategies and evolutionary programming, but not so common in GAs and GPs.

Chapter 9: Improving performance

70

A simple strategy for GAs and GPs is to ensure an adequate balance between new mutations

and crossover - recall that mutation creates variability and crossover combines it. This

balance can be modified dynamically by changing (evolving!) the mutation and crossover

probabilities between generations based on the fitness gain scaled by the population's fitness

variance, evolving these parameters alongside the population. If tournament selection is used,

the tournament size can easily co-evolve as well. An entire book devoted to parameter setting

in EAs is found in Lobo et al. (2007).

Hybrid Evolutionary Algorithms

When we discussed Genetic Programming it was quite clear that the methods are well suited

for building structures, but less than ideal for parameterization. Consider for example a

problem in which the objective is to discover the underlying function and also the correct

parameters that explain a given dataset. Ideally one would want to use a method such as

Gene Expression Programming and explore its capacity to construct model structures but

instead of parameterization with GEP, use a more robust algorithm such as Differential

Evolution for the parameter optimization. Hybrid algorithms are common practice in EC,

there are many hybrids out there in the wild and of course you can always make your own.

Here we will illustrate with a hybrid between GEP and DE.

 Hybrid Differential Evolution and Gene Expression Programming
Algorithm

A simplified version of the hybrid algorithm is depicted below. Initially random values are

assigned to a given set of variables either within the bounds of a set of constraints or with

fully unconstrained values (in our tests the later tend to increase the search times). The

algorithm iterates between GEP and DE by a user-defined number of iterations.

For the first iteration a random population of models is generated using the initial variable set.

GEP is used to select better models. At the end of the GEP run the best model is selected,

simplified through a bloat reduction method and used as the model for the DE to optimize the

variable set. At the end of the DE run if the optimized variable set has a higher fitness than

the original set it replaces it.

From the second iteration onwards, the GEP run will use the optimized variable set. The

initial populations of GEP and DE are randomly generated apart from chromosomes zero,

into which is respectively copied the current best model and the current best variable set, thus

ensuring that the next round starts at least at the current best solution.

Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics

71

Algorithm of the hybrid method using Differential Evolution and Gene Expression Programming.
Initialize random values for variables within a set of constraints

Do until (termination criterion)

{

Iteration i

{

 GEP

 Initialize random population of models

 Replace chromosome 0 with best model

 Do until GEPGeneration = GEPMaxGenerations
 {

 Select

 Crossover
 Mutate

 Evaluate

 Replace
 Generation++

 }

 If (GEP Best Model Improves Fitness)
 Replace model with best model from GEP

 Else Keep original model

 Bloat Reduction Method

 DE

 Use Best Model to optimize variables

 Initialize random population of variables within constraints
 Replace chromosome 0 with best variables

 Do until DEGeneration = DEMaxGenerations

 {
 Select

 Crossover

 Mutate
 Evaluate

 Replace

 Generation++
 }

 If (DE Best Values Improve Fitness)

 Replace variables with best values from DE
 Else Keep original variables

 i++

}

}

73

Chapter 10: Diagnosing convergence

Brian Kinghorn

At the end of the rainbow is a pot of gold.

Introduction

When will we ever get there? The trouble is that for most practical problems we would not

know when we have arrived.

With some searching around the region of the current solution we might be able to detect that

we are either at or very close to an optimum. But it could be a local optimum, with a valley

to be crossed to get to the global optimum.

In practical situations, we have to stop evolving and accept the result at some stage. In most

cases it is not critical to find the exact best solution – one that is pretty close to that will be

sufficient – a “satisficing solution”. “Satisficing is a decision-making strategy which

attempts to meet criteria for adequacy, rather than to identify an optimal solution”

http://en.wikipedia.org/wiki/Satisficing.

Criteria for stopping

There are many ways of deciding when there has been sufficient convergence. This chapter

suggests a small number of approaches for accepting convergence. Some or all of these can

be applied simultaneously in practice. They are listed in the order that they appear in the

demonstration program that will be used for illustration:

Criterion 1: The solution must exceed a specified percentage of the current predicted

asymptotic maximum solution. This is described below.

Criterion 2: No improvement over the last pnc percent of nlast generations, where nlast is the

last generation in which the best solution improved on the best solution in the

previous generation, and pnc is a percentage. It can be >100%.

It is sensible to make pnc a function of nlast. For example, if we fixed pnc at

20%, then we would say “Stop!” at generation 12 if the last improvement was

at generation 10. This is not sensible, whereas we would say “Stop!” at

generation 24,000 if the last improvement was at generation 20,000. This is

more sensible. Here is a suggestion that „tunes‟ pnc to 20,000 generations:

http://en.wikipedia.org/wiki/Decision-making

Chapter 10: Diagnosing convergence

74

If we use this, then we would say “Stop!” at generation 100 if the last

improvement was at generation 10 – more sensible.

Criterion 3: No improvement for a specified fixed number of generations. This is an extra

safeguard against premature stopping.

Criterion 4: No fewer than nmin generations in total.

Criterion 5: No more than nmax generations in total.

The actual decision to stop can depend on meeting various combinations of these criteria, as

described later.

A predicted asymptotic maximum solution

The concept is quite simple here. Fit a non-linear regression of best solution in each

improved generation against generation number, and use this to predict the asymptotic

maximum solution. An „improved generation‟ here is one in which the best solution is better

that that in the previous generation. However, in practice we should include the most recent

generation, even if it does not give an improvement.

The non-linear fit is a bit of an art, because we never have a “correct” model for the form of

the non-linear function to be used. You might find a better recipe – but here is one that has

worked well for me:

where is the best solution at generation g, is the asymptotic maximum solution, k is

a rate constant, and b is a bender of the exponential function, which I treat as a fixed constant.

I find that b=½ or 1 has been reasonable – choose a value that seems to give a good fit for

your own scenario, easily seen if you have graphic output, as below. and k are to be

found to give the best fit to the data (g and), probably by minimizing . The fit

is facilitated by forcing the regression to pass through both the origin and the last point. This

defines for a given k, such that we only have one degree of freedom to adjust (k) to

minimize . (See appendix for some code).

Because the fit of the curve is most critical towards the asymptote, I only use (or „track‟) the

last nTrackJumps = 8 number of improvements (or „jumps‟), plus the origin, in the

exponential fit. The most recent generation tested can be an exception here – it may not

constitute a jump, and as generation number increases with no further jump in fitness, the

predicted asymptote reduces to approach this stable fitness value.

Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics

75

Example

The next diagram shows an example of the convergence module that is attached to the

DE_Demo program. In this example run, convergence is deemed to have been achieved in

generation 44, and generation 30 is the last generation in which an improvement in fitness

occurred.

Note that there are nTrackJumps = 8 red points in addition to the red point at the origin.

These 9 points have been used to make the exponential fit (the green curve) and hence the

asymptotic prediction of maximum fitness (the green line at Fitness = -1).

Note also that four component criteria have been met – four ticks under “Met”. Looking at

the last column of tick boxes, you can see that “Total generations” is the only individual

Chapter 10: Diagnosing convergence

76

criterion that on its own will stop the program (when Generation = nmax = 100 is reached).

However, in this case nmax is not reached, because all other criteria have been met. In the

case of “Percent since last change”, the target value has been scaled to:

“Percent converged” is rounded up to 100% from a value >= 99.9995%. Such figures can

give false confidence, which is why a mix of criteria is important.

The first three criteria are volatile, in that they can be met, and then not met as evolution

progresses, because of the finding of new better solutions. This is why scaling of the

“Percent since last change” criterion is important, to help avoid premature stopping.

NB: When changing the objective function (“Changing the goal posts”) on the fly, be sure to

reset the generation counter for the purposes of diagnosing convergence.

No guarantee!!

There is no guarantee that convergence has been truly met, unless you know the maximum

from an algebraic approach or an exhaustive search. What can help is to observe the best

solution achieved, and realize (if true) that it has all the properties that you think it should

have – that you are satisfied with it. That it is a “Satisficing Solution”.

Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics

77

Appendix

Here is a version of the exponential fit in Fortran. VB.NET is available within the DE_Demo

program code.

module commonbits

 Integer :: Asymptote_npoints, Asymptote_npointer, Asymptote_maxpoints

Real(Kind=4), Allocatable :: Asymptote_data(:,:), PredOpt

End module commonbits

…

Allocate (Asymptote_data(2, 0:Asymptote_maxpoints))

Asymptote_data(1, 0) = <Fitness in first generation >

Asymptote_data(1, >=1) = <Fitnesses as deviations from Asymptote_data(1, 0)>

Asymptote_data(2, >=1) = <Generation numbers>

Call PredictOptimum(GenerationPointer(nTrackJumps),Pred_k, Pred_A, Pred_ExpBender)

PercentConverged=100.*(Fitness-Asymptote_data(1, 0))/(PredOpt-Asymptote_data(1, 0))

…

subroutine PredictOptimum(FromCount,k,A,ExpBender)

 USE commonbits

 implicit none

 integer :: i, j, FromCount

 real(Kind=8) :: k, kStart, A, Pred, SSE, SSEold, Jump, ExpBender

 kStart = -10*log(1-.5)/1000 ! Not critical. .9 converged after 100 NewGens

 k=0

 Jump=1

 ExpBender=0.5

 SSE = 1.0E+29

 SSEold=SSE+1

 do j=1,50

 if(SSE>SSEold) Jump = -1.*Jump/4.

 SSEold=SSE

 k=k + kStart*Jump

 if(k<0.001)k=0.001

 ! Find A that uses this k but fixes the current point to be hit...

 A = Asymptote_data(1, Asymptote_npointer)/&

 (1-exp(-k*Asymptote_data(2, Asymptote_npointer)**ExpBender))

 SSE=0

 do i = 1,Asymptote_npoints

 if(Asymptote_data(2, i)>=FromCount) then

 Pred = A*(1-exp(-k*Asymptote_data(2, i)**ExpBender))

 SSE=SSE + (Pred - Asymptote_data(1, i))**2

 endif

 enddo

 ! Print'(i3,10f15.4)', j, k, A, SSE, Jump

 enddo

! Print*, k, A, Asymptote_npoints

 PredOpt=A+Asymptote_data(1, 0)

end subroutine PredictOptimum

79

Chapter 11: Applications in
bioinformatics, systems biology and
Artificial Life

Cedric Gondro

Up there the skies are blue

Introduction

Evolutionary Computation is being widely employed to solve bioinformatics problems. And

this is not particularly surprising; bioinformatics problems are complex, noisy and non-linear

– the perfect setting for Evolutionary Computation to thrive. Some of the current efforts

include sequence reconstruction from shotgun sequencing data, multiple-sequence alignment

of protein or DNA sequences, tertiary protein folding inference, identification of coding

regions in DNA sequences, microarray data clustering and reconstruction of metabolic and

genetic pathways. Fogel and Corne (2003) provide a comprehensive review of the current

research topics in EC applied to Bioinformatics.

In this chapter we will focus on mentioning some applications and discuss the

implementation approach used and some tips (the ones that worked for us!). The idea is to

give you a taste of what can be done and how to do it.

Bioinformatics – multiple sequence alignment

Multiple sequence alignment (MSA) plays an important role in molecular sequence analysis.

An alignment is the arrangement of two (pairwise alignment) or more (multiple alignment)

sequences of „residues‟ (nucleotides or amino acids) that maximizes the similarities between

them. Algorithmically, the problem consists of opening and extending gaps in the sequences

to maximize an objective function (measurement of similarity).

A simple genetic algorithm works fine here (Gondro and Kinghorn 2007). Genetic algorithms

are well suited for problems of this nature since residues and gaps are discrete units.

An evolutionary algorithm cannot compete in terms of speed with progressive alignment

methods which are the most common method used for sequence alignment, but it has the

advantage of being able to correct for initially misaligned sequences; which is not possible

with the progressive method.

Chapter 11: Applications in bioinformatics, systems biology and artificial life

80

EAs can have an important role for MSA because the alignment scoring functions still

constitute an open field of research, Since there is a clear distinction between objective

function and EAs, they make extending and/or replacing objective functions a trivial task.

Population Initialization and structure

A group of sequences to be aligned consist of n sequences of DNA of different lengths. An

alignment is represented as a matrix with n rows in which each row represents a sequence.

Each position in the array is occupied by a symbol from the alphabet {A,T,C,G,–} in the case

of nucleotides. Gaps are represented by the symbol „–„. Evidently, the order of the

nucleotides in the sequences has to be preserved and is only interspaced with gaps.

Each organism in the GA consists of a candidate alignment. The organisms of the initial

population are generated from pairwise alignments of all the sequences. Initially, all global

pairwise alignments between the sequences are computed with dynamic programming using

the Needleman-Wunsch algorithm (seeded population). For each sequence one of the

pairwise alignments corresponding to that sequence is randomly selected to form the

organism. At the beginning of the sequence, a randomly defined number of gaps is placed to

allow for some expansion.

Even accounting for the overhead to calculate the pairwise alignments, an initial population

seeded from pairwise alignments is overall faster and greatly improves the scores with

reduced convergence times when compared to randomly generated ones. With this approach

the initial population starts with a high mean fitness. An alternative approach is to include a

pre-alignment which is inserted into the initial population. This can lead to stagnation at a

local optimum but can be used to fine tune alignments obtained through progressive methods.

The GA uses steady-state generations and selection is elitist with tournament selection. The

winner of the tournament remains in the population and the loser(s) are replaced by its (their)

offspring. Crossover uses the tournament winner and each of the losers to generate an

offspring which will replace the respective loser in the population.

Search operators

An MSA is defined by the position and size of the gaps in the sequences. From an EC

perspective it can be viewed as a “gap-shuffling” operation. Search operators can be:

recombination between parents to produce offspring alignments and gap mutations.

Crossover can be:

1. Horizontal, which builds an offspring by randomly selecting each sequence from one

of the parents.

2. Vertical, which randomly defines a cut point in the sequence and the offspring is built

by copying the sequence from position 1 up to the cut point from one parent and from

the cut point to the end of the sequence from the other parent. With vertical

recombination the positions of gaps have to be accounted for to ensure integrity of the

structure of the sequences.

Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics

81

Horizontal (A) and vertical (B) recombination in the MSA genetic algorithm. (A) Offspring are generated

by randomly selecting entire sequences from either of the parents. (B) A randomly defined cut point splits

the sequences of the parents in two; offspring are generated by selecting one substring from each parent.

 Mutation operators can only act on gaps: open a new gap, close an existing gap, extend gap

size or reduce gap size. We used three mutation operators to manipulate gaps. To open a new

gap a block mutation operator was used - a position in a sequence is randomly selected and a

block of gaps of variable size is inserted into the sequence. For gap extension, a block of gaps

is randomly selected and an extra gap position is added. The third mutation operator is gap

reduction, a block of gaps is randomly selected and a gap position is removed; the probability

of a gap position being removed is an inverse function of the size of the gap, meaning that the

smaller the number of gap positions the higher the probability that a gap position will be

removed. If the selected gap block consists of a single position, it will always be removed,

and the gap will be closed.

Bioinformatics – optimization of cDNA microarray experimental
designs

The cDNA microarray is an important tool for generating large datasets of gene expression

measurements. An efficient design is critical to ensure that the experiment will be able to

address relevant biological questions.

Microarray experimental design can be treated as a multicriteria optimization problem. For

this class of problems evolutionary algorithms (EAs) are well suited, as they can search the

solution space and evolve a design that optimizes the parameters of interest based on their

relative value to the researcher under a given set of constraints. We used EAs for

Chapter 11: Applications in bioinformatics, systems biology and artificial life

82

optimization of experimental designs of spotted microarrays using a weighted objective

function (Gondro and Kinghorn 2007).

Even though the application here is microarray design, the concepts can easily be extended

into other design problems.

Design problem

Since a cDNA microarray is essentially a comparison between two samples, how these are

paired in an experiment affects which comparisons can be made. Comparisons of interest

should be closely connected in the design, preferably on the same array, thus removing the

variability between slides which is greater than the variability within slides. Typically the

correlation of measured intensities between duplicated spots on the same slide is around 95%;

dropping to between 60% and 80% on different slides. An efficient design will ensure an

unbiased dataset with the effects of interest (sample gene interactions) not confounded with

other sources of variation. In EA terms this is a combinatorial problem. The problem can be

treated as an assignment problem with three optimization parameters: (1) number of arrays

(slides), (2) allocation of hybridization pairs to the slides and (3) dye allocation for the variety

pairs on the slides.

There is no single optimal design. The experimental design should balance three basic

principles:

1. balance among the factors – particularly dyes

2. use approximately the same sampling of varieties

3. reduce the distances between pairs of varieties – especially the ones of interest which

should preferably be hybridized on the same array allowing for direct comparisons.

Population (design) representation

Each candidate design in the EA population is represented as a numeric array of index],[mn

where n=2 (block size) corresponds to each one of the channels in the microarray, thus

defining the labeling dye of a sample. Index m is a constraint on the maximum number of

hybridizations allowed. The experimental samples (varieties) are assigned a unique numeric

identifier si in the array. In this simple manner complex designs can be easily represented

with the hybridization pairs defined by position m and the dye colors by n, as depicted in the

following figure. An additional dimension is added to the array, corresponding to the

population size of the EA.

To allow for variable design sizes (different number of slides) a vector is used to control the

effective experimental size. The effective size (S) is an integer denoted as S],1[ms , where

s is the number of samples in the study and m is the maximum allowed number of arrays. The

minimum number of slides is defined as 1s since this is the minimal criterion for

connectivity. S is an evolvable parameter included in the EA.

Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics

83

Green Channel (Cy3) - n0 s0 s1 s2 s3 s4

Red Channel (Cy5) - n1 s1 s2 s3 s4 s0

Slide m0 m1 m2 m3 m4

A candidate design in the EA population with 5 varieties (numbered s0 – s4) used to represent a loop

design. Dimension n is used for dye assignment and dimension m represents the number of arrays in the

design.

Selection

The EA uses steady-state generations and tournament selection with elitism. The elitist

approach ensures that the best solution is always retained in the population. In each selection

round, t (tournament size) candidates are randomly selected from the population. The

candidate with the best fitness is the winner of the tournament and remains in the population,

whilst the loser(s) is (are) replaced by new candidate solutions (offspring). This means that

for a tournament of size t, t–1 new offspring will be created at each selection round.

Crossover

Two operators were used:

1. Single-point crossover selects a random uniform breakpoint between zero and the

maximum length of the design (along the slides – array dimension m). With an equal

probability, an offspring is generated by selecting one parent between the winner and

each of the tournament losers in turn; the selected parent is copied into the offspring

from position zero in the array up to the breakpoint. The remainder of the offspring is

built by copying the other parent from the breakpoint until the end of the array.

2. Multi-point crossover, the entire tournament loser is copied into the offspring and,

with an equal probability (1/3), a number of blocks between 1 and 3 of variable sizes

are selected from the tournament winner and grafted into the offspring in the same

position they held in the tournament winner. The size of each block is chosen from a

random uniform value between a minimum of 1 and a maximum of 1/3 of the length

of the array. In terms of the design, each block consists of a variable number of slides

with their respective hybridization pairs and channel assignments.

Chapter 11: Applications in bioinformatics, systems biology and artificial life

84

Crossover operators. A) Single point crossover – offspring is generated by copying one of the parents from

the start of the array up to the breakpoint and copying the other parent from the breakpoint to the end of

the array. The parent used as a starting point is randomly selected with equal probabilities. In the

illustration, the tournament winner was selected as the starting point. B) Multi-point crossover with 2

blocks – the tournament loser is copied into the offspring and blocks of variable size from the winner are

grafted into the offspring.

Mutation

We used three mutation operators:

1. Sample swap – each position (each sample si) in the new candidate, along both

dimensions (n – channels and m – number of slides), is tested for a user-defined

uniform probability of the mutation occurring. In each position selected for mutation

the current sample is replaced with a different one which is randomly selected from

the available sample pool with an equal probability for each sample. This operator

ensures that the entire solution space is accessible for exploration.

2. Dye swap – each position along dimension m (slides) is tested for a dye swap

mutation event; for those positions in which the mutation occurs the two samples are

swapped across dimension n (channels) in the array; that is, the same samples are still

on the same slide but the dye assigned to each sample has been inverted. This operator

is important to explore designs that are evenly balanced.

3. Effective size mutation – assigns a random number of slides as the effective size of

the design. The mutated S only replaces the current one if it improves the fitness of

the offspring. This demands three fitness function calls, two with the original effective

sizes from each of the parents and one with the new value. The S that yields the

highest fitness is assigned to the offspring. Designs are very sensitive to changes in

the number of slides, for this reason the overhead of making additional fitness calls

for each offspring is justified.

Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics

85

 Mutation operators. A) Sample swap mutation – a sample in the array (in bold) is replaced by a new

sample, with this single change the design becomes a loop design. B) Dye Swap mutation – the dye

channels of a hybridization pair are swapped (in bold), the change turned the unbalanced design into a

balanced one.

Systems biology – model reconstruction and parameterization

Systems Biology is the exponent representative of the shift that life-science research is

undergoing. Focus is changing from a reductionist approach centered at identifying and

understanding the function of individual components to a holistic approach geared towards an

integrative understanding of biological systems. Notably a system-oriented approach is not

viable without relying on knowledge derived from reductionist studies, so the approaches

should not be seen as conflicting but rather as complementary. The need for an integrative

approach is clear from the fact that single levels of information cannot fully explain the

dynamics of biological processes. To understand the whole one must study the whole.

Modeling of biological processes has become an important research topic to understand

processes from a systems point of view. Driven by the ever-growing availability of data –

with gene expression data a major source – genetic and biochemical models try to explain

how the components and their interactions affect the behavior of the entire system. The most

common approach to modeling is through differential equations; which include S-Systems

(Voit 2000).

Parameterization of S-systems in yeast

A major difficulty with S-Systems is identifying an appropriate set of parameter values for a

model. We used Differential Evolution to optimize model parameters (rate constants and

kinetic orders). Results with time course simulated data of fermentation in Saccharomyces

cerevisae show that a full parameter set evolved that fits well four out of five of the time-

course data points and adequately models the dynamics of the system.

To exemplify, the yeast model is a system of 9 independent variables and 5 dependent

variables with various interactions as shown below.

Chapter 11: Applications in bioinformatics, systems biology and artificial life

86

The underlying equations are of the form:

We used DE to parameterize the model for a time series data set. The full parameter set for

the yeast model consists of 55 parameters. For such a complex model the evolved parameter

set fits well to the original data and adequately reflects the dynamics of four out of the five

dependent variables, as shown in the figure below. All the evolved parameters are within the

usual parameter values of S-systems and the model is stable. The dynamics of ATP were not

adequately modelled with the evolved equation being essentially a linearization of the data

points. This is still acceptable since the ATP equation is particularly complex with 15

parameters. The other four equations are a good fit to the data with a slight overshoot in

F1,6DP and an undershoot in G6PD. For simpler models a virtually perfect fit can be

Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics

87

obtained. For complex models the use of structural constraints could improve the

optimization results.

Model reconstruction and parameterization of the lac operon in E. coli

Of course the ultimate modeling method will allow construction of entire models, fully

parameterized from biological datasets. This goal is still out of reach, but some steps can be

taken to advance the research. The hybrid EA we discussed in chapter 9 was used to evolve

models of biological processes as systems of differential equations and simultaneously co-

evolve a set of parameters for these models from time-series data. Recall that the hybrid

algorithm uses Gene Expression Programming for model inference with an embedded

Differential Evolution for model parameterization.

We looked at two models for the lac operon and attempted to reconstruct both the parameters

and the underlying model from a simulated time series dataset.

For the simpler model the predicted data and the simulated data points are virtually

indistinguishable with an almost perfect fitness value.

Chapter 11: Applications in bioinformatics, systems biology and artificial life

88

The simplified and rearranged form of the run is shown below. Where y1 is the concentration

of mRNA, y2 is permease, y3 is β-galactosidase and y4 is lactose. The original equations are

on the right hand side to facilitate comparisons.

432

31

221

164.0

4

64.0

4

64.0

4

64.0

4

4

1023.10/1023.10/3

)(2

1

19987.4
1

yyyy

yyy

yyyy

y
yy

yy
y

tt

tt

432

3313

221

11

4

41

1

1

yySy
dt

dL

ybyr
dt

dB

yby
dt

dP

yb
y

yk

dt

dM

The evolved system of differential equations preserves the structure of the original model

with the correct production and degradation components and the relationships between the

elements. Out of the ten available variables for optimization only three appear in the final

model. These do not necessarily mimic the original parameters but rather are adapted to the

evolved equations. An appropriate time delay was discovered even though it is not a perfect

match to the original value (0.86) which is the main cause of deviation between the simulated

and predicted data.

For the more complex model we did not get such a good fit:

Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics

89

The evolved equations after simplification and rearrangement are shown below. The original

equations are on the right hand side to facilitate comparisons (y1 is the concentration of

mRNA, y2 is β-galactosidase and y3 is allolactose). Likewise to the previous model, out of

the 20 available variables only 8 were used in the equations.

.

)2(12303.03

112

1123003.01

516968.0

53614.0

)
7614.811

3
(1379.8

yy

yyy

yy

t

yy

y

AY
AK

A
B

LK

L
B

dt

dA

BYMe
dt

dB

MY
Aekk

Aek

dt

dM

A

A

A

L

A

BB

Mn

n

M

B

B

M

M

M

M

~

~

~

)(

)(1

1

1

The fit of the predicted values to the simulated data points is worse than for the other model

particularly for allolactose, but still a reasonable fit (R
2
 0.987 – y1, 0.999 – y2 and 0.836 – y3)

for such a complex model. Changes of the EA parameters may improve convergence to a

better fit. Of more concern are the equations which do not always reflect the true

relationships between the different components of the system as these are of key importance

to understand a biochemical pathway or a genetic network.

Artificial life – population genetics dynamics

EC has stolen concepts from biology to develop optimization methods. We can steal them

back and use them to better understand biology. EAs do not necessarily need an objective

function for a problem, we can simply select organisms from a purely Darwinian approach –

survival of the fittest.

Chapter 11: Applications in bioinformatics, systems biology and artificial life

90

Artificial agents that model natural populations can use a classic canonic GA structure for

their inheritance model (Gondro and Magalhaes 2005). The value in each position of the

bitstring is an allele (0 or 1) and the position itself is a gene or locus. The combination of

values (alleles) in the bitstring (chromosome) maps to a phenotypic expression. So, the GA

operates at two structural levels: a genotypic and a phenotypic one. Selection operates on the

overall genomic value (phenotype) while search operators act on the genotype, modifying the

chromosomes which may or may not change the phenotypic expression.

In our work these virtual organisms are an abstraction of Mendelian populations, meaning

that they are a single species of freely interbreeding diploid organisms with two sexes on an

XY system. There are two genes in the sex chromosomes and seven genes distributed in a

variable number of autosomes (between 1 and 7). Each gene has between two and four allelic

variants with user-defined phenotypic expressions within a certain interval limit. The genes

through their phenotypic expressions express characteristics that intimately relate to the

universe ensuring a rapid evolution of the population. For example the gene for vision

determines the line of sight of the organism which is an important trait for searching for food

in the environment and finding a partner for reproduction. The genes not only relate to the

environment but they also relate to other organisms, as for instance the fight gene which

defines the level of aggressiveness of an organism.

Sigex – an educational package for studies of population genetics and evolution. The program consists of
four modules: a simulator of virtual organisms, a genotype editor, a data analysis tool and a
manual/tutorial of population genetics and evolution.

Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics

91

This type of work can be used in education applications to help students understand the

dynamics of populations and the concepts of population genetics and can also be a useful tool

for research in population genetics. Even though computational simulations cannot accurately

depict the dynamics of natural populations, for theoretical studies and as an initial approach

to test a new model artificial data can be used prior to obtaining experimental data. This

approach not only allows testing on rapidly obtainable, controlled data but can also help in

determining which experimental data is relevant, assisting in the design of the experiment.

I got involved in EC because I could not fathom having to count even one single more

Drosophila!

Conclusion

Evolutionary Algorithms are efficient for addressing complex biological problems. Many

biological questions are being studied using EAs; and with the ever increasing volume of

biological data, it can be expected that the use of EAs will only keep on growing.

Evolutionary Computation has come full circle; originally inspired by biological processes, it

has found its way back into biology to help investigate complex, challenging and relevant

problems.

93

References

Differential Evolution Homepage (recommended)

http://www.icsi.berkeley.edu/~storn/code.html

Atmar, W. (1994). "Notes on the Simulation of Evolution." IEEE Transactions on Neural

Networks 5(1): 130-147.

Bäck, T. (1996). Evolutionary Algorithms in theory and practice. New York, Oxford

University Press.

Bäck, T. (2000). Introduction to Evolutionary Algorithms. Evolutionary Computation 1:

Basic Algorithms and Operators. Bristol, Institute of Physics Publishing: 59-63.

Bäck, T., D. B. Fogel and T. Michalewicz, Eds. (2000a). Evolutionary Computation 1: Basic

Algorithms and Operators. Bristol, Institute of Physics Publishing.

Bäck, T., D. B. Fogel and T. Michalewicz, Eds. (2000b). Evolutionary Computation 2:

Advanced Algorithms and Operators. Bristol, Institute of Physics Publishing.

Bäck, T., D. B. Fogel, L. D. Whitley and P. J. Angeline (2000c). Mutation Operators.

Evolutionary Computation 1: Basic Algorithms and Operators. Bristol, Institute of Physics

Publishing: 237-255.

Bäck, T., Ed. (2003). Handbook of Evolutionary Computation. Bristol, Institute of Physics

Publishing.

Banzhaf, W., P. Nordin, R. E. Keller and F. D. Francone (1998). Genetic Programming - An

Introduction. San Mateo, Morgan Kaufmann.

Booker, L. B., D. B. Fogel, L. D. Whitley, P. J. Angeline and A. E. Eiben (2000).

Recombination. Evolutionary Computation 1: Basic Algorithms and Operators. Bristol,

Institute of Physics Publishing: 256-307.

Coello Coello C. A., G. B. Lamont and D. A. van Veldhuizen (2007). Evolutionary

Algorithms for Multi-Objective Problems. Berlin, Springer.

De Jong, K., D. B. Fogel and H. P. Schwefel (2000). A history of evolutionary computation.

Evolutionary Computation 1: Basic Algorithms and Operators. Bristol, Institute of Physics

Publishing: 40-58.

De Jong, K. A. (2006). Evolutionary Computation. Cambridge, MIT Press.

Eshelman, L. J. (2000). Genetic Algorithms. Evolutionary Computation 1: Basic Algorithms

and Operators. Bristol, Institute of Physics Publishing: 64-80.

References

94

Ferreira, C. (2001). "Gene Expression Programming: A new adaptive algorithm for solving

problems." Complex Systems 13(2): 87-129.

Ferreira, C. (2002). Gene Expression Programming. Mathematical Modelling by an Artificial

Intelligence. Angra do Heroismo, GepSoft.

Fogel, D. B. (1999). Evolutionary Computation: Toward a New Philosophy of Machine

Intelligence. Piscataway, Wiley-IEEE.

Fogel, D. B. (2000a). Introduction to Evolutionary Computation. Evolutionary Computation

1: Basic Algorithms and Operators. Bristol, Institute of Physics Publishing: 1-3.

Fogel, D. B. (2000b). Principles of Evolutionary Computation. Evolutionary Computation 1:

Basic Algorithms and Operators. Bristol, Institute of Physics Publishing: 23-26.

Fogel, D. B. and D. W. Corne, Eds. (2003). Evolutionary Computation in Bioinformatics. San

Mateo, Morgan Kaufmann.

Forrest, S. (1993). "Genetic Algorithms - Principles of Natural-Selection Applied to

Computation." Science 261(5123): 872-878.

Goldberg, D. E. (1987). Simple genetic algorithms and the minimal, deceptive problem.

Genetic Algorithms and Simulated Annealing. L. Davis. San Mateo, Morgan Kaufmann: 74-

88.

Gondro, C. and B. P. Kinghorn (2007). "Solving complex problems with evolutionary

computation." Proceedings of the 17
th

 Conference of the Australian Association for the

Advancement of Animal Breeding and Genetics. 17: 272-279.

Gondro, C. and B. P. Kinghorn (2007). “A simple genetic algorithm for multiple sequence

alignment.” Genetics and Molecular Research 6(4): 964-982.

Gondro, C. and B. P. Kinghorn (2008). “Optimization of cDNA microarray experimental

designs using an Evolutionary Algorithm.” IEEE Transactions on Computational Biology and

Bioinformatics, (in press, doi:10.1109/TCBB.2007.70222).

Gondro, C. and J. C. M. Magalhaes (2005). “A simple genetic algorithm for studies of

mendelian populations.” Recent Advances in Artificial Life. H. A. Abbass, T. Bossamaier

and J. Wiles. London, World Scientific Publishing: 85-98.

Hancock, P. J. B. (2000). A comparison of selection mechanisms. Evolutionary Computation

1: Basic Algorithms and Operators. Bristol, Institute of Physics Publishing: 212-227.

Heywood, M. I. and A. N. Zincir-Heywood (2000). Page-based linear genetic programming.

Systems, Man, and Cybernetics, 2000 IEEE International Conference, IEEE Press.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor, University of

Michigan Press.

Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics

95

Kantschik, W. and W. Banzhaf (2001). "Linear-tree GP and its comparison with other GP

structures." Genetic Programming, Proceedings 2038: 302-312.

Kinghorn, B. P. and R. K. Shepherd (1999). "Mate selection for the tactical implementation

of breeding programs." Assoc. Advmt. Anim. Breed. Genet. 13:130-133.

Koza, J. R. (1989). Hierarchical genetic algorithms operating on populations of computer

programs. Proceedings of the 11th International Joint Conference on Artificial Intelligence,

San Mateo, Morgan Kaufmann.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of

Natural Selection. Cambridge, MIT Press.

Koza, J. R. (1994). Genetic Programming II: Automatic Discovery of Reusable Programs.

Cambridge, MIT Press.

Koza, J. R., F. H. Bennett III, D. Andre and M. A. Keane (1999). Genetic Programming III:

Darwinian Invention and Problem Solving. San Francisco, Morgan Kaufmann.

Koza, J. R., M. A. Keane, M. J. Streeter, W. Mydlowec, J. Yu and G. Lanza (2003). Genetic

Programming IV: Routine Human-Competitive Machine Intelligence. Boston, Kluwer

Academic Publishers.

Langdon, W. B. and R. Poli (2002). Foundations of genetic programming. Heidelberg,

Springer-Verlag.

Lobo, F. G., C. F. Lima and Z. Michalewicz, Eds. (2007). Parameter Setting in Evolutionary

Algorithms. Berlin, Springer.

Mayer, D.G., Kinghorn, B.P. and Archer, A.A. 2005. Differential evolution – an easy and

efficient evolutionary algorithm for model optimisation. Agricultural Systems 83:315-328

Michalewicz, T. and D. B. Fogel (2000). How to solve it: modern heuristics. Heidelberg,

Springer-Verlag.

Mitchell, M. and C. E. Taylor (1999). "Evolutionary computation: An overview." Annual

Review of Ecology and Systematics 30: 593-616.

Nedjah, N., E. Alba and L. de Macedo Mourelle, Eds. (2006). Parallel Evolutionary

Computations. Berlin, Springer.

Nordin, J. P. (1994). A Compiling Genetic Programming System that Directly Manipulates

the Machine code. Cambridge, MIT Press.

Palshikar, G. K. (2001). "Simulated annealing: A heuristic optimization algorithm." Dr

Dobbs Journal 26(9): 121-124.

Porto, V. M. (2000). Evolutionary Programming. Evolutionary Computation 1: Basic

Algorithms and Operators. Bristol, Institute of Physics Publishing: 89-102.

References

96

Price, K. and R. Storn. (1997). Differential evolution. Dr. Dobb‟s Journal 264: 18-24.

Rudolph, G. (2000). Evolution Strategies. Evolutionary Computation 1: Basic Algorithms

and Operators. Bristol, Institute of Physics Publishing: 81-88.

Schewefel, H. P., I. Wegener and K. Weinert, Eds. (2003). Advances in computational

intelligence. Berlin, Springer-Verlag.

Schwefel, H. P. (2000). Advantages (and disadvantages) of evolutionary computation over

other approaches. Evolutionary Computation 1: Basic Algorithms and Operators. Bristol,

Institute of Physics Publishing: 20-22.

Schwefel, H. P. and G. Rudolph (1995). Contemporary Evolution Strategies. Advances in

Artificial Life. Third International Conference on Artificial Life. F. Moran, A. Moreno, J. J.

Merelo and P. Chacon. Berlin, Springer-Verlag. 929: 893-907.

Smith, R. E. (2000). Learning classifier systems. Evolutionary Computation 1: Basic

Algorithms and Operators. Bristol, Institute of Physics Publishing: 114-123.

Storn, R. and K. Price (1997). "Differential evolution - A simple and efficient heuristic for

global optimization over continuous spaces." Journal of Global Optimization 11(4): 341-359.

Van Veldhuizen, D. A. and G. B. Lamont (2000). "Multiobjective evolutionary algorithms:

analyzing the state-of-the-art." Evol Comput 8(2): 125-47.

Vlachos, C., R. Gregory, R. C. Paton, J. R. Saunders and Q. H. Wu (2004). "Individual-based

modelling of bacterial ecologies and evolution." Comparative and Functional Genomics 5(1):

100-104.

Voit, E. O. (2000). Computational Analysis of Biochemical Systems: A Practical Guide for

Biochemists and Molecular Biologists. Cambridge, Cambridge University Press.

Whitley, D. (2001). "An overview of evolutionary algorithms: practical issues and common

pitfalls." Information and Software Technology 43(14): 817-831.

Wilson, S. W. (1994). "ZCS: a zeroth level classifier system." Evolutionary Computation 2:

1-18.

Wolpert, D. H. and W. G. Macready (1996). No free lunch theorems for search. Technical

Report SFI-TR-95-02-010, Santa Fe Institute.

Zitzler, E., K. Deb and L. Thiele (2000). "Comparison of multiobjective evolutionary

algorithms: empirical results." Evol Comput 8(2): 173-95.

Zitzler, E., M. Laumanns and S. Bleuler. (2004) "A tutorial on evolutionary multiobjective

optimization." Metaheuristics for Multiobjective Optimisation. Germany, Springer: 3-38.

