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Course schedule 

 

 

 

 

 

 

Wednesday - 27/01   

09:00-09:10 Introduction to the course (CG) 

09:10 - 09:30 A brief  overview  of evolutionary algorithms (BK) 

  Problems not for EC 

  Problems for EC 

  Architecture for solving problems 

09:30 - 10:30  Heuristics and evolutionary computation (CG) 

  What are heuristics? 

  Deterministic versus stochastic methods  

  From random search to simulated annealing 

  Evolution of evolutionary computation  

  Types of EC and choosing a method 

10:30 - 11:00  Real life applications - demonstration of software in practice (BK) 

11:00 - 11:30  Morning tea 

11:30 - 12:30  EC framework (CG) 

  Evolution and population genetics 101 

  Skeleton of an EA (canonical GA) 

  

Parameters: population size, mating schemes, selection, mutation, 

recombination 

  Introduction to fitness and objective functions 

12:30 - 13:30  Lunch 

13:30 - 15:00  Practical 1 (CG, BK) 

  A trivial GA example - play with different parameters 

  Modify objective functions in code (maximize, minimize, etc) 

15:00 - 15:30  Afternoon tea 

15:30 - 17:00  Differential Evolution (BK) 

  How does DE work? 

  Parameter settings 
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Thursday - 28/01   

09:00 - 11:00  Practical 2 (BK, CG) 

  

In vivo demonstration of Differential Evolution 

Simple application of Differential Evolution 

11:00 - 11:30  Morning tea 

11:30 - 12:30  Genetic Programming (CG) 

  Overview of GP 

  Gene Expression Programming 

  Selection and search operators 

  Fitness and bloat 

12:30 - 13:30  Lunch 

13:30 - 14:15  Problem representation (BK) 

  Moulding the solution space 

14:15 - 15:00  Managing constraints (BK) 

  The need for constraints 

  How to apply constraints 

  Hard and soft constraints 

15:00 - 15:30  Afternoon Tea 

15:30 - 17:00  Practical 3 (BK, CG) 

  Discuss and start work on group project topic 

 

Friday - 29/01   

09:00 - 10:00  Changing the goal posts  (BK) 

  Changing on the fly 

  Managing change of direction 

  Opportunities 

10:00 - 10:45  Improving performance (CG) 

  Self-evolving parameters 

  Multicriteria optimization 

  Hybrid algorithms 

  Parallelization 

10:45 - 11:15  Morning tea 

11:15 - 12:15  Diagnosing convergence (BK) 

  Criteria for stopping 

  Maximum solutions 

12:15 - 13:15  Lunch 

13:15 - 14:30  Applications in bioinformatics, systems biology and Alife (CG) 

  multiple sequence alignment 

  optimization of microarray experimental designs 

  model discovery and parameterization 

  Alife virtual agents 

14:30 - 15:00  Afternoon Tea 

15:00 - 16:45  Practical 3 continued (CG, BK) 

  Continue work on group project topic 

16:45 - 17:00 Course wrap up 
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Chapter 1: A brief overview of 
evolutionary algorithms 

 
Brian Kinghorn 

 

 

Seek, and you shall find 

 

Pontifications 
 

This course aims to empower its participants by sharing some knowledge and skills that have 

greatly benefitted the presenters. 

 

The development of evolutionary algorithms is not a hard science – there are tips and tricks, 

and opportunities for tweaking.  There is an art to developing and using these algorithms, and 

much of the content of this course relates to personal experience and discoveries made in 

applications related to quantitative genetics and bioinformatics.  However applicability is 

very wide indeed. 

 

The process of evolution has brought about great complexity in a simple manner.  Biology is 

mind-bogglingly complex, even to our shallow level of understanding.  How could all of this 

have happened?  How could massive sequence and other components be derived to result in 

life as we see it? Working with evolutionary algorithms to solve complex problems gives 

some intriguing insight – it helps to give realization that indeed complex outcomes can come 

from a relatively simple process. 

 

As practitioners setting out to solve complex problems, we are not constrained to the systems 

of replication and propagation that we see in biology.  We can engineer our own systems to 

give faster and more robust evolutionary change towards solutions for the prevailing problem. 

 

We can target our outcomes in a more controlled yet flexible manner than in biological 

evolution.  We can explore the changes that could be made, and use this information to help 

set target outcomes for our prevailing problems – we can make a steering wheel. 

 

Problems not for evolutionary algorithms 
 

Many problems in quantitative genetics and bioinformatics can be solved by an appropriate 

evolutionary algorithm.  We could find the mean, rather than calculating it.  We could solve 

BLUP by finding (rather than numerically calculating) the set of solutions that minimizes 

least squares while satisfying constraints on variance.  But these would not be the best uses of 

evolutionary algorithms. 
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It is usually the case that if a solution can be calculated using a closed-form equation, or 

derived numerically through integration or some form of iteration, then that calculation or 

derivation will be the method of choice, because of speed if not precision.  Exceptions can 

occur when the method makes assumptions that may be unreasonable. 

 

Moreover, problems that can be solved by iterative sampling methods, such as Gibbs 

Sampling, might be hard to beat with an Evolutionary Algorithm. 

 

Exceptions to all of the above might occur when the calculation method is complex, or 

otherwise difficult to code into a program for analysis.  As will be seen, with some EA code 

in your toolbox there can be surprisingly little work required to solve, for example, a multiple 

regression. 

 

If you don‟t know whether there is a method to calculate an answer to your problem, then you 

can be lazy, and resort directly to using an evolutionary algorithm. 

 

Problems for evolutionary algorithms 
 

Evolutionary algorithms are useful for problems for which no mechanistic method is 

available – or when unreasonable assumptions need to be made.  Problems for which you 

cannot calculate or derive a solution.  Problems for which you have to find a solution. 

 

[Could we calculate the nucleotide sequence required to make a given organism?  Much 

easier to find it ... for an organism with the same properties.] 

 

Aspects of problems that lend them to EA solution include: 

 

Assignment of individuals into groups, wherever simple ranking and truncation will 

not work.  This usually involves interactions, whereby whether an individual should 

be in a group depends on what other individuals will be in that group.  Example: 

developing multiplex groupings for genotyping. 

 

Problems where thresholds are involved, for example when the value of a solution 

depends on whether certain thresholds have been passed, or the fate of an individual 

depends on passing one or more thresholds.  Example:  Supply chain optimizing to 

target multiple product end-points and/or turnoff dates. 

 

Combinatorially tedious problems, where many combinations of components can 

exist. Example:  The setting up of animal matings.  

 

The architecture of an evolutionary algorithm, in a nutshell. 
 

1. Problem representation:  If needed, write an algorithm to produce the input 

variables/states (“Phenotypes”) from a vector of simple numbers (“Genotype”).  An 

example is given by Kinghorn and Shepherd (1999) who convert such a vector into a 
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pattern of mating and selection (see Chapter 6). This algorithm should ideally produce 

only legal solutions to the problem. 

 

2. Objective function: This should be able to return a single value (“Fitness”) that 

represents the value of a single solution. The single solution is represented by variable 

input values (eg. selection index weights) and/or states (eg. a vector of animals that 

should be selected). 

 

3. Optimization engine:   This is the heart of an Evolutionary Algorithm – it is where 

operations such as recombination and mutation are carried out, to make genotypes of 

progeny out of the genotypes of parents.  However, the optimization engine is quite 

simple „on the outside‟. It generates vectors of numbers (“Genotypes”) and seeks the 

vector that gives the highest fitness. The next four chapters will introduce you to these 

methods and related approaches. 

Aim of the course 
 

We hope that you leave this course with the knowledge and skills needed to apply an 

evolutionary algorithm to any suitable problem that confronts you.  There is now a small 

band of animal breeding scientists who use these tools on a regular basis, and we hope you 

will join us.  

 

  

1. Problem 

Representation 

2. Objective 

function 

3. Optimisation 

engine 

“Genotype” 
Raw variables 

for each solution 

“Phenotype” 
Usable 

variables or 

states 

“Fitness”  
value for each 

solution 
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Postscript:  Let your computer make you famous. 
 

The author was writing a program to optimize development of a new composite breed.  But it 

was not going well.  Some bugs were causing breed proportions to jump all over the place – 

not settling down nicely to optimal proportions.  After some detective and debugging work 

there was a sudden understanding – the program was thinking outside the box and doing the 

best thing possible – a periodic rotational cross.  

 

Just think of that – your optimization program finds a way of doing things – perhaps a 

concept that has not been thought of before.  You get the Nobel Prize while the poor 

computer is being carted off to the dump. 
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Chapter 2: Heuristics and evolutionary 
computation 

 
Cedric Gondro  

 

 

Don't think just guess - but be smart about it 

 

Introduction 
 

At the end of the day, this course is about solving problems. Most people are interested in the 

solution and don‟t much care about how to get to it, even though much time and energy can 

be spent trying to solve the problem. 

 

In the previous chapter we saw problems that are suitable for evolutionary computation (EC) 

and problems that are not. Part of the art of problem solving is identifying the best way to do 

it: most accurate, most repeatable, fastest and most computationally efficient and, why not, 

easiest. Before you start coding an evolutionary algorithm (EA) make sure this is the best 

approach. Maybe the most efficient way of solving your problem is just to knock on the door 

of the next office!     

 

But some problems are really hard to solve. Not infrequently because we do not understand 

what we are really trying to solve. A very nice side effect of EAs is that they can help us 

understand the nature of the problem we are tackling – more about this in the end of the 

chapter. Back to the subject. Problems can be complex because the number of potential 

solutions is astronomical – it is impossible to evaluate all possible solutions and pick the best 

one. The relationships, the interactions, the structure of the problem is so convoluted that a 

model of the problem (remember that a model is a simplification of reality) does not reflect 

the properties of the problem, thus is useless. The solution changes over time or in different 

scenarios (GxE anyone?). Too many constraints in the system. For example, female matings 

in a breeding program; or if you think back to your college days, the juggling between the 

subjects you wanted to take and the days/times of the week they were offered. Add in the 

prereqs and all the times that you did not want have classes (it was college after all!) and you 

have a heavily constrained problem. For these types of problems, chances are that an EA is a 

good alternative.  

 

[An aside: Evolutionary Computation is the field of study and an Evolutionary Algorithm is a 

method. As an analogy, think of Animal Breeding and BLUP). 
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Evolutionary algorithms are heuristic methods. Hmm, what are 
heuristics? 
 

Evolutionary algorithms are heuristics. The term heuristic comes from the Greek word 

heuriskein which means to discover. It is associated with the process of gaining knowledge or 

some desired result by intelligent guesswork rather than by following some pre established 

formula. Think of it as a trial-by-error approach to learning. It essentially is an approach to 

learning by trying without necessarily having an organized hypothesis or way of proving that 

the results proved or disproved the hypothesis. The later is probably the key message here: 

with EAs you do not know if your solution is the best possible one, and even if it is, you 

cannot prove it (except for trivial examples).   

 

Deterministic versus stochastic methods 
 

Heuristic methods can be based on deterministic or stochastic methods. Deterministic 

methods behave predictably, which basically means that you will always get the same output 

for a particular input. A mathematical function is a typical example: for any given input the 

function will yield the same output. If this is translated to a computer you have a 

deterministic algorithm, which is just a description (the sequence of steps/states) of how the 

above mentioned function will obtain the output. Deterministic algorithms are ideal to solve 

problems, they provide a cookbook view to problem solving (who does not have a copy of 

Numerical Recipes?), all you have to do is go to the kitchen and pick the subroutine. But 

functions are not heuristics. In heuristic terms think of an exhaustive search starting at zero 

and testing all possible integers up to 10000, one at a time- it‟s deterministic in the sense that 

you can predict the states of the algorithm and the output will always be the same. 

 

The downside of a deterministic approach is that frequently there is no algorithm for a 

specific problem or it is computationally unfeasible – increase the limit of the solution space 

in the previous example to all positive integers (that will surely give you some time to fetch a 

cup of coffee!). This later class of problems is referred to as NP-complete. NP stands for non-

deterministic polynomial time and it just means that as the problem increases in size the 

resources needed to solve the problem grow very rapidly. This term is commonly associated 

with EAs, but all it boils down to is that the problem has a large potential solution space.    

  

On the other hand, stochastic methods use algorithms for which, given a certain input state, it 

is not possible to determine the output state. This just means that the results are not 

predictable. EAs are stochastic algorithms and that is why the solution cannot be proved right 

or wrong. And this is of course the main negative aspect of stochastic methods: there is 

always some degree of uncertainty (distrust if you prefer) in the results, a lingering feeling 

that maybe it could just do a bit better. Another problem with stochastic methods is that in 

general they are slower than their deterministic counterpart. And last, the lack of repeatability 

of results – many runs should be performed to get a better estimate of the range of results and 

their repeatability. Narrow spread of results and repeatability are two key features that should 

be considered when selecting an EA. 

  

  



Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics 

17 

 

Types of optimization strategies – how to solve a problem 
 

If asking the guy in the office next door does not work, then you might actually have to try to 

solve the problem yourself. Most of the problems we encounter can be represented as an 

optimization problem.  

 

There are different classes of optimization problems: assignment, model parameterization, 

model discovery, combinatorial and minimax, just to name a few. Selection of the best 

method for a certain optimization problem is not trivial. The no-free-lunch (NFL) theorem 

(Wolpert and Macready 1996) essentially states that there is no optimal method for solving 

all types of optimization problems. A method adequate for a certain class of problems may 

breakdown with a different problem. A wide range of global optimum finding methods such 

as dynamic programming and linear programming are available for specific types of 

optimization problems, these are traditional deterministic methods that are guaranteed to 

converge on the global optimum. Traditional methods can be split into two main classes, the 

algorithms that evaluate complete solutions and the algorithms that evaluate partial solutions 

(Michalewicz and Fogel 2000). In the first class are exhaustive search, gradient methods and 

linear programming. These can be applied to specific domains; for smooth differentiable 

problems a gradient approach is suitable, linear programming is well tailored for a problem of 

linear variables. As mentioned above, for a small confined search space exhaustive search is 

adequate. 

 

The second class of methods evaluates partial solutions and builds on them; these include 

greedy algorithms, dynamic programming and branch-and-bound algorithms. As an example 

dynamic programming is efficient in pair-wise alignment of amino acid or nucleotide 

sequences. 

 

Regrettably most of the above algorithms are confined to particular classes of problems 

which frequently cannot be applied to real-world problems. Real-world optimization 

problems tend to exist in a non-linear, discontinuous and complex landscape. Further, the 

systems can be dynamic with objectives shifting over time thus demanding that the 

optimization method be capable of modifying its strategy in situ. Other common difficulties 

are the presence of noise in the available information and lack of knowledge about the nature 

of the problem itself (Michalewicz and Fogel 2000). 

 

These difficulties can hinder the adoption of global optimum finding algorithms, even though 

they have been successfully adopted to solve a wide range of specific problems. EC 

algorithms offer a compromise solution. Whilst not guaranteed to converge on optimal 

solutions they can be used on a wider range of problems albeit at the sacrifice of efficiency. 

This loss of efficiency is particularly evident in simple scenarios for which specifically 

tailored optimum seeking algorithms are available. Thus, classes of problems for which 

specific algorithms are available should not be solved through ECs for they will not be able to 

solve these problems faster or with higher precision (Schwefel 2000). A common approach to 

solving a complex problem is to linearize it or make use of some other simplification method 

that will allow the problem to be solved by an available optimum seeking method. However 

these simplifications can yield results that are further away from the true answer than an 

approximate result obtained through an EC approach. Even with quite incorrect initial 

conditions, an EC approach can still produce reasonable results (Schwefel 2000). EC methods 

are not guaranteed to converge on an optimal solution. But worse, it is also not possible to 

evaluate how close to optimal a result is. Attempts to develop a formal analytical framework 
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for EC are still incipient, mainly due to the fact that EC methods present the same analytical 

difficulties of the problems they are used to solve – complex, noisy, dynamic and non-linear 

(Forrest 1993). Probably the greatest limitation to the use of EC methods is the 

dimensionality problem. As the number of variables increases the computational effort can 

increase exponentially. But, since by their very nature EC methods are well suited for 

parallelization and there is a growing interest in developing parallel algorithms, the 

importance of this problem is becoming less significant. 

 

Non EC stochastic heuristic methods 
 

Before delving into EC it is worth briefly mentioning some related methods. There are many 

others (tabu search, ant colony optimization, swarm optimization, etc), I have selected the 

simplest ones because they build naturally into the EC framework. 

 

Random Search – this is probably the simplest implementation of a stochastic algorithm. It is, 

as the name implies, simply a random search of the solution space. If exhaustive search is 

unfeasible, one could try to sample a subset of the solution space at different points and 

try/hope to obtain a reasonable answer. This is of course evidently suboptimal and various 

immediate improvements can be considered. For example, do not select the same sample 

twice, or even better, try to divide the solution space into regions and sample from each of 

these regions to obtain a better coverage.  

 

Random Walk – can be seen as an extension of random search. Instead of selecting a single 

point in the solution space and then moving on to another independent point, one could select 

a point and then randomly move away from it while the solution is improving (obviously 

questions such as step size and in which dimension to move creep to mind). 

    

Hill Climbing – with random walk the most obvious problem is that it is very easy to 

overshoot the solution or choose a bad path. This can be balanced out with hill climbing in 

which from a starting point the algorithm will test the nearest neighbors (not necessarily all if 

the dimensionality is too high) and move in the best direction until it cannot find any 

neighboring solution better than the current one. Of course overshooting is a concern because 

the concept of neighbor depends on the step size. The first improvement that can be 

considered is to reduce the step size and start again from the previous best point and repeat 

this process until the step size is zero and no further improvements are attainable. Of course 

this works fine for smooth surfaces with a single peak, as soon as the adaptive landscape 

becomes more complex, hill climbing can get stuck at a local optimum. In the figure below it 

is easy to see that in the first scenario hill climbing would be efficient, but this is not the case 

for scenario 2. A work around local optima entrapment in hill climbing is to use stochastic 

hill climbing. Implementations vary widely, but consider starting many climbs from different 

regions of the solution space or from time to time add a bit of random walking to try to break 

out of the entrapment.  
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Simulated Annealing (SA) – an adaptation of the Metropolis-Hastings algorithm, it is 

probably the most widely used optimization heuristic. SA uses an analogy to metallurgy 

which involves heating and controlled cooling of a metal. An easy example is shown by 

Palshikar (2001). The basic concept is to start with a random solution and replace it by a 

randomly chosen neighbor with a given probability. This probability depends on the 

difference in fitness of each of these solutions (more on fitness in the next chapter) and a 

temperature parameter. Initially the temperature is set very high (the probability of selecting 

the alternative solution is very high, or even one) and gradually decreased so that the 

probability of choosing the alternative solution becomes very small. This means that initially 

only solutions that are very significantly better than the current solution are accepted and as 

the temperature decreases the algorithm tends to behave more and more as a hill climbing 

algorithm. But let‟s get started in EC…  

 

Evolution of evolutionary computation 
 

Computational intelligence is a field of computer science that uses biology as a source of 

inspiration for solving real world problems or mimicking biology in silico. Evolutionary 

Computation, alongside Artificial Life, Swarm Optimization, Fuzzy Systems and Artificial 

Neural Networks is a subfield of Computational Intelligence and the umbrella under which 

reside closely related stochastic methods of simulating evolution. The main branches of EC 

are Evolutionary Programming (EP), Evolution Strategies (ES), Genetic Algorithms (GA), 

Genetic Programming (GP) and Learning Classifier Systems (LCS). EC is a young field; the 

term was coined in 1991 in an attempt to unite the different branches. The origins of using 

computers as a means to emulate and understand evolution dates back to the late 1950s and 

early 60s through the pioneering work of Bremermann, Fraser and Friedberg. The different 

EC branches evolved quite independently from each other, despite having much in common. 

The current trend is to merge the best aspects of the different branches and develop solid 

theoretical foundations for the entire field (De Jong et al. 2000). 

 

De Jong (2006) poignantly split the history of EC into the Catalytic 60s – when computers 

started to become available, the Explorative 70s – development of what was to become the 

various branches of EC, the Eplorative 80s – practical application of the methods, the 

Unifying 90s – pragmatism over ideology, the best aspects of each method are integrated into 

unified algorithms. Currently EC is not only a rich community in its own right but it is also 

widely adopted across the most diverse disciplines.    

 

Types of Evolutionary Algorithms and problem matching 
 

Evolutionary Computation is about solving problems. An optimal solution implies absolute 

knowledge of the problem, but frequently knowledge of the problem‟s domain is incomplete 

and sparse, the solution space is unknown and data sources are noisy. In other types of 

problems optimality may vary over time or there are multiple optimal solutions. And, 

sometimes problems are heavily constrained and simply finding a single set of parameters 

that comply with the bounds is unwieldy. Biological problems seem to fall under all these 

categories, they have large search spaces, are non-linear, complex and open-ended, available 

data is noisy and incomplete and, they are interlinked and constrained by the components of 
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the system. For such complex problems a compromise must be sought. Instead of 

deterministic algorithms which yield optimal solutions but can only be used in specific and 

frequently unrealistic problems, stochastic algorithms that are not mathematically guaranteed 

to converge on a optimal solution can be adopted (Michalewicz and Fogel 2000). 

Evolutionary Computation falls under this last category. EAs are a group of stochastic 

problem solving methods loosely inspired on evolutionary processes such as selection, 

mutation and crossover. All algorithms have in common the use of populations of candidate 

solutions which reproduce, compete, and are subjected to selective pressures and random 

variation – the four basic elements of evolution (Atmar 1994). 

 

Below we briefly describe the main branches of EC. The purpose is neither to provide a 

comprehensive overview nor to suggest that these are the correct methods for a given EA; the 

sole intent is to give a taste for the different variants. Keep in mind that EC is evolving 

rapidly, the binning below is simply for didactic purposes, at the end of the day you should 

pick the aspects of each method that seem best suited to your needs and use them. Remember: 

adapt the method to the problem and not the problem to the method.  

 

Evolutionary Programming (EP) 
 

EP in its basic form consists of generating an initial population μ and a fitness value is 

assigned to each individual. The iterative loop (each loop is commonly referred to as a 

generation) usually consists of duplicating each parent μi until a predefined number λi of 

offspring are generated. The offspring are modified through a mutation process – commonly 

a Gaussian distribution with zero mean and variance of one, crossover is not used in classic 

EP. All offspring are evaluated as to their fitness and along with the parental population a 

selection operator is used to cull the population size back to μ. EP shares more than a few 

similarities with ES. The main difference between EP and other EC methods is the global 

optimization method employed by EP. No attempt is made to break the problem down into 

subcomponents; the fitness evaluation is based solely on the whole organism. In this sense 

the genotype is of little importance and focus is on optimization of the phenotype, for this 

reason crossover is not used in EP. A further distinction is that traditionally EP uses 

continuous-valued variables instead of the discrete representation common in GA. Current 

versions of EP are self-adaptive, with the mutation parameters (variance, covariance) 

adapting to the current state of the population. A good overview of EP is given by Bäck 

(1996), Fogel (1999) and Porto (2000).  

 

Evolution Strategies (ES) 
 

ES were initially developed to solve technical optimization problems. There are two main 

general notations for the strategy: (μ + λ) where the ES generates λ offspring from a parental 

population μ and selects the best μ from all μ+λ individuals. Alternatively the (μ , λ) strategy 

generates λ offspring from μ parents and selects the μ best from the λ offspring. Weak 

selective pressures seem to yield a better response thus the μ/λ ratio should not be too small. 

Of course, a 1:1 mapping of μ:λ reduces the algorithm to a random walk. Typically ES use 

crossover between two randomly selected parents to generate the offspring; commonly 

adopted is the multipoint crossover. After crossover the offspring are mutated. ES mutation 

schemes are not particularly straightforward; each organism, besides the element that maps 

their position in the search space, can have several parameters controlling the mutation 
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distribution which customarily follows a multivariate normal distribution with zero mean and 

a covariance matrix that is symmetric and positive definite. At least two mutation parameters 

are commonly used: angles (σ) and standard deviations (ω). These mutation parameters can 

be self-adaptive as in EP algorithms. The original ES strategy was (μ + 1) with a single 

replacement per iteration loop which is called steady-state (an analogy to overlapping 

generations) in opposition to the generational approach. Even though the steady-state 

approach is the preferred choice for other EC methods, modern ES adopt a generational 

approach similar to EP. 

 

As with Evolutionary Programming, ES does not attempt to break down the problem into 

smaller subcomponents. Optimization is solely based on the phenotypic values of the 

organism. Schwefel and Rudolph (1995) and Rudolph (2000), provide an overview of ES.  

 

Genetic Algorithms (GAs) 
 

The most widely disseminated EC branch, GAs date back to the seminal work of Holland 

(1975). GAs distinguish themselves from the other methods by the emphasis that is placed on 

crossover. Traditionally GA organisms are represented as linear bitstrings which are referred 

to as chromosomes; this is the canonical GA (Holland 1975; Goldberg 1987). The value in 

each position of the bitstring is an allele (0 or 1) and the position itself is a gene or locus. The 

combination of values (alleles) in the bitstring (chromosome) maps to a phenotypic 

expression, such as a parameter to be optimized. From the above it is clear that GAs operate 

at two structural levels: a genotypic and a phenotypic one. Selection operators are carried out 

based on the overall chromosome value (phenotype) while search operators act on the 

genotype, modifying the chromosome which may or may not change the phenotypic 

expression. 

 

GAs are the class of EC which most closely mimic evolutionary processes at a genetic level. 

Crossover swaps chromosome parts between parents to form the offspring and mutation 

changes the value of alleles at randomly selected loci. From this notion derives the concept of 

schema in GAs (Holland 1975); a good solution consists of a set of good small building 

blocks. Thus, the assumption is that the chromosomes in the population are formed by small 

schemas that add up to yield the final fitness. Under the schema model, crossovers between 

good schemas are preserved since they increase the overall fitness of the chromosome while 

crossovers which break up a good schema are eliminated since they reduce the fitness. This 

assumes that the GA will concentrate on searches which are optimally allocated. The schema 

theory has been under attack recently, with many arguments for and against but still limited 

solid proofs (Whitley 2001; Langdon and Poli 2002). To the author‟s knowledge no work has 

attempted to describe schema theory within the framework of quantitative genetics; such a 

study might evidence the appearance and maintenance of haplotypes and linkage 

disequilibrium studies could provide a more in-depth understanding of the dynamics of GAs. 

 

Crossover is often regarded as the main search operator of a GA, with mutation seen more as 

a mechanism of ensuring a robust gene pool to be explored by crossover (Eshelman 2000).  
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Genetic Programming (GP)  
 

Often regarded as a specialization of Genetic Algorithms, GP has evolved to become a 

branch of EC in its own right. Initially GP was devised as a method to optimize data 

structures as executable computer programs with the fitness value assigned based on the 

results obtained when executing the instructions contained in each member of the population. 

In this context, GP evolves populations of computer programs or other algorithmic processes 

to solve a specific problem (Banzhaf et al. 1998; Koza 1989; Koza 1992; Koza 1994; Koza et 

al 1999; Koza et al 2003). 

 

We will be discussing GP in details in chapter 5 and particularly Gene Expression 

Programming which is the author‟s favorite flavor of GP.   

 

Learning Classifier Systems (LCS) 
 

Good references to LCS are Wilson (1994), Smith (2000) and Vlachos et al. (2004) for an 

application of LCS in biology. LCS are more of a concept than an actual algorithm; they can 

be seen as a hybrid between a machine learning technique and a GA. LCS is a rule-based 

system which uses agents that receive an external signal (message), process it and produce a 

response. The genetic material consists of a set of rules which map an input (detector) to an 

output (effector), modifying the behaviour of the agents to environmental changes. The GA 

component of the LCS is to adapt the rules to obtain a desired behaviour from the agents.  

 

Differential Evolution (DE) 
 

DE (Storn and Price 1997) is not a branch of EC in its own right, but it has been widely 

adopted in our group to solve quantitative genetics problems. DE can be seen as a parallelized 

simulated annealing algorithm that lies on the intersect between real-valued genetic 

algorithms and evolution strategies. In chapter 4 DE will be discussed in-depth. 

 

Which one do I use? 
 

The NFL theorem applies to EAs. No single approach is always superior for all problems or 

can solve any type of problem. The choice of an appropriate EA depends on the nature of the 

problem at hand. There have been advances in developing a formal framework for EC but 

largely the field is still anchored on a trial-and-error approach. There are no widely applicable 

rules for selection of population parameters apart from the collective empirical experience of 

practitioners. The current drive is to use self-evolving parameters and let the system figure 

out what is best (more in chapter 9). 

 

On the bright side, the methods are robust and even suboptimal parameter selection can still 

lead to good results. As a rule of thumb, GAs are well suited for discrete problems such as 

sorting, ranking or allocation problems; EP and ES are a good first choice for continuous 

problems such as model parameterization; GP allows tackling problems such as model 

discovery. Within each EC branch there is vast number of different algorithms. Selecting the 

best one for a given task can be quite daunting. From a practical standpoint considerations of 



Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics 

23 

 

ease of implementation, computational and convergence speeds and repeatability of results 

are important. 

 

Concluding remarks 
 

In a nutshell, Evolutionary Computation uses computer algorithms which search through 

complex solution landscapes. A population of candidate solutions is created, a fitness value is 

assigned to each member of the population and depending on their fitness value an organism 

has a higher or lower probability of being selected to remain in the population and generating 

offspring. New members are created through crossover and mutation thus exploring the 

solution space. 

 

We have seen when to use and when not to use EAs, but before we get our hands dirty and 

start coding EAs there‟s still one last question: why use Evolutionary Algorithms? Basically, 

it is just because they present various characteristics that are advantageous for solving 

optimization problems. Michalewicz and Fogel (2000) summarized these advantages as: 

 

1. Simplicity. The concept and the implementation of EAs are simple. 

2. Broad applicability. Virtually any problem can be addressed by EAs. 

3. Hybrid methods. EAs allow integration with other methods. 

4. Parallelism. The structure of EAs makes them particularly well suited for 

parallelization. 

5. Robust to changes. Changes in the target system do not render the algorithm useless. 

6. Self adaptation. The parameters of the EA can evolve alongside the solutions. 

7. Solve problems with no known answers. Probably the greatest advantage of EAs; if an 

evaluation of goodness of fit of a solution is possible, EAs can be used. 

 

Nevertheless EAs are not a magic bullet. You will have to think about how to present the 

problem to the algorithm, in chapter 6 problem representation will be discussed. Even more 

fundamentally you will have to understand what the problem really is. A nice side effect of 

EAs is that they show you things that you did not know – as mentioned in the previous 

chapter, they can show solutions which had not previously been considered or show problems 

in the model which you were not aware of – at the end of the day you and the computer will 

have learnt something about the problem! 

 





 

25 

 

Chapter 3: From in vivo to in silico 

 
Cedric Gondro  

 

 

It's been good for 3 billion years - it's good enough for me 

 

Evolution and population genetics 101 
 

Evolution can be seen as a dynamic and opportunistic optimization process. Effectively it is a 

method to search through a vast solution space and find a solution that allows organisms to 

survive and reproduce in a certain environment. It is dynamic in the sense that solutions 

(organisms) can change to adapt to environmental changes and it is opportunistic in the sense 

that solutions are not necessarily globally optimal but rather tend to move to the next 

available solution that ensures viability, even if in detriment of a more globally optimal 

solution. Interestingly enough, the high-level rules that govern evolution and account for the 

great variability of organisms are quite straightforward. Organisms – which can be seen as 

candidate solutions – evolve through random variation due to mutation, crossover and 

manipulations on their genetic material; these candidates are subjected to selective pressures 

which evaluate their adaptiveness and determine their capacity of generating descendants, 

thus propagating better fit genotypes into the future generations. These characteristics are the 

inspiration of Evolutionary Computation.  

 

Evolutionary Algorithms 
 

EC tries to mimic the mechanisms of biological evolution to solve complex problems 

(Mitchell and Taylor 1999; Fogel 2000a; Fogel 2000b). Even though specific 

implementations can vary significantly and algorithms are not constrained to using only 

biological mechanisms, there are three common features which are shared by the different 

branches of EC (Bäck 2000): 

 

1. A population. A number (n) of candidate solutions (representations of the problem) 

compete against each other to remain in the population and generate offspring. Since 

ECs use populations, they can be seen as a parallelized search of the solution space. 

 

2. Selection. Organisms from the population pool are selected for culling or reproduction 

based on their fitness. Fitness is a function measurement of how good a representation 

is at solving the problem. The two most adopted methods for assigning fitness are as a 

direct mapping to the problem or as a relative measurement of performance in relation 

to the remainder of the population. Arguably, the choice of a fitness function that 

clearly states the problem is the most important step in determining the success or 

failure of the EC algorithm. 
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3. Search operators. EC uses stochastic methods to solve a problem; these biologically 

inspired operators provide the variability necessary for the EC population to explore 

different areas of the solution space. The two main sources of variability are mutation, 

which are randomly generated new sources of variability and crossover, which 

exploits the available variability within the population to form new combinations of 

candidate solutions. 

 

Thus, a general EC algorithm combines these features and through iterations improves the 

overall fitness of the population, gradually converging on a solution. The following steps 

form the general structure of an EC algorithm: 

 

1. Create an initial population – randomly or based on prior information 

2. Assign a fitness value to all organisms (also referred to as chromosomes) 

3. Select organisms for reproduction based on their fitness and a selection scheme 

4. Create descendants from the selected parents 

5. Modify the descendants with the search operators 

6. Evaluate the fitness of the descendants 

7. Cull organisms from the parental population and replace them with the descendants 

according to the selection scheme 

8. Repeat from step 3 until a termination criterion is met, for example, a specified 

number of iterations or a predefined fitness value is reached 

 

Computational representation and implementation 
 

An appropriate choice of representation for the populations is crucial for an EA and largely 

depends on the nature of the problem. A parameterization problem is usually represented as a 

real-valued vector; if using an ES or EP the vector consists of the solution vector and 

variability parameters. Finite-state representations are also frequent with EP. A GA 

classically uses binary strings. GP has to store information on the functions, the terminals and 

the relations between the two; lists, stacks, parse-trees and vectors are commonly used. 

 

The choice of programming language is of secondary importance to the algorithms and they 

can usually be easily ported between languages. Without swimming in the dangerous waters 

of defending a specific language, I am rather fond of C# because it‟s a modern fully object-

oriented language which allows rapid development of GUIs and algorithms with a low 

overhead. BK prefers VB.Net (and for exactly the same reasons!). On the downside both C# 

and VB are slower than either Fortran or C under the latest release of the .Net platform. EAs 

can also be easily written for Matlab, R and even Excel. The bottom line is that EAs can 

probably be coded into just about anything. The choice depends on what the objectives are.  
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Population 
 

The population structure and size varies according to the type of EA used. Normally an initial 

population is randomly created or seeded from some previous set of candidates (e.g. for a 

multiple sequence alignment problem, an EA converges faster and more efficiently if the 

initial population is formed by all possible pairwise alignments).  

 

Population sizes also vary according to the type of problem and algorithm. As a rule of thumb 

Differential Evolution works well with smaller populations (10-20) whilst GAs and GPs need 

large population sizes (100-1000, or even 10,000).   

Selection 
 

Selection is an integral component of all EC methods. Through selection, solutions with a 

higher fitness are emphasized in the population. There are several selection operators (Bäck 

et al. 2000a) but all essentially select better solutions for reproduction and delete less fit 

solutions which are replaced by the offspring of the better performing ones. Selection does 

not generate new solutions; it simply directs the evolution of the population. Of notice is that 

not only the best organisms are always selected; the process is stochastic, which can allow 

inferior solutions to be selected over better ones with a low probability. This preserves the 

diversity of the population and avoids a premature convergence on local optima. The main 

selection methods are proportionate, rank-based, Boltzmann and tournament.  

 

Proportionate selection assigns a probability of generating offspring based on the relative 

fitness of the organism. The simplest form of proportionate selection is roulette wheel; where 

each solution is assigned an area in the wheel proportional to its fitness – fitter organisms 

have a bigger area and consequently a higher probability that the wheel when spun will stop 

in their area. 

 

Rank-based selection ranks the entire population based on their fitness and then assigns a 

selection probability based on these ranked values. 

 

Boltzmann selection uses a probability distribution with a T term similar to the temperature 

term in the Boltzmann distribution which decreases as the iterations progress; initially all 

solutions have similar chances of being selected since a large T is used but as T reduces the 

stringency increases and only better solutions are chosen. 

 

Tournament selection chooses a certain sample size from the population to compete and the 

ones with the highest fitness are selected; the selective pressure is defined by the size of the 

tournament. Tournament selection is rapidly becoming the selection method of choice for EC 

applications. There is no need to evaluate the entire population or maintain population 

statistics which makes the selection process faster. For the same reasons it is also well suited 

for parallel implementations. The major drawback of roulette wheel is avoided; in which the 

size of the areas rapidly become the same as the population converges on a solution, forcing 

the use of a fitness scaling mechanism between the upper and lower limits of the fitness range. 

Tournament selection is inherently noisy and can rapidly lead to a loss of diversity. To 

counterbalance this effect small tournaments are preferred in association with slightly higher 

mutation rates. Hancock (2000) presents a comparison of the different selection mechanisms.  
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Generation structure 
 

EC uses two generational structures: steady-state and generational: 

 

1. Steady-state uses an overlapping generation approach in which parents and offspring 

simultaneously compete in the population. Tournament selection is typically steady-

state with only a few new organisms in each generation. 

 

2. The generational approach uses non-overlapping populations with the offspring 

entirely replacing the parental population. 

 

Steady-state runs tend to have a higher variance, thus in small populations the effect of drift 

in more pronounced and can lead to the loss of variability. To counteract this effect, larger 

populations should be used in steady-state systems.  

 

Fitness 
 

Selection operators act on the fitness of the organisms. Fitness is arguably the most important 

aspect of any EA, if the fitness function is not well constructed the whole EA will breakdown.  

 

The fitness function can be seen as a measure of the probability that an organism will survive 

and reproduce in the population. The selection scheme and the fitness function are 

inextricably connected. A good fitness function should allow for a range of intermediary 

values which can be explored by the EA. All-or-nothing fitness functions are ineffective for 

an EA which must be capable of evaluating if a certain solution is better or worse; the less 

granular the fitness function, the higher the probability that the EA will converge on an 

adequate solution. 

 

At this point it is important to highlight the distinction between fitness and objective function. 

The fitness function maps to the objective function which is external to the EC and depends 

on the nature of the problem. The terms fitness and objective function are frequently used as 

synonyms, especially when the mapping between the fitness function and the objective 

function is 1:1. On the other hand, if a population scaling scheme is adopted it is quite clear 

that fitness and objective function are necessarily distinct. In summary, the objective function 

assigns a value to an organism which can be directly translated as its fitness or which can be 

mapped to a fitness value based on the fitness function of the EA. All this might sound rather 

pedantic, but the message is that you can either directly link selection with the problem or 

you can use a completely independent method to select the population.   

 

Search operators 
 

Mutation and crossover are the main search operators used in EC. Their main function is to 

modify candidate solutions to explore the solution space. Frequently both are used in an EA 

and the parameter settings for these operators are critical for a successful run. High mutation 

rates can reduce the method to a random search. If too low, there will be little variability or 

loss of variability in the population. The same applies to crossover, if too high good 
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constructs will be broken up. If too low there will be little exploration of the search space. A 

balance always has to be achieved between the two search operators as well as the selective 

pressure that is applied and the population size that is used. These are the four main 

parameters in an EA. 

 

Crossover 
 

Crossover is a search operator that does not generate new sources of variability in the 

populations albeit introducing new variation. It operates by combining parts from two or 

more parents to generate one or more offspring. The drive behind crossover is to generate 

new variability in the population by manipulating the component sources of variation to 

explore new combinations which might be better solutions to the problem. There are many 

different crossover algorithms depending on the EC method and the representation of the 

problem: binary strings, real-valued vectors, finite-state machines or parse trees. Booker et al. 

(2000) reviewed different crossover methods. The most straightforward crossover is used in 

the canonical GA and is a good model to illustrate the principle. In the figure below a one-

point crossover in a binary GA is depicted.  

 

 

 
 

One-point crossover in a binary genetic algorithm. A breakpoint is randomly selected and the two 

chromosomes swap bitstrings after the breakpoint. Crossover is a search operator which explores 

available population variability by testing new combinations. No new allelic variability is generated 

through crossover but it does generate new variation in fitness values. 

 

Briefly, two parents are selected for crossover, a breakpoint in the chromosome is randomly 

determined, and from the breakpoint onwards the two chromosomes swap the remainder of 

their bitstrings. The figure shows how crossover can produce an offspring with a higher 

fitness than the parents. Consider that the trivial objective function of a GA is to maximize 

the number of ones in the binary string. The parents have respectively seven and six ones in 

their strings and, in the example, their offspring have eight ones, after crossover. 

 

 

Mutation 
 

In contrast to crossover, mutation generates new allelic variability in the population. The 

general principle is that new offspring are created by a stochastic change to a single parent. 

Like crossover there is a plethora of mutation algorithms for the different EAs (Bäck et al. 

2000c). For example, a real-valued EA would change the value at a selected allele with a new 

randomly selected value. Again, the canonical GA is the most pictorial example of mutation. 

The following figure shows a point-mutation bit-flip in which an allele of a parent is 

randomly selected to be flipped. The most common approach is to assign a small uniform 

probability that mutation will occur and test each position of the bitstring; if the mutation 

operator returns true the bit at the position is flipped. Notice that mutation can also produce 
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an offspring with a higher fitness than the parent. After mutation the offspring has eight ones 

instead of seven.  

 

 

 
 

 
Point-mutation bit-flip in a binary genetic algorithm. New offspring are produced by a random change to 

the parent. In the example allele at position 4 mutated and flipped from zero to one. Mutation is a source 

of new variability in a population.  

 

Mutation is an important operator to generate new sources of variability and expose new 

areas of the solution landscape whilst crossover can only shuffle available variability. 

Consider that in the example in the figure above no member of the population had a one in 

allele four; no amount of crossover would generate a solution with one in this position, thus 

an optimal solution would be unobtainable. 

 

The interplay between mutation and crossover is paramount to the success of the EA. 

Mutation feeds new variability into the system and crossover tries to combine it into useful 

combinations.  

 

Concluding remarks 
 

Evolutionary algorithms are primarily computational methods designed for optimization of 

complex problems with large search spaces. There is no optimal method for solving all types 

of optimization problems. An algorithm adequate for a certain class of problems may 

breakdown under a different problem. 

 

The framework for developing suitable EA algorithms for a given problem can be broken 

down into the following steps: 

 

1. Nature of the problem – to solve a problem it is necessary to understand it. This may 

sound like a tautology, but EAs need to be able to evaluate how good a solution is, if 

not in absolute terms, at least in relation to other candidate solutions. If a problem is 

well understood, a more reliable/realistic method to evaluate solutions can be 

developed. 

 

2. Modeling of the problem – optimization is not carried out on the problem itself but on 

a model of the problem. This is an important distinction; a solution can be perfect for 

the model but, for the real problem, it is only as good as the model itself. Thus again 

the importance of understanding the nature of the problem. Knowledge of the problem 

allows the development of a model that captures and reflects its essential 

characteristics. 

 

3. Objective function – arguably the most important component of EAs. The objective 

function is a measurement of how well a solution fits the model of the problem and is 

used to assign a fitness value to candidate solutions, either through, for example, 
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direct 1:1 mapping or rank based selection (based on the relative performance of 

solutions within the population). 

 

4. Development of an evolutionary algorithm – depending on the problem a certain EA 

will be better suited than others. For example, it is now generally accepted that the 

original binary Genetic Algorithm is inefficient to solve real valued numerical 

problems. Alternative methods such as Differential Evolution, discussed in the next 

chapter, are faster and yield better solutions. Two other important aspects are the 

design of efficient search operators (we will see many examples during the course) 

and how to present the problem to an EA, ideally in a parameterization that 

automatically accommodates constraints (in chapter 7 we will discuss how to manage 

constraints).  
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Chapter 4: Differential Evolution 

 
Brian Kinghorn 

 

 

Vive la difference! 

 

Introduction 
 

 

 

 

 

BK escaped from the office for a cup of 

coffee and a browse through the motorbike 

magazines at the Student Center, Colorado 

State University in March 1997.  This action 

changed his life. 

 

 

 

 

 

 

 

 

 

 

 

Within a week or so the massive 

Colorado Beef Cow Production Model 

was being optimized, with relative ease.  

“With relative ease” are the operative 

words here.  Differential Evolution is an 

EA that is small – it can be as small as 

one page of code – and simple to 

implement.  It fulfills the job of “3. 

Optimisation engine” in this diagram 

from Chapter 1: 

 

What does “Differential” mean?  This 

comes from the way that the algorithm matches the size of mutations to the amount of 

variability in the current generation of solutions. This is done individually for each parameter 

1. Problem 

Representation 

2. Objective 

function 

3. Optimisation 

engine 

“Genotype” 
Raw variables 

for each solution 

“Phenotype” 
Usable 

variables or 

states 

“Fitness”  
value for each 

solution 
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to be optimised, as we will see in more detail in the exercise. This makes the algorithm more 

adventurous at early stages, while it is looking for general regions in which good solution 

might lie.  As it begins to hone in on one or a few promising regions, it takes smaller and 

more measured steps.  This can give an appropriate blend of robustness and speed of progress 

at all stages of the optimization.  DE is generally found to perform well compared to other 

more bloated alternatives (eg. Mayer et al 2005). 

 

How simple is DE? 
 

 
Adapted from Price and Storn (1997) 

… small, simple and effective. 

 

How does DE work?   
 

DE uses “tournament selection”.  There is a population of solutions – typically of size 10 or 

so.  Think of 10 chairs, each with a “title holder” (actually a solution) standing on that chair.  

A title holder can keep its position on its chair for as long as it is able, over many cycles or 

“generations”.  In each generation, a challenger solution is made for each of the chairs, to 

challenge the title holder in a one-on-one tournament.  If the challenger is a better solution 

than the title holder, it climbs on the chair as the new title holder for that position in the 

population.  It is a good thing to let the challenger win even if it is only equal in value to the 

title holder – better to keep things moving. 
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All we need is a class full of volunteers, 4 chairs, 4 dice, 2 coins and lots of pieces of 

paper … later on. 

 
 

Differential Evolution
Constructing a challenger

5 0 2 9

Parameter  ( jth “locus”)
1 2 3 4

7 4 7 2

3 2 8 5

8 6 4 4

4 0 5 7

„Individual‟ or „Title holder‟

„Challenger template‟

„Mutators‟

„Challenger‟

„Allele‟ = value for parameter 1 in this challenger solution
4 = 3 + F*(8 – 7)    at F=1

In the 

code:

c

i

b

a

j =

Use Title Holder‟s allele with probability CR

 
 

How to make a challenger?   
 

A challenger is to be constructed for each title holder.  This is where the “Differential” bit 

comes in.  First choose three title holders that are different from the one to be challenged 

(This makes the minimum populations size = 1+ 3 = 4).  Call the solutions for these title 

holders A, B and C. 

 

We make the solution for the challenger equal to C, but then we change (mutate) it according 

to the Difference between A and B: 

 

Challenger solution =  C  + F*(A – B) 

 

… where F is a tuning parameter described below, typically between 0.2 and 2.0 in value. 

 

This oversimplifies the basic DE as invented by Price and Storn.  We still need 

“Recombination” or “Crossing over”. 
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Solutions A, B and C are actually vectors of parameters that are needed to describe a solution.  

So, for example,  C = (c1, c2, … , cL) where there are L parameters that describe a solution. 

[L stands for Loci] 

 

A useful strategy is to make some use of parameters of the title holder to be challenged.  If 

this is the i
th 

 population member, s/he will have parameters  I = (i1, i2, … , iL). 
 

So we cycle through the parameters (j=1 to L) and allocate parameter values to the challenger 

as follows: 

 

With probability       CR :  Challenger solution =  cj  + F*(aj – bj) 
 

With probability (1-CR) :  Challenger solution =  ij 
 

The latter scenario has taken place in the example in the PowerPoint slide above, with the 

allele „0‟, colored red, being inherited by the challenger directly from the Title holder that it 

is going to challenge. 

 

Choice of CR and F 
 

If F is large, the algorithm is more adventurous – casting more widely to find solutions that 

might be good.  This is useful in the early generations, helping to give some initial coverage 

of the solution space.  However, it will usually slow down convergence once there is a decent 

hill to climb – too much distraction in outlandish areas. 

 

One strategy is to keep F high (say between 1 and 2) for the first several hundred generations 

(more or less for bigger and smaller problems).  Much of this tuning work can involve trial 

and error. 

 

I use a periodic change in F – to “have your cake and eat it”.  Some generation are 

adventurous, but most are conservative: 

 
'these bits vary 'mutation' every few generations ... 

If generation Mod 4 = 0 Then F = 1 Else F = Fhold  

If generation Mod 7 = 0 Then F = 4 Else F = Fhold 

      

For CR I use about 0.4.   Trial and error.  But … 

 
'Usually good to start higher ... 

If generation > 500 Then CR = 0.2 Else CR = 0.4   

 

Extra mutation 
 

I find that “Out of the box” Differential Evolution can get stuck on a local optimum rather 

more easily that is desirable.  This is at least partly because all population members converge 

on this part of the solution space, and the mutation generated is reduced to such small levels 

that it is essentially impossible to get away from this location. 
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This is easily fixed by randomly introducing other forms of mutation.  First of all, it makes 

sense to keep “Pure DE” in some generations … 
 

' Pure DE most generations 

If generation Mod 3 = 0 Then DiffOnly = 1 Else DiffOnly = 0 

 

 

*************** 
If MyRnd.NextDouble < CR Or k = loci Then 

  If MyRnd.NextDouble < 0.9 Then      ' do DE ~prob=.9 

    allele(j) = parentallele(c, j) + F * (parentallele(a, j) - parentallele(b, j)) 

  ElseIf MyRnd.NextDouble < 0.5 Then  ' make proportional mutation ~prob=0.05 (But 

no good if stuck at value of zero)  

    allele(j) = parentallele(c, j) * (0.9 + 0.2 * MyRnd.NextDouble) 

  Else                                ' make absolute mutation ~prob=0.05 

    allele(j) = parentallele(c, j) + 0.01 * F * (parentallele(a, j) + 0.01) * 

(MyRnd.NextDouble() - 0.5) 

    ' ... could make this a function of mean solution rather than an arbitrary +0.01 

  End If 

Else 

  allele(j) = parentallele(i, j)     ' or no change depending on CR 

End If 

 

 

Note that this is not “The Correct Way” of doing these things.  In this business one is free to 

express one‟s own opinion and ideas.  But you should test your ideas for speed and 

robustness of convergence.  That can take quite a bit of investigation! 
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Chapter 5: Genetic Programming 

 
Cedric Gondro  

 

 

Why not evolve the model as well? 

Introduction 
 

So far we have focused on numerical optimization. For example, we have a certain model and 

we want to parameterize it or we have an assignment problem and we want to allocate 

resources to the different classes. But what if, say, we have observed data in an experiment 

but don‟t have an underlying model to explain the observations? What we want is to discover 

the model itself. That‟s were GP comes in handy, using the same EC concepts we have seen 

so far, it can be used for model construction (and for good measure parameterization as well!).  

 

Overview of genetic programming    
 

Often regarded as a specialization of Genetic Algorithms, GP has evolved to become a 

branch of EC in its own right. Initially GP was devised as a method to optimize data 

structures as executable computer programs with the fitness value assigned based on the 

results obtained when executing the instructions contained in each member of the population. 

In this context, GP evolves populations of computer programs or other algorithmic processes 

to solve a specific problem (Banzhaf et al. 1998; Koza 1989; Koza 1992; Koza 1994; Koza et 

al 1999; Koza et al 2003). 

 

Original implementations of GP used tree-structured representations implemented in LISP. 

Tree-structures have the terminal nodes of the tree containing inputs (referred to as terminals) 

and the internal nodes holding functions. This type of construct demands significant overhead 

to ensure viability of the trees (handle, for instance, division by zero or infinite loops) or 

correct tree structures which can break-up due to mutation and crossover. 

 

Currently LISP implementations are rarely used and alternative language implementations 

such as C++ are used. The same applies to new GP structures developed to improve on the 

original Tree-GP. Alternative methods are numerous (as everything else in EC!) and include 

Linear-tree Genetic Programming (Kantschik and Banzhaf 2001), Linear Genetic 

Programming (Nordin 1994), Linear Page-based Genetic Programming (Heywood and 

Zincir-Heywood 2000) and Gene Expression Programming (Ferreira 2001). GP uses 

crossover and mutation in a similar fashion as GAs. Commonly crossover involves swapping 

entire subtrees between parents. The figure below illustrates a typical tree GP and crossover 

between two parents. Mutation replaces a subtree with a random subtree of a randomly 

defined depth. GP structures use variable-length representations which have a tendency to 

grow in tree depth through the addition of subtrees of functions and terminals which 

contribute only slightly to improve the fitness. This growth is referred to as bloat and is an 
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active field of research in the GP community. A common practice is to place a cap on tree 

depth (Langdon and Poli 2002).  

 

 

 
 
Crossover in a tree GP. Crossover between parents A and B generate offspring C, the function set is 

{*,+,/,-} and the terminal set is {2,0,1,5}. The trees code for A=(5*0)-(1*2); B=(5+0)+(1/2); C=(5*0)-(5+0).  

 

Gene Expression Programming 
 

We will focus on Gene Expression Programming – GEP (Ferreira 2001; Ferreira 2002). GEP 

is very straightforward to implement, fits well with modelling problems and is the author‟s 

favourite! 

 

GEP is a variant of Genetic Programming that instead of coding structures as non-linear 

entities, the typical parse-trees of GP; it uses linear strings of fixed size which are translated 

into non-linear entities of different sizes and structures. This two-step approach allows GEP 

to be viewed as a hybrid between Genetic Algorithms and Genetic Programming. GEP has 

essentially three main advantages over GP. Firstly, it allows implementation of the 

straightforward search methods common to GAs whilst maintaining the structural complexity 

attainable through GP. Secondly, all linear strings either code for valid structures or can be 

repaired with little overhead; such is not the case with GP where the parse-trees can easily 

breakdown into invalid structures and complex search operators must be used to ensure tree 

viability. The need to preserve valid tree structures limits search operators mainly to 

crossover between tree branches of the same arity. The third advantage of GEP is that it 

allows for more parsimonious solutions in contrast to GP where the entire parse-tree is the 

solution and the tendency is to bloat the tree to the maximum allowed size once the 

population stops evolving.  

 

Heads and tails 
 

The linear strings of fixed size in GEP are referred to as chromosomes. Each chromosome 

has n genes with a head and a tail. The head consists of terminals and functions and the tail 

only of terminals. Terminals are numerical variables or constants, and functions are 

mathematical operators. The size of the head is a user-defined parameter while the tail is a 
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function of the size of the head such that 1)1(nht , where t is the tail size, h is the head 

size and n is the highest arity of the set of functions. 

 

Each gene (h+t) can be translated into an expression tree (ET) from the coding region of the 

gene, referred to as an open reading frame (ORF) in a loose biological analogy. An ORF can 

be of the same size of the gene or smaller, in the last case there are non-coding regions 

downstream of the gene. The size of an ORF depends on the position and relationships 

between functions and terminals on the gene. This is a simple matter of looking at each 

position on the gene starting from zero and if in that position there is a function its arity is 

added to a counter. When the counter value becomes smaller than the current position all 

terminal nodes in the ET are filled with terminals and no further functions can be added to the 

ET.  

 

In summary a GEP structure consists of a chromosome with genes of fixed size which code 

for ORFs of variable sizes that are translated into expression trees (ETs). Search operators act 

on the gene structure (genotype) while selection acts on the expression trees (phenotype). 

  

To illustrate these concepts consider the following equation: 

 

)(*)( dcbay  

 

This simple algebraic expression can be split into a set of terminals T={a,b,c,d} and a set of 

functions F={+,*,-). This equation can be represented as the ET: 

 

 

 
 

Expression tree of equation y = (a+b)*(c-d). Terminal set T={a,b,c,d) and function set F=(+,*,-}. 

 

The ORF for this equation can be constructed copying the values of the nodes from top to 

bottom and from left to right, resulting in the string { * + - a b c d }. 

 

The figure below shows an example of this ORF as part of a gene of size 21. The head size of 

this gene is 10 and consists of terminals and functions. The tail (in bold) is formed 

exclusively with terminals and, from our example is of size 11 since the function of highest 

arity is two. Note that the break off point in the gene is position 6, since in this position the 

total arities of the functions add up to 6 and the total number of elements is 7. Evidently from 

the tree above it is clear that no further function could be added to the expression tree. Thus a 

gene of size 21 can code for an ORF of size 7.     
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GEP gene of size 21 with head (h) of size 10 and tail (t) of size 11.  t = h(n-1)+1. The highest arity of the 

function set is 2, thus n = 2. 

 

At this point it should be clear that the tail is important to ensure integrity of the tree structure. 

By having a tail with only terminals, even if the head is solely formed of functions, there are 

enough terminals available to form complete trees with terminals in the outer nodes. In this 

scenario the gene and the ORF are of the same size. The value of the function with the 

highest arity is important to ensure tails with sufficient terminals for any combination of 

functions.  

 

Selection and Search Operators 
 

Originally GEP uses roulette wheel selection. The author tends to use the currently preferred 

tournament selection since it permits better control of the selective pressure and allows for a 

smoother evolution.  

 

As we mentioned the distinction between head and tail is an important component of GEP. 

Tail integrity (only terminals in tail) must be preserved and search operators need to be used 

accordingly. GEP uses a wide range of search operators: mutation, insertion sequence 

transposition, root insertion sequence transposition, gene transposition, one and two-point 

crossover and gene crossover (Ferreira 2001).   

 

Before discussing search operators let‟s look at how they can modify the structure of ETs yet 

still preserve structure integrity. For our example consider a mutation operator. Mutation 

randomly changes the value in a gene position with another value given a certain probability. 

Since gene structure must remain intact, mutation in the head can replace the original value 

with either a terminal or a function; in the tail section only terminals can be used. The 

following figure shows a point mutation in position 4 in which a terminal (b) was replaced by 

a function (*), as a result instead of the ORF of length 7 a new ORF of length 15 is created. A 

new expression tree is created and the resulting equation is also very different. Notice that 

tree viability is still preserved. 
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Effect of mutation on the GEP structures. A single point mutation can completely change the size of 

ORFs, the ETs and the final product. In position 4 a terminal (b) mutated to a function (*) as shown in 

Gene B. From this mutation a new ORF was created of size 15 (shaded grey) replacing the original ORF 

of size 7, and a new tree (new segments shaded grey).  The final products are shown under Equation. Tails 

in bold font. 

 

 

Even though the original GEP employs several search operators, the operators described 

below are adequate for most tasks. This choice was based on better convergence in test cases 

or simple computational efficiency. The operators can be subdivided into mutation and 

crossover. 

 

Mutation 
 

Two types of mutation work well: point mutation and block mutation. Point mutation 

replaces a single position with another random element from the function or terminal set in 

the head or just from the terminal set in the tail. Block mutation replaces a randomly defined 

number of positions (up to 20% of the gene size is reasonable) with new random elements; 

again, maintaining tail integrity. The probability of block mutation at 10% of the point 

mutation probability is an adequate starting point.  
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Crossover 
 

Crossover can consist of one, two and three-point crossover, with an equal probability for 

each method.  

 

1. One-point crossover cuts both parents at the same position and the remainder of the 

gene downstream from the cut point is swapped to form the offspring. 

 

2. Two-point crossover selects a block of the same size, starting at the same position in 

both parents and this block is swapped in the offspring. 

 

3. Three-point crossover is a simple extension of two-point crossover where instead of 

one block being swapped, two blocks are swapped (notice that for three-point 

crossover four cut points are necessary). 

 

The first two methods are common operators in GEP, the third is a new extension used by the 

author. Three-point crossover is the most disruptive operator employed and is used to replace 

transpositions, gene crossovers and gene transpositions which are excessively disruptive for 

most cases.              

 

Fitness and Objective Functions 
   

The same guidelines for fitness and objective functions discussed so far are still valid. But 

GEP (and all GP flavours for that matter) have some additional considerations. 

  

Even though GEP will mostly yield valid trees, it is still possible that non viable structures 

will appear. These could be a division by zero or the square root of a negative number. These 

invalid organisms can be assigned a highly negative fitness value so that they are rapidly 

removed from the population. The same approach can also be employed for unstable 

equations that overflow. Fitness evaluation tends to be the most time consuming aspect of 

GEP, mainly because of the structure checks. 

 

A good example of where tree structures can break down is with the use of time-delays in 

differential equations. A time-delay can be viewed as an operator that takes two arguments, 

on the right-hand side a list of, for example, the concentrations of a component over time and 

on the left-hand side a delay (t-τ), and returns the concentration at the delay point. 

 

An option for incorrectly placed time-delay operators instead of assigning a low fitness value, 

to the GEP string, is to repair it and ensure a viable solution. Such repairs can be carried out 

probabilistically, either replacing the time-delay operator with another randomly selected 

operator or replacing the right-hand side with a concentration and the left-hand side with a 

valid delay. 

 

A last aspect of the fitness function is constraint-handling. A simple way of handling 

constraints is to set values that do not meet the constraints with the average value of the 

constraint range defined for the parameter, instead of penalizing the entire function. This 

approach ensures that a higher proportion of the population is formed of organisms that meet 
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the constraint criteria. In chapter 7 we will see more advanced approaches to handling 

constraints.  

Bloat 
 

Bloat is a common phenomenon in Evolutionary Algorithms of variable length, particularly 

Genetic Programming and its variants. This essentially is the growth in the length of 

organisms which does not necessarily reflect an improvement in their respective fitness. 

Frequently the growth consists of regions that do not alter the structure of the solution giving 

raise to inert regions referred to as introns.  An example are long trees attached to an addition 

branch that result in zero: they do not alter the value of the solution. 
 

 

 
 

Bloat. The shaded tree is inert and does not alter the final value of the organism. A) A bloated parse-tree 

with 15 nodes. B) The same tree can be reduced to 5 nodes.  

 

A common cause of bloating in EAs is attributed to convergence. If the algorithm ceases to 

find better solutions or evolution slows down, there will be a greater number of similar 

solutions and the entire population tends to grow to the maximum allowed size. 

 

Several approaches have been suggested to reduce bloat. Common techniques include 

maximum size and tree depth limits (Koza 1992) used in almost all GP applications, a fitness 

function weighted by the size of the solution (Banzhaf et al. 1998) and code editing to 

identify non-coding regions and prune them out (Blickle 1996). 
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Chapter 6: Introduction to problem 
representation 

 
Brian Kinghorn 

 

 
Making complexity out of simplicity 

 

 

Introduction 
 

This is our pattern for a problem optimization system, from Chapter 1: 

 

 
 

To let the optimization engine operate simply and effectively, we need to let it work with a 

set of simple variables to represent each candidate solution – such as a vector of real numbers, 

a vector of integers, or perhaps a mixed vector. 

 

  

1. Problem 

Representation 

2. Objective 

function 

3. Optimisation 

engine 

“Genotype” 

Raw variables 

for each solution 

“Phenotype” 

Usable 

variables or 

states 

“Fitness”  value 

for each solution 
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Example 1:  No problem representation filter needed 
 

In simple cases, such representations can be used directly to evaluate a solution through the 

objective function (or the criterion that acts for the objective function) – an example of that is 

in our first optimization example, to find  that maximizes 

.    is a simple vector of real numbers. 

 

Example 2:  Find a good-fitting equation using GEP 

 

However, other problems are more complex and need some form of problem representation.  

Gene Expression Programming (Chapter 5) is a nice example: 

 

 
 

In this case the relatively simple system that the optimization engine handles is the 

“Genotype” and this represents the “Phenotype” – an equation whose form and parameters 

are to be optimized. 

 

Problem representation “converts genotypes to phenotypes” and involves some kind of 

filtering system.  

 

Example 3:  A mate selection driver 
 

Here is another example – optimizing Mate Selection using the filter suggested by Kinghorn 

and Shepherd (1999) 
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We have to decide which males to mate to which females, subject to a number of constraints, 

such as the maximum number of mate allocations per candidate.  Early efforts by Ross and 

Brian were not effective – we tried various approaches, such as directly optimizing the matrix 

of mating instances.  However, almost all solutions thrown up by a genetic algorithm broke 

constrains, and had to be aborted or “fixed up” (see “Managing Constraints” later on). 

 

However, the following filtering idea will only result in legal solutions for the pattern of mate 

allocation: 

 

 

Table 1.  This table illustrates the components to be optimised for 

mate selection - they are underlined.   

   Female

 1 2 3 4 … 

Male

 

No 

of 

uses 
Ranking 

criterion Rank 
1 0 1 1 

1 2 
5.32 

2.16 

2 

3 
    

2 0 - -     

3… 1 7.64 1     

 

From Kinghorn and Shepherd (1999):  “The mate selection driver shown in Table 1 was 

developed to conduct the search across all legal mating sets.  The underlined figures in Table 

1 drive the three matings noted, and these are the values to be optimised. “No. of uses” 

(second column for males, second row for females) is the number of matings for which each 

animal should be used, and this in turn drives selection, including extent of use of each 

animal.  An animal is culled if this is set to zero. “Ranking criterion” is simply a real number.  

It is ranked to give the column “Rank”.  This in turn drives the mate allocation.  The first 

ranked male mating is the single mating from male 3.  He is thus allocated to the first 

available female mating (the one nearest to the left) -  the one mating from female 1.  The 

second ranked male mating is the first mating from male 1.  He is thus allocated to the second 

available female mating (the one second nearest to the left) -  the one mating from female 3.  

The third ranked male mating is the second mating from male 1.  He is thus allocated to the 

third available female mating - the one mating from female 4.” 

 

And this Powerpoint slide underlines the parameters that have to be optimized: 
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Parameters for mate selection

 Male candidates

1

2

3

4

…

2

0

1

0

…

 Female candidates

101

102

103

104

…

1

0

1

1

…

 Ranking criterion

1
st
 male mating

2
nd

 male mating

3
rd

 male mating

…

5.32

2.16

7.64

…

Parameters to 

be optimised

 
 

 

This problem representation works very nicely when coupled to a DE optimizer – as used in 

Total Genetic Resource Management (See www.xprime.com.au).  GenMate, as used at PIC, 

uses a more involved problem representation that accommodates grouping constraints (eg 

that certain classes/groups of male can only mate with certain classes/groups of females), 

while only producing legal solutions that conform to the grouping constraints. 

 

In both these cases, the number of matings per candidate should sum to the overall total target 

number of matings, or total per group/unit/farm, and this needs to be managed separately.  

However, given a legal pattern of “No. of uses”, a proper mate selection driver will only 

produce legal mating sets.  This greatly increases the robustness and speed of the Mate 

Selection optimiser. 

 

Example 4:  Choosing p animals out of a group of size n 
 

How should we represent which animals get chosen?   We could have a vector with one 

element for each animal, and values 0 and 1 mean unselected and selected respectively. 

 

Two drawbacks here: 

 

1. We need to constrain to p animals chosen.  Whether we allow a solution to have a 1 in 

a certain location depends on the values at other locations. 

 

2. The response surface is not a good shape for efficient climbing, as there are no 

intermediate values.  A “good” animal is either in or out.  There is no such thing as a 

solution being close to letting the good animal in – an attribute for which its progeny 

solutions might benefit. 

 

http://www.xprime.com.au/
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A better problem representation involves optimizing a vector of real numbers, one per animal.  

Here is an example solution at the “Genotype” stage, before the “problem representation filter” 

is applied: 

 

Animal 1 2 3 4 5 6 7 8 9 10 

Real 

number 
6.91 7.43 3.23 1.88 8.97 3.76 6.92 4.46 8.44 2.12 

 

To invoke the filter, rank animals on these numbers: 

 

Animal 5 9 2 7 1 8 6 3 10 4 

Real 

number 
8.97 8.44 7.43 6.92 6.91 4.46 3.76 3.23 2.12 1.88 

 

And choose the top p animals as the solution to be evaluated.  This is the “Phenotype”.  So if 

p = 4 our vector of numbers represents a solution “Choose animals 5, 9, 2 and 7 to be in the 

group”.   

 

[Note that this could be a good or a bad solution – that is for the objective function to decide.  

All we are dealing with here is a system to produce “legal” solutions.] 

 

As for the drawbacks noted above. 

 

1. Notice that we do not have to worry about constraining the number of animals chosen 

to p.  That happens ~automatically. [In fact we could add p to the list of variables to 

be optimized, and let group size and group membership be co-optimised.] 

 

2. Notice in the example given that animal 1 just lost out on group membership by a 

small margin of 0.02.  However, if this is in fact a good animal that actually belongs 

in the optimal solution, then this solution will be better exploited.  For example, if it is 

chosen as a template to make a new challenger in DE, then animal 1 has a better 

chance of making it into new solutions because of its high value in this solution.  [A 

vector of real numbers contains more information than a vector of 0‟s and 1‟s, and 

this is of real value to the optimization system.] 

 

Making a response surface that is better for climbing will be a bit more clear in the next 

example. 
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Example 5:  Assigning animals into groups 
 

 

We can base this on the same example.  The third row is group number: 

 

 

Animal 5 9 2 7 1 8 6 3 10 4 

Real 

number 
8.97 8.44 7.43 6.92 6.91 4.46 3.76 3.23 2.12 1.88 

Group 1 1 1 2 2 3 3 3 4 4 

 

 

Notice that group sizes can be different – and with a bit more work we can make number of 

groups and group sizes variable and to be optimised.  But let‟s stick to 4 groups of sizes 3, 2, 

3 and 2, as in the table. 

 

In this case we have: 

 

“Genotype”:  {6.91, 7.43, 3.23, 1.88, 8.97, 3.76, 6.92, 4.46, 8.44, 2.12} 

 

… which filters to … 

 

“Phenotype”: (5,9,2), (7,1), (8,6,3), (10,4) 

 

We can take steps to improve the response surface: 

 

Consider that our example is quite a good solution – the best in the current generation of our 

optimization engine, and the second best possible solution.   Assume that animal 5 should be 

swapped with animal 4 to get the best solution.   To progress to the best solution animal 5 has 

to be lucky to make the big jump (and both mutation rate and variation among solutions could 

be low at this stage of convergence), or it has to navigate its way through the possibly deep 

“valley” of poor solutions while it belongs to groups 2 and 3. 

 

What we can do to help is to order the groups such that groups 1 and 4 sit adjacent to each 

other.  The only basis to do this sort of thing is prior knowledge about the attributes of each 

group.  For example, if groups are farms, we might order these according to pasture quality, 

average milk yield, mean EBV, or some index of such things.  What we are doing here is 

trying to make a response surface with fewer valleys or less deep valleys.  The practical 

outcome is faster convergence. 

 

The possible downside here is less adventurous coverage of the solution space in early 

generations (but after the optimization has started). 

 

 

We can take further steps to improve the response surface: 
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An additional trick that would help solve our hypothetical case is to turn the linear structure 

into a circle, joining groups 1 and 4: 

 

 

 

 

 

 

 

 
 

 

Here is our solution in a circle, with group shown by color (group 4 is dark red).  Upper 

numbers are animal numbers and lower numbers are their “Genotype” numbers. 

 

To jump directly from group 1 to group 4 we can simply rescale.  For example, if the only 

change were to the Genotype value of animal 5, by adding 2 (from 8.97 to 10.97) then we 

subtract 10 (taking 10 to be the “12 o‟clock value” on our scale) to give 0.97. [Animals with 

negative numbers get these subtracted from 10, to go anticlockwise on the clock face.]   

 

Animal 5 then goes to the bottom of the list and pushes all the other animals up one place – 

giving some extra work to be done.  However, the many small corrections needed can be 

handled more easily that a big move for that one animal, especially for a problem with many 

animals. 

 

Such flexibility in the filtering system makes an optimization less prone to getting stuck at a 

suboptimal solution. 
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No-Man’s land 
 

The strategy just described can make it too easy for an animal to jump between the two most 

extreme solutions – if we are close to the optimum, a high proportion of mutations can be 

deleterious because of this.  The solution is no-man‟s land. 

 

For example we reserve the values between 9 and 10 as belonging in no man‟s land.  An 

animal that ends up here can be allocated to the nearest group (the first or the last).   

 

 
 

 

However, a better strategy is to send him to the nearest group with a probability 

, where d is distance to the boundaries (0 and 9 in our case).  Use any 

chance to use randomness in your algorithm.  It does help.     
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Chapter 7: Managing constraints 

 
Brian Kinghorn 

 

 

Those that trespass will be penalized.  Or otherwise fixed up. 

 

Introduction 
 

Many problems involve constraints on the solutions. Here are some examples that are 

imposed by simple logic: 

 

1. The number of mates to allocate to a bull should not be negative. 

2. The amount of feed to offer an animal should not be negative. 

3. The date to wean should not be before birth date. 

4. A natural mating bull can be used on a maximum of one farm at a time. 

 

And here are some examples that might be imposed by the stakeholder(s): 

 

1. Maximum breeding herd size should be 200 females mated. 

2. The maximum acceptable coancestry among parents in this mating round is 0.1. 

3. The maximum number of individuals in a group for pooled tissue quantitative 

genotyping is ten. 

4. The maximum permissible number of genetic marker mismatches per animal (various 

applications …) 

 

This chapter discusses two key approaches to handling constraints 

Ask yourself – do I need this constraint? 
 

Quite often, constraints are requested/applied by stakeholders because they think that 

solutions that break that constraint will not be so good.  That is not “thinking outside the box”!  

You might get a surprise and discover a solution that breaks your preconceived constraints, 

but is in fact desirable for reasons that are good and useful (see “Let your computer make you 

famous.” in Chapter 1). 

 

Investigate the impact of removing constraints that are not needed to give a feasible solution.  

If these constraints were well-founded, then the optimal solution should not break them if the 

objective function is sufficiently comprehensive. 
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How to apply a constraint. 
 

There are two approaches to applying a constraint: 

 

Penalise: Apply penalty in the objective function to solutions that break constraints.  

The penalty should be sufficiently large to prevent the optimal solution being 

one that breaks the constraint. 

 

Fix: If the constraint is on the variables passed to the objective function, you can 

choose to change these appropriately before passing them to the objective 

function. 

 

Both of these approaches have their merits, as discussed here: 

 

 
 

 

The simplest form of constrain is to set bounds for variables, and these can be easily fixed, as 

in DE_Demo … 
 

             For j = 1 To loci 

                 If allele(j) < MinVal(j) Then allele(j) = MinVal(j) 

                 If allele(j) > MaxVal(j) Then allele(j) = MaxVal(j) 

             Next 

 

… before allele() gets evaluated in the Criterion subroutine.  Setting values exactly to the 

boundaries is simple but not the best strategy.  See “Assigning animals into groups” in 

Chapter 6. 

 

 

Table 1 in Chapter 6 gives a more comprehensive example.  If we freely optimize the number 

of uses of each candidate animal, then virtually every solution will be illegal, because the 

number of uses per sex will only rarely total to the desired number of matings.  So, if we use 

the Penalise strategy, the program will spend ages working on illegal solutions.  Better to Fix 

the variables (number of uses) before hand.  This can be done by finding the number of uses 

over (or under) the total target and implement a repeatable strategy to deal these out to (or 

withdraw from) the candidates available.  This can be done separately for each sex of parent. 

 

1. Problem 

Representation 

2. Objective 

function 

3. Optimisation 

engine 

“Genotype” 
Raw variables 

for each solution 

“Phenotype” 
Usable 

variables or 

states 

“Fitness”  

value for each 

solution 

“Fix” ? 

“Penalise” ? 
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“Fixing up” is the better strategy for most “logical” constraints.  Fix them up before going to 

the objective function.  However, you must do this in a repeatable manner.  If two solutions 

have exactly the same “unfixed” set of parameters, they should have the same “fixed” set of 

parameters.  

 

When fixing solutions in this manner there is some danger that the strategy you use prevents 

good exploration of the solution space.  Take care not to “Fix” parameters to the same sort of 

region, for example at the boundaries of constraints. 

The big advantage of the “Penalise” strategy is that it so easy to apply… 

 

If (ConstraintBroken) fitness = fitness – 999999 

 

… that should cure the problem! 

 

If it is difficult or impossible to logically fix a solution set so that it is rendered legal, or 

otherwise does not break a constraint, then penalisation can be used.  Penalisation is easy to 

implement, but it makes for much slower convergence if most solutions are illegal. 

 

Hard constrains and soft constraints 
 

In some such cases all solutions break one or more constraints in the first generation(s) of 

optimization, This is why it can be useful to apply “softer” penalties – so that the 

optimization engine can give reward to solutions that break fewer constraints, and eventually 

it finds solutions that break no constraints.  You might have to play with constraint penalties 

to help a complex optimization to “get off the ground”.  A „hard constraint‟ would allocate 

the smallest possible fitness.  That is rarely needed. 

 

Softer constraints can also be useful to get the optimization going well in the middle phase of 

optimization.  For example, there could be a solution that just breaks a constraint, but is much 

better in other respects than any other fully legal solution.  Letting it in to play a role can 

speed up optimisation.  In this case it pays to take account of how much the constraint is 

broken by – a small misdemeanor is more easily corrected in the game of evolution: 

 

 

If (Para> ParaConstraint) fitness = fitness – 99*(Para – ParaConstraint) 

 

If the final best solution breaks a constraint, then this is most easily fixed by changing the “99” 

weighting on the fly (See Chapter 8). 
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Chapter 8: Changing the goal posts 

 
Brian Kinghorn 

 

 

The best direction to take depends on how far you can go in each direction. 

 

Introduction 
 

While an optimisation is running it is possible to view key aspects of the currently best 

solution in a visual manner. Here are some example interfaces: 

 

 
 

 
 

By using a stochastic optimization algorithm, an optimal solution is not immediately 

„calculated‟, but intermediate forms are generated as evolution progresses.  This is in fact 

very useful, as the pattern of this progression across the solution space is very informative to 

the user.  It helps in visualizing the domain of possible outcomes (“the Response Surface”), 

and shows the compromises made when the user is overly dogmatic about achieving 

preconceived targets or maintaining preconceived constraints ... “Gosh – if I relax my desires 

a bit on this aspect over here, look how much more I can make on these aspects over there!”  
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All this is done on the basis of the practitioner‟s exact prevailing scenario/animals – and it 

can be very educational indeed. 

 

This sort of exercise often leads the user to doubt the suitability of the objective function 

initially chosen. 

  

This change of heart rarely comes as a surprise or disappointment.  In complex problems the 

objective function can cover a range of largely disjointed issues, and is often formed with 

more subjectivity and guesswork than objectivity.  It is also true that the best direction to go 

in depends on how far you can go in each direction – and this does not become evident until 

an optimisation tool is used flexibly – to “change the goalposts on the fly”. 

 

Changing “on the fly” 
 

The process is quite simple.  The user can „change the goalposts‟ by, for example, altering a 

constraint or a weighting in the objective function, or setting a target state for a key issue or 

variable.  The software is engineered such that the optimization analysis is interrupted, the 

objective function changed, all current solutions are evaluated using this new function, and 

the analysis restarted.  This process should be transparent to the user. 

 

Here are some relevant highlights in the DE_Demo example: 

 

Space to store last good solution … 
    Sub DE() 

        Static GoodFit() As Single  ' For reloading new solutions on change 

of goalposts 

 

 

Seed the last good solution into the re-started optimisation … 
        For i = 1 To popsize 

            For j = 1 To loci 

                parentallele(i, j) = 0 + 10 * Rnd() 

                If i = 1 Then parentallele(i, j) = GoodFit(j) ' Make first 

population member same as last good solution 

… and note in the code that the fitness value for this “GoodFit” is recalculated using the 

newly set objective function. 

 

 

After optimization is interrupted or otherwise finished, store the best solution … 
        For j = 1 To loci 

            allele(j) = parentallele(Best, j) 

            GoodFit(j) = progenyallele(Best, j) 

        Next 
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How to manage change of direction 
 

The simple approach is to change the weightings in the objective function.  Here is an 

example from the DE_Demo program:  

 

 
 

The graphic shows the optimal solution for two key components, selection response and 

inbreeding, as a small white dot in a sea of red.  The red dots have been left by all the 

candidate solutions that have been tested by the optimization, and this shows the response 

surface for just those two components – it shows where you can go.  

 

The relevant code in the objective function (subroutine Criterion) is: 

 
            Fitness = 0 

            Fitness = Fitness + WeightSel * SelectionResponse 

            Fitness = Fitness + WeightInb * Inbreeding 

            Fitness = Fitness + WeightPad * nPaddocks 
 

… where eg. WeightSel is the weight on selection response and SelectionResponse is the 

selection response that has been calculated for the prevailing solution. 
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So – how best to change direction?  If we want to aim for a solution at a particular place on 

the response surface, we could try playing with the weightings to try to get there.  But there is 

a much better way of navigating … 

 

GET THE COMPUTER TO DO THE WORK.  If you know where you want the white dot to 

be, make an objective function that will take it there in a direct manner.  This is virtually a 

one-liner  … 

 
Fitness = -(OptSel - PicX(SelectionResponse)) ^ 2 - (OptInb - PicY(Inbreeding)) ^ 2 

 

Here, PicX(SelectionResponse) is the X-axis pixel location of the prevailing solution‟s 

predicted selection response.  OptSel is the previously captured X-axis pixel location of the 

mouse click that the user made on the graph - on or near the response surface.  That mouse 

click also initiated a “Change of goalposts”.    So Fitness is simply the negative of the 

Euclidean distance between the solution location and the mouse click location.  Maximising 

Fitness minimizes this distance. 

 

Here is a result: 
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Notice that the white dot is at the edge of the solution space – it has moved to the most 

extreme point that it can, adjacent to the mouse click location.  However, in doing so it has 

ignored the component objective “Number of paddocks”, which settles on a value of 6.  This 

is the same as the number of sires: one sire per mating paddock.    

 

So a simple extension might be to make a tick box that, when checked, constrains the number 

of paddocks to the value chosen – or two tick boxes to invoke chosen upper and lower limits.  

Then, with a few clicks on the graph, the user will see the reduced response surface for 

selection response and inbreeding – reduced because of the constraint(s) on number of mating 

paddocks. 

 

If you can think of it, you can do it ! 

 

 

Aside: Note that changing the goal posts is very different from directly fiddling with 

the parameters to be optimized!  Changing the goalposts is much more powerful – the 

optimization engine does the work of pushing in the direction of the prevailing 

objective function.  We just have to move the target around to get the result we desire.  

As someone once put it, “Using the tactical approach is like driving a good car in a competitive 

race.  We have control of the steering wheel, accelerator and brakes, and we can drive in a manner that 

is fast, yet safe, economical and in the proper direction.  We no longer need to have our head under the 

bonnet, monitoring every piston beat, and missing opportunities to overtake or avoid crashes.  To make 

the most of mate selection, we should let it monitor the piston beats, and give it good head to find the 

best way ahead.  There is plenty of opportunity to do test laps of the circuit before committing to a 

decision - if it does something we do not like, we need to adjust the way we steer it, rather than getting 

out and pushing it round the track.” 

 

Opportunity for changing direction 
 

There can be amazing opportunities to change the solution from what an initial objective 

function might dictate.  Take this hypothetical example: 
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The selection index calculation tells us that we must aim for a response of 25 units in trait A.  

But when we look at the graph we can see that we can aim anywhere between about 10 and 

35 units of response in Trait A, and suffer little theoretical drop in predicted total dollar 

response. 

 

Why would we decide to deviate from the 25 figure?  There are many possible reasons, and 

they mostly have to do with: 

 

1. Oversimplification of the economic model.  We usually assume linearity, when in fact 

economic contours are more correctly curved.  The value of a Kg increase in milk 

yield depends on what changes are also made in protein percent.  A desired gains 

approach can help resolve this. 

 

2. Probably more importantly, we have additional information that is not available to the 

analysis.  For example, if we adopt the “25” figure, we might also get a negative 

predicted response in Trait B, or a negative selection index weight on Trait C, and our 

customers (who are always right) might not understand or like that, and be put off our 

breeding program.  With little compromise in predicted total dollar response, we 

might be able to keep everyone happy. 

 

Ownership of the solution 
 

With frequent manipulation of the objective function in this way, the user can explore the 

most exciting parts of the response surface, learn much about the problem in the context of 

the prevailing example, and develop confidence that the solution finally accepted is a good 

one.  “Ownership” of the accepted solution is a very important phenomenon, especially for 

thinking practitioners: 

 

     

Attitudes

Flexible

Scientific tools

Application

Constraints

A Dynamic Tactical Decision System

Judgement

Possible 
outcomes

Data, Knowledge 

and Science

Accepted   outcome

 

 

There is a point to underline here.  When properly managed, this process constitutes a vehicle 

whereby scientists can bring the maximum possible power of their science into direct 

practical application.  This is because the „scientific‟ components of an objective function 

will always compete to be exploited as much and as appropriately as possible in the face of 
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compromises, mostly realistic and useful compromises, imposed by practitioners.  The 

alternative is to mix science and practice in a somewhat arbitrary manner, which all too often 

leaves science both misunderstood and ineffective. 
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Chapter 9: Improving performance 

 
Cedric Gondro  

 

 

Evolving evolvability 

 

Introduction 
 

We have covered a wide range of EAs in the previous chapters and some practical 

considerations on how to get the best out of them. In the next chapter we will cover how to 

decide that enough is enough - diagnosing convergence. But there still are some pressing 

issues, for example, what to do when you want the best product and the lowest price!? No, 

there are no miracles, but you can think of ways to handle multicriteria problems (especially 

the ones that conflict with each other). And how about making the runs go faster? Your code 

is already as streamlined as it gets, what can you do? Easy, more computers, of course - 

parallelization! And when you are fed up of tinkering with population parameters, a bit more 

mutation, a little less crossover - try self-evolving parameters, let the EA find what the ideal 

settings are. And our last topic covers what to do when part of your problem is ideal for one 

method and the other part fits perfectly into another algorithm - hybrid evolutionary 

algorithms.  

 

Multicriteria optimization 
 

In multicriteria (or multiobjective) optimization the fitness function is even more critical as 

there usually is no unique solution to a problem but rather a Pareto front of solutions. Since 

objectives can conflict, improvements in one objective can degrade another one. Different 

combinations of values for the different objectives can yield the same total fitness; this 

implies that there is no unique optimal solution to the problem but rather a set of solutions 

with the same fitness (Pareto-optimal set). More formally a solution is Pareto optimal if there 

is no feasible set of variables which would improve a criterion without simultaneously 

decreasing at least one other criterion. An example of such a problem is an optimization 

problem in microarrays in which a balance must be found between the number of slides (cost 

constraints) and the experimental questions (information constraints). With few slides the 

costs are low but there is not enough information to address the experimental questions; on 

the other extreme there is surplus data but at a very high cost (we will discuss this example in 

chapter 11). 

 

A common approach to multi-objective optimization is to use a weighting scheme for the 

different objectives (Zitzler et al. 2000; Van Veldhuizen et al. 2000). There are several 

approaches to the weighting scheme, these methods range from a fully self adaptive approach 

– the scheme evolves alongside the EA in the same fashion as mutation parameters in ES – to 

a user-defined approach where the user modifies weights based on personal preferences. In 
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this case, weightings can be varied in the light of the response surface of component 

outcomes generated during analysis – as discussed in the last chapter, the best direction to 

take depends on how far can be gone in each direction.  

 

Multicriteria fitness example - simple scaling 
 

Consider an EA that is trying to simultaneously fit time series data for various correlated 

functions. A simple fitness function is a measurement of goodness of fit between the 

predicted values of the model at a given time and the observed values such that 
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Where the upper term is the sum of the squares of differences between the observed (xij) and 

predicted (yij) values at time point j and the lower term is the variance of the observed data (xi) 

for each component (i) of the system. The use of the variance in the lower term scales the 

sum of squared deviations so that excessive emphasis is not given to a particular equation in 

detriment of the others. Fitness is treated as a maximization problem with worse solutions 

having highly negative values (due to the minus one multiplier) and the better organisms 

having values closer to zero, which is the maximum fitness.   

 

A suggestion 
 

When working with multicriteria problems it is worthwhile storing all equivalent solutions 

either to make a decision based on any available additional information (or even a whim!) or 

get a better understanding of the potential scope of solutions. A good tutorial for multicriteria 

optimization is found in Coello Coello et al (2007) and Zitzler et al. (2004). 

 

Parallelization 
 

Probably the greatest limitation to the use of EC methods is the dimensionality problem. As 

the number of variables increases the computational effort can increase exponentially. EAs 

cannot compete in terms of speed with strong harm approaches. But by their very nature EC 

methods are well suited for parallelization - they are commonly referred to as embarrassingly 

parallel due to the ease with which they can be split into smaller problems. This ease meets 

heads on the current trend of low cost clusters and multi core processors and can potentially 

shift the time-cost balance since parallelization of deterministic (e.g. dynamic programming) 

algorithms is not a trivial task. 

 

The main constraints to parallelization are not the EAs but getting processors/computers to 

communicate with each other. On up side, higher level APIs are making parallel 

programming easier. Under Windows WMI can be used to connect across computers and  

under .NET the remoting library is very handy. 
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In EC terms, an algorithm can be parallelized by simply running independent jobs in each 

machine (yes, this still is parallel computing!). Due to the stochastic nature of EAs multiple 

runs of a job are always mandatory to ensure reliability of results. It can be very time saving 

to run all repeats at the same time (especially if the run takes a week or two).  

 

More realistic parallelization can be achieved at the population, individual or fitness level 

through different models. The two main models are: 

 

 Master-slave model: run the population on one machine and calculate the fitness on 

other machines. Here the population manipulations (the EA per se) runs on a single 

node but the fitness evaluation (which in more cases than not is the most demanding 

task) is spread out across the computational resources. This model is particularly 

efficient with overlapping generations since there is no need to keep the population 

synchronized.    

 

 Island model: each processor runs its own population and from time to time migrants 

move from one machine to the other. This model allows different areas of the search 

space to evolve concurrently whilst still allowing a certain level of gene flow which 

will have smaller or larger influence in the acceptor population depending on the 

differences between fitness. If the migrants move between neighbors the model is 

termed stepping stone. 

 

A complete overview of parallel EAs is given in Nedjah et al. (2006). 

Self-evolving parameters 
 

Parameter setting has always been a concern in EAs. The methods are quite robust to 

parameter settings but nevertheless they can influence convergence times and even define if 

the algorithm will get entrapped in a local optimum or not, as illustrated in the figure below. 

Unfortunately, except for simple scenarios there are no formal methods of determining 

adequate parameters.  

  

Fitness contours for populations of size 10 (1), 100 (2) and 1000 (3).The lower fitness values represent better 

results.    
 

An alternative is to concurrently evolve the solution and the parameters. In effect this is what 

DE does (remember the Differential?). Self-evolving parameters are part of evolutionary 

strategies and evolutionary programming, but not so common in GAs and GPs.  
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A simple strategy for GAs and GPs is to ensure an adequate balance between new mutations 

and crossover - recall that mutation creates variability and crossover combines it. This 

balance can be modified dynamically by changing (evolving!) the mutation and crossover 

probabilities between generations based on the fitness gain scaled by the population's fitness 

variance, evolving these parameters alongside the population. If tournament selection is used, 

the tournament size can easily co-evolve as well. An entire book devoted to parameter setting 

in EAs is found in Lobo et al. (2007). 

 

Hybrid Evolutionary Algorithms 
 

When we discussed Genetic Programming it was quite clear that the methods are well suited 

for building structures, but less than ideal for parameterization. Consider for example a 

problem in which the objective is to discover the underlying function and also the correct 

parameters that explain a given dataset. Ideally one would want to use  a method such as 

Gene Expression Programming and explore its capacity to construct model structures but 

instead of parameterization with GEP, use a more robust algorithm such as Differential 

Evolution for the parameter optimization. Hybrid algorithms are common practice in EC, 

there are many hybrids out there in the wild and of course you can always make your own. 

Here we will illustrate with a hybrid between GEP and DE. 

 

 Hybrid Differential Evolution and Gene Expression Programming 
Algorithm 
 

A simplified version of the hybrid algorithm is depicted below. Initially random values are 

assigned to a given set of variables either within the bounds of a set of constraints or with 

fully unconstrained values (in our tests the later tend to increase the search times). The 

algorithm iterates between GEP and DE by a user-defined number of iterations. 

 

For the first iteration a random population of models is generated using the initial variable set. 

GEP is used to select better models. At the end of the GEP run the best model is selected, 

simplified through a bloat reduction method and used as the model for the DE to optimize the 

variable set. At the end of the DE run if the optimized variable set has a higher fitness than 

the original set it replaces it. 

 

From the second iteration onwards, the GEP run will use the optimized variable set. The 

initial populations of GEP and DE are randomly generated apart from chromosomes zero, 

into which is respectively copied the current best model and the current best variable set, thus 

ensuring that the next round starts at least at the current best solution.         
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Algorithm of the hybrid method using Differential Evolution and Gene Expression Programming. 
Initialize random values for variables within a set of constraints 

Do until (termination criterion) 

{ 

Iteration i 

{ 

  GEP 

  Initialize random population of models 

 Replace chromosome 0 with best model  

  Do until GEPGeneration = GEPMaxGenerations      
   { 

      Select 

      Crossover 
      Mutate 

      Evaluate 

      Replace 
  Generation++ 

   } 

 If (GEP Best Model Improves Fitness) 
   Replace model with best model from GEP 

 Else Keep original model 

   

  Bloat Reduction Method 

 

 DE 

 Use Best Model to optimize variables 

 Initialize random population of variables within constraints 
 Replace chromosome 0 with best variables  

  Do until DEGeneration = DEMaxGenerations      

   { 
      Select 

      Crossover 

      Mutate 
      Evaluate 

      Replace 

  Generation++ 
   } 

 If (DE Best Values Improve Fitness) 

   Replace variables with best values from DE 
 Else Keep original variables 

  i++ 

} 
     

} 
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Chapter 10: Diagnosing convergence 

 
Brian Kinghorn 

 

 

At the end of the rainbow is a pot of gold. 

 

Introduction 
 

When will we ever get there?  The trouble is that for most practical problems we would not 

know when we have arrived.   

 

With some searching around the region of the current solution we might be able to detect that 

we are either at or very close to an optimum.  But it could be a local optimum, with a valley 

to be crossed to get to the global optimum. 

 

In practical situations, we have to stop evolving and accept the result at some stage.  In most 

cases it is not critical to find the exact best solution – one that is pretty close to that will be 

sufficient – a “satisficing solution”.  “Satisficing is a decision-making strategy which 

attempts to meet criteria for adequacy, rather than to identify an optimal solution” 

http://en.wikipedia.org/wiki/Satisficing. 

 

Criteria for stopping 
 

There are many ways of deciding when there has been sufficient convergence.  This chapter 

suggests a small number of approaches for accepting convergence.  Some or all of these can 

be applied simultaneously in practice.  They are listed in the order that they appear in the 

demonstration program that will be used for illustration: 

 

 

Criterion 1: The solution must exceed a specified percentage of the current predicted 

asymptotic maximum solution.  This is described below. 

 

 

Criterion 2: No improvement over the last pnc percent of nlast  generations, where nlast  is the 

last generation in which the best solution improved on the best solution in the 

previous generation, and pnc is a percentage.  It can be >100%.   

 

It is sensible to make pnc a function of  nlast.  For example, if we fixed pnc at 

20%, then we would say “Stop!” at generation 12 if the last improvement was 

at generation 10.   This is not sensible, whereas we would say “Stop!” at 

generation 24,000 if the last improvement was at generation 20,000.   This is 

more sensible.  Here is a suggestion that „tunes‟ pnc to 20,000 generations: 

http://en.wikipedia.org/wiki/Decision-making
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If we use this, then we would say “Stop!” at generation 100 if the last 

improvement was at generation 10 – more sensible. 

 

Criterion 3: No improvement for a specified fixed number of generations.  This is an extra 

safeguard against premature stopping. 

 

Criterion 4: No fewer than nmin generations in total. 

 

Criterion 5: No more than nmax generations in total. 

 

 

The actual decision to stop can depend on meeting various combinations of these criteria, as 

described later. 

 

A predicted asymptotic maximum solution 
 

The concept is quite simple here.  Fit a non-linear regression of best solution in each 

improved generation against generation number, and use this to predict the asymptotic 

maximum solution.  An „improved generation‟ here is one in which the best solution is better 

that that in the previous generation.  However, in practice we should include the most recent 

generation, even if it does not give an improvement. 

 

The non-linear fit is a bit of an art, because we never have a “correct” model for the form of 

the non-linear function to be used.  You might find a better recipe – but here is one that has 

worked well for me: 

 

 

 

where  is the best solution at generation g,   is the asymptotic maximum solution, k is 

a rate constant, and b is a bender of the exponential function, which I treat as a fixed constant.  

I find that b=½ or 1 has been reasonable – choose a value that seems to give a good fit for 

your own scenario, easily seen if you have graphic output, as below.    and k are to be 

found to give the best fit to the data (g and ), probably by minimizing .  The fit 

is facilitated by forcing the regression to pass through both the origin and the last point.  This 

defines  for a given k, such that we only have one degree of freedom to adjust (k) to 

minimize .    (See appendix for some code). 

 

Because the fit of the curve is most critical towards the asymptote, I only use (or „track‟) the 

last nTrackJumps = 8 number of improvements (or „jumps‟), plus the origin, in the 

exponential fit.  The most recent generation tested can be an exception here – it may not 

constitute a jump, and as generation number increases with no further jump in fitness, the 

predicted asymptote reduces to approach this stable fitness value. 
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Example 
 

The next diagram shows an example of the convergence module that is attached to the 

DE_Demo program.  In this example run, convergence is deemed to have been achieved in 

generation 44, and generation 30 is the last generation in which an improvement in fitness 

occurred. 

 

 
 

 

 

Note that there are nTrackJumps = 8 red points in addition to the red point at the origin.  

These 9 points have been used to make the exponential fit (the green curve) and hence the 

asymptotic prediction of maximum fitness (the green line at Fitness = -1). 

 

Note also that four component criteria have been met – four ticks under “Met”.  Looking at 

the last column of tick boxes, you can see that “Total generations” is the only individual 
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criterion that on its own will stop the program (when Generation = nmax = 100 is reached).  

However, in this case nmax is not reached, because all other criteria have been met.  In the 

case of “Percent since last change”, the target value has been scaled to: 

  

 

 

“Percent converged” is rounded up to 100% from a value >=  99.9995%.  Such figures can 

give false confidence, which is why a mix of criteria is important.   

 

The first three criteria are volatile, in that they can be met, and then not met as evolution 

progresses, because of the finding of new better solutions.  This is why scaling of the 

“Percent since last change” criterion is important, to help avoid premature stopping. 

 

NB: When changing the objective function (“Changing the goal posts”) on the fly, be sure to 

reset the generation counter for the purposes of diagnosing convergence. 

 

No guarantee!! 
 

There is no guarantee that convergence has been truly met, unless you know the maximum 

from an algebraic approach or an exhaustive search.  What can help is to observe the best 

solution achieved, and realize (if true) that it has all the properties that you think it should 

have – that you are satisfied with it.  That it is a “Satisficing Solution”. 
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Appendix 
 

Here is a version of the exponential fit in Fortran.  VB.NET is available within the DE_Demo 

program code. 

 

 
module commonbits 

 Integer :: Asymptote_npoints, Asymptote_npointer, Asymptote_maxpoints 

Real(Kind=4), Allocatable :: Asymptote_data(:,:), PredOpt 

End module commonbits 

 
… 

Allocate (Asymptote_data(2, 0:Asymptote_maxpoints)) 

Asymptote_data(1, 0) = <Fitness in first generation > 

Asymptote_data(1, >=1) = <Fitnesses as deviations from Asymptote_data(1, 0)> 

Asymptote_data(2, >=1) = <Generation numbers> 

Call PredictOptimum(GenerationPointer(nTrackJumps),Pred_k, Pred_A, Pred_ExpBender) 

PercentConverged=100.*(Fitness-Asymptote_data(1, 0))/(PredOpt-Asymptote_data(1, 0)) 

… 

 

subroutine PredictOptimum(FromCount,k,A,ExpBender) 

 USE commonbits 

 implicit none 

 integer  ::  i, j, FromCount 

 real(Kind=8)  ::  k, kStart, A, Pred, SSE, SSEold, Jump, ExpBender 

 

 kStart = -10*log(1-.5)/1000 ! Not critical. .9 converged after 100 NewGens 

 k=0 

 Jump=1 

 ExpBender=0.5 

 SSE = 1.0E+29 

 SSEold=SSE+1 

 do j=1,50 

  if(SSE>SSEold) Jump = -1.*Jump/4. 

  SSEold=SSE 

  k=k + kStart*Jump 

  if(k<0.001)k=0.001 

  ! Find A that uses this k but fixes the current point to be hit... 

 

  A = Asymptote_data(1, Asymptote_npointer)/& 

                 (1-exp(-k*Asymptote_data(2, Asymptote_npointer)**ExpBender)) 

  SSE=0 

  do i = 1,Asymptote_npoints 

   if(Asymptote_data(2, i)>=FromCount) then 

    Pred = A*(1-exp(-k*Asymptote_data(2, i)**ExpBender)) 

    SSE=SSE + (Pred - Asymptote_data(1, i))**2  

   endif 

  enddo 

 ! Print'(i3,10f15.4)', j, k, A, SSE, Jump 

 enddo 

! Print*, k, A, Asymptote_npoints 

 PredOpt=A+Asymptote_data(1, 0) 

end subroutine PredictOptimum 
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Chapter 11: Applications in 
bioinformatics, systems biology and 
Artificial Life 

 
Cedric Gondro  

 

 

Up there the skies are blue 

 

Introduction 
 

Evolutionary Computation is being widely employed to solve bioinformatics problems. And 

this is not particularly surprising; bioinformatics problems are complex, noisy and non-linear 

– the perfect setting for Evolutionary Computation to thrive. Some of the current efforts 

include sequence reconstruction from shotgun sequencing data, multiple-sequence alignment 

of protein or DNA sequences, tertiary protein folding inference, identification of coding 

regions in DNA sequences, microarray data clustering and reconstruction of metabolic and 

genetic pathways. Fogel and Corne (2003) provide a comprehensive review of the current 

research topics in EC applied to Bioinformatics. 

 

In this chapter we will focus on mentioning some applications and discuss the 

implementation approach used and some tips (the ones that worked for us!). The idea is to 

give you a taste of what can be done and how to do it. 

 

Bioinformatics – multiple sequence alignment 
 

Multiple sequence alignment (MSA) plays an important role in molecular sequence analysis. 

An alignment is the arrangement of two (pairwise alignment) or more (multiple alignment) 

sequences of „residues‟ (nucleotides or amino acids) that maximizes the similarities between 

them. Algorithmically, the problem consists of opening and extending gaps in the sequences 

to maximize an objective function (measurement of similarity). 

 

A simple genetic algorithm works fine here (Gondro and Kinghorn 2007). Genetic algorithms 

are well suited for problems of this nature since residues and gaps are discrete units. 

 

An evolutionary algorithm cannot compete in terms of speed with progressive alignment 

methods which are the most common method used for sequence alignment, but it has the 

advantage of being able to correct for initially misaligned sequences; which is not possible 

with the progressive method. 
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EAs can have an important role for MSA because the alignment scoring functions still 

constitute an open field of research, Since there is a clear distinction between objective 

function and EAs, they make extending and/or replacing objective functions a trivial task. 

 

Population Initialization and structure 
 

A group of sequences to be aligned consist of n sequences of DNA of different lengths. An 

alignment is represented as a matrix with n rows in which each row represents a sequence. 

Each position in the array is occupied by a symbol from the alphabet {A,T,C,G,–} in the case 

of nucleotides. Gaps are represented by the symbol „–„. Evidently, the order of the 

nucleotides in the sequences has to be preserved and is only interspaced with gaps. 

 

Each organism in the GA consists of a candidate alignment. The organisms of the initial 

population are generated from pairwise alignments of all the sequences. Initially, all global 

pairwise alignments between the sequences are computed with dynamic programming using 

the Needleman-Wunsch algorithm (seeded population). For each sequence one of the 

pairwise alignments corresponding to that sequence is randomly selected to form the 

organism. At the beginning of the sequence, a randomly defined number of gaps is placed to 

allow for some expansion. 

 

Even accounting for the overhead to calculate the pairwise alignments, an initial population 

seeded from pairwise alignments is overall faster and greatly improves the scores with 

reduced convergence times when compared to randomly generated ones. With this approach 

the initial population starts with a high mean fitness. An alternative approach is to include a 

pre-alignment which is inserted into the initial population. This can lead to stagnation at a 

local optimum but can be used to fine tune alignments obtained through progressive methods.   

 

The GA uses steady-state generations and selection is elitist with tournament selection. The 

winner of the tournament remains in the population and the loser(s) are replaced by its (their) 

offspring. Crossover uses the tournament winner and each of the losers to generate an 

offspring which will replace the respective loser in the population.  

 

Search operators 
 

An MSA is defined by the position and size of the gaps in the sequences. From an EC 

perspective it can be viewed as a “gap-shuffling” operation. Search operators can be: 

recombination between parents to produce offspring alignments and gap mutations. 

 

Crossover can be:  

 

1. Horizontal, which builds an offspring by randomly selecting each sequence from one 

of the parents. 

 

2. Vertical, which randomly defines a cut point in the sequence and the offspring is built 

by copying the sequence from position 1 up to the cut point from one parent and from 

the cut point to the end of the sequence from the other parent. With vertical 

recombination the positions of gaps have to be accounted for to ensure integrity of the 

structure of the sequences. 
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Horizontal (A) and vertical (B) recombination in the MSA genetic algorithm. (A) Offspring are generated 

by randomly selecting entire sequences from either of the parents. (B) A randomly defined cut point splits 

the sequences of the parents in two; offspring are generated by selecting one substring from each parent.  

  

 Mutation operators can only act on gaps: open a new gap, close an existing gap, extend gap 

size or reduce gap size. We used three mutation operators to manipulate gaps. To open a new 

gap a block mutation operator was used - a position in a sequence is randomly selected and a 

block of gaps of variable size is inserted into the sequence. For gap extension, a block of gaps 

is randomly selected and an extra gap position is added. The third mutation operator is gap 

reduction, a block of gaps is randomly selected and a gap position is removed; the probability 

of a gap position being removed is an inverse function of the size of the gap, meaning that the 

smaller the number of gap positions the higher the probability that a gap position will be 

removed. If the selected gap block consists of a single position, it will always be removed, 

and the gap will be closed. 

 

Bioinformatics – optimization of cDNA microarray experimental 
designs 
 

The cDNA microarray is an important tool for generating large datasets of gene expression 

measurements. An efficient design is critical to ensure that the experiment will be able to 

address relevant biological questions.  

Microarray experimental design can be treated as a multicriteria optimization problem. For 

this class of problems evolutionary algorithms (EAs) are well suited, as they can search the 

solution space and evolve a design that optimizes the parameters of interest based on their 

relative value to the researcher under a given set of constraints. We used EAs for 



Chapter 11: Applications in bioinformatics, systems biology and artificial life 

 

82 
 

optimization of experimental designs of spotted microarrays using a weighted objective 

function (Gondro and Kinghorn 2007).  

 

Even though the application here is microarray design, the concepts can easily be extended 

into other design problems. 

 

Design problem 
 

Since a cDNA microarray is essentially a comparison between two samples, how these are 

paired in an experiment affects which comparisons can be made. Comparisons of interest 

should be closely connected in the design, preferably on the same array, thus removing the 

variability between slides which is greater than the variability within slides. Typically the 

correlation of measured intensities between duplicated spots on the same slide is around 95%; 

dropping to between 60% and 80% on different slides. An efficient design will ensure an 

unbiased dataset with the effects of interest (sample  gene interactions) not confounded with 

other sources of variation. In EA terms this is a combinatorial problem. The problem can be 

treated as an assignment problem with three optimization parameters: (1) number of arrays 

(slides), (2) allocation of hybridization pairs to the slides and (3) dye allocation for the variety 

pairs on the slides. 

 

There is no single optimal design. The experimental design should balance three basic 

principles: 

 

1. balance among the factors – particularly dyes 

 

2. use approximately the same sampling of varieties  

 

3. reduce the distances between pairs of varieties – especially the ones of interest which 

should preferably be hybridized on the same array allowing for direct comparisons. 

 

Population (design) representation 
 

Each candidate design in the EA population is represented as a numeric array of index ],[ mn

where n=2 (block size) corresponds to each one of the channels in the microarray, thus 

defining the labeling dye of a sample. Index m is a constraint on the maximum number of 

hybridizations allowed. The experimental samples (varieties) are assigned a unique numeric 

identifier si in the array. In this simple manner complex designs can be easily represented 

with the hybridization pairs defined by position m and the dye colors by n, as depicted in the 

following figure. An additional dimension is added to the array, corresponding to the 

population size of the EA.  

 

To allow for variable design sizes (different number of slides) a vector is used to control the 

effective experimental size. The effective size (S) is an integer denoted as S ],1[ ms , where 

s is the number of samples in the study and m is the maximum allowed number of arrays. The 

minimum number of slides is defined as 1s  since this is the minimal criterion for 

connectivity. S is an evolvable parameter included in the EA. 
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Green Channel (Cy3) - n0 s0 s1 s2 s3 s4   

Red Channel (Cy5) - n1 s1 s2 s3 s4 s0   

         

Slide m0 m1 m2 m3 m4   

              

 

A candidate design in the EA population with 5 varieties (numbered s0 – s4) used to represent a loop 

design. Dimension n is used for dye assignment and dimension m represents the number of arrays in the 

design. 

 

Selection 
 

The EA uses steady-state generations and tournament selection with elitism. The elitist 

approach ensures that the best solution is always retained in the population. In each selection 

round, t (tournament size) candidates are randomly selected from the population. The 

candidate with the best fitness is the winner of the tournament and remains in the population, 

whilst the loser(s) is (are) replaced by new candidate solutions (offspring). This means that 

for a tournament of size t, t–1 new offspring will be created at each selection round.  

Crossover 
 

Two operators were used: 

 

1. Single-point crossover selects a random uniform breakpoint between zero and the 

maximum length of the design (along the slides – array dimension m). With an equal 

probability, an offspring is generated by selecting one parent between the winner and 

each of the tournament losers in turn; the selected parent is copied into the offspring 

from position zero in the array up to the breakpoint. The remainder of the offspring is 

built by copying the other parent from the breakpoint until the end of the array. 

 

2. Multi-point crossover, the entire tournament loser is copied into the offspring and, 

with an equal probability (1/3), a number of blocks between 1 and 3 of variable sizes 

are selected from the tournament winner and grafted into the offspring in the same 

position they held in the tournament winner. The size of each block is chosen from a 

random uniform value between a minimum of 1 and a maximum of 1/3 of the length 

of the array. In terms of the design, each block consists of a variable number of slides 

with their respective hybridization pairs and channel assignments. 

 



Chapter 11: Applications in bioinformatics, systems biology and artificial life 

 

84 
 

 

Crossover operators. A) Single point crossover – offspring is generated by copying one of the parents from 

the start of the array up to the breakpoint and copying the other parent from the breakpoint to the end of 

the array. The parent used as a starting point is randomly selected with equal probabilities. In the 

illustration, the tournament winner was selected as the starting point. B) Multi-point crossover with 2 

blocks – the tournament loser is copied into the offspring and blocks of variable size from the winner are 

grafted into the offspring.  

 

Mutation 

We used three mutation operators: 

1. Sample swap – each position (each sample si) in the new candidate, along both 

dimensions (n – channels and m – number of slides), is tested for a user-defined 

uniform probability of the mutation occurring. In each position selected for mutation 

the current sample is replaced with a different one which is randomly selected from 

the available sample pool with an equal probability for each sample. This operator 

ensures that the entire solution space is accessible for exploration. 

 

2. Dye swap – each position along dimension m (slides) is tested for a dye swap 

mutation event; for those positions in which the mutation occurs the two samples are 

swapped across dimension n (channels) in the array; that is, the same samples are still 

on the same slide but the dye assigned to each sample has been inverted. This operator 

is important to explore designs that are evenly balanced. 

 

3. Effective size mutation – assigns a random number of slides as the effective size of 

the design. The mutated S only replaces the current one if it improves the fitness of 

the offspring. This demands three fitness function calls, two with the original effective 

sizes from each of the parents and one with the new value. The S that yields the 

highest fitness is assigned to the offspring. Designs are very sensitive to changes in 

the number of slides, for this reason the overhead of making additional fitness calls 

for each offspring is justified. 
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 Mutation operators. A) Sample swap mutation – a sample in the array (in bold) is replaced by a new 

sample, with this single change the design becomes a loop design. B) Dye Swap mutation – the dye 

channels of a hybridization pair are swapped (in bold), the change turned the unbalanced design into a 

balanced one.  

 

Systems biology – model reconstruction and parameterization 
 

Systems Biology is the exponent representative of the shift that life-science research is 

undergoing. Focus is changing from a reductionist approach centered at identifying and 

understanding the function of individual components to a holistic approach geared towards an 

integrative understanding of biological systems. Notably a system-oriented approach is not 

viable without relying on knowledge derived from reductionist studies, so the approaches 

should not be seen as conflicting but rather as complementary. The need for an integrative 

approach is clear from the fact that single levels of information cannot fully explain the 

dynamics of biological processes. To understand the whole one must study the whole. 
 

Modeling of biological processes has become an important research topic to understand 

processes from a systems point of view. Driven by the ever-growing availability of data – 

with gene expression data a major source – genetic and biochemical models try to explain 

how the components and their interactions affect the behavior of the entire system. The most 

common approach to modeling is through differential equations; which include S-Systems 

(Voit 2000). 

 

Parameterization of S-systems in yeast 
 

A major difficulty with S-Systems is identifying an appropriate set of parameter values for a 

model. We used Differential Evolution to optimize model parameters (rate constants and 

kinetic orders). Results with time course simulated data of fermentation in Saccharomyces 

cerevisae show that a full parameter set evolved that fits well four out of five of the time-

course data points and adequately models the dynamics of the system. 

 

To exemplify, the yeast model is a system of 9 independent variables and 5 dependent 

variables with various interactions as shown below. 
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The underlying equations are of the form: 

 

 
 

We used DE to parameterize the model for a time series data set. The full parameter set for 

the yeast model consists of 55 parameters. For such a complex model the evolved parameter 

set fits well to the original data and adequately reflects the dynamics of four out of the five 

dependent variables, as shown in the figure below. All the evolved parameters are within the 

usual parameter values of S-systems and the model is stable. The dynamics of ATP were not 

adequately modelled with the evolved equation being essentially a linearization of the data 

points. This is still acceptable since the ATP equation is particularly complex with 15 

parameters. The other four equations are a good fit to the data with a slight overshoot in 

F1,6DP and an undershoot in G6PD. For simpler models a virtually perfect fit can be 
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obtained. For complex models the use of structural constraints could improve the 

optimization results.     

 
 

Model reconstruction and parameterization of the lac operon in E. coli 
 

Of course the ultimate modeling method will allow construction of entire models, fully 

parameterized from biological datasets. This goal is still out of reach, but some steps can be 

taken to advance the research. The hybrid EA we discussed in chapter 9 was used to evolve 

models of biological processes as systems of differential equations and simultaneously co-

evolve a set of parameters for these models from time-series data. Recall that the hybrid 

algorithm uses Gene Expression Programming for model inference with an embedded 

Differential Evolution for model parameterization. 

 

We looked at two models for the lac operon and attempted to reconstruct both the parameters 

and the underlying model from a simulated time series dataset. 

 

For the simpler model the predicted data and the simulated data points are virtually 

indistinguishable with an almost perfect fitness value.  
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The simplified and rearranged form of the run is shown below. Where y1 is the concentration 

of mRNA, y2 is permease, y3 is β-galactosidase and y4 is lactose. The original equations are 

on the right hand side to facilitate comparisons. 
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The evolved system of differential equations preserves the structure of the original model 

with the correct production and degradation components and the relationships between the 

elements. Out of the ten available variables for optimization only three appear in the final 

model. These do not necessarily mimic the original parameters but rather are adapted to the 

evolved equations. An appropriate time delay was discovered even though it is not a perfect 

match to the original value (0.86) which is the main cause of deviation between the simulated 

and predicted data.  

 

For the more complex model we did not get such a good fit: 
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The evolved equations after simplification and rearrangement are shown below. The original 

equations are on the right hand side to facilitate comparisons (y1 is the concentration of 

mRNA, y2 is β-galactosidase and y3 is allolactose). Likewise to the previous model, out of 

the 20 available variables only 8 were used in the equations. 
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The fit of the predicted values to the simulated data points is worse than for the other model 

particularly for allolactose, but still a reasonable fit (R
2
 0.987 – y1, 0.999 – y2 and 0.836 – y3) 

for such a complex model. Changes of the EA parameters may improve convergence to a 

better fit. Of more concern are the equations which do not always reflect the true 

relationships between the different components of the system as these are of key importance 

to understand a biochemical pathway or a genetic network. 

  

Artificial life – population genetics dynamics 
 

EC has stolen concepts from biology to develop optimization methods. We can steal them 

back and use them to better understand biology. EAs do not necessarily need an objective 

function for a problem, we can simply select organisms from a purely Darwinian approach – 

survival of the fittest. 
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Artificial agents that model natural populations can use a classic canonic GA structure for 

their inheritance model (Gondro and Magalhaes 2005). The value in each position of the 

bitstring is an allele (0 or 1) and the position itself is a gene or locus. The combination of 

values (alleles) in the bitstring (chromosome) maps to a phenotypic expression. So, the GA 

operates at two structural levels: a genotypic and a phenotypic one. Selection operates on the 

overall genomic value (phenotype) while search operators act on the genotype, modifying the 

chromosomes which may or may not change the phenotypic expression. 

 

In our work these virtual organisms are an abstraction of Mendelian populations, meaning 

that they are a single species of freely interbreeding diploid organisms with two sexes on an 

XY system. There are two genes in the sex chromosomes and seven genes distributed in a 

variable number of autosomes (between 1 and 7). Each gene has between two and four allelic 

variants with user-defined phenotypic expressions within a certain interval limit. The genes 

through their phenotypic expressions express characteristics that intimately relate to the 

universe ensuring a rapid evolution of the population. For example the gene for vision 

determines the line of sight of the organism which is an important trait for searching for food 

in the environment and finding a partner for reproduction. The genes not only relate to the 

environment but they also relate to other organisms, as for instance the fight gene which 

defines the level of aggressiveness of an organism.  

 

 

 
 

Sigex – an educational package for studies of population genetics and evolution. The program consists of 
four modules: a simulator of virtual organisms, a genotype editor, a data analysis tool and a 
manual/tutorial of population genetics and evolution. 
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This type of work can be used in education applications to help students understand the 

dynamics of populations and the concepts of population genetics and can also be a useful tool 

for research in population genetics. Even though computational simulations cannot accurately 

depict the dynamics of natural populations, for theoretical studies and as an initial approach 

to test a new model artificial data can be used prior to obtaining experimental data. This 

approach not only allows testing on rapidly obtainable, controlled data but can also help in 

determining which experimental data is relevant, assisting in the design of the experiment. 

I got involved in EC because I could not fathom having to count even one single more 

Drosophila! 

 

Conclusion 
 

Evolutionary Algorithms are efficient for addressing complex biological problems. Many 

biological questions are being studied using EAs; and with the ever increasing volume of 

biological data, it can be expected that the use of EAs will only keep on growing. 

Evolutionary Computation has come full circle; originally inspired by biological processes, it 

has found its way back into biology to help investigate complex, challenging and relevant 

problems. 
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