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3.1 Variance structures
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Overview

Traditional variance models assume
independent effects: σ2

I

General variance structures
- Unstructured - every variance and
covariance is a separate parameter
- Structured - variances and covariances are
functions of parameters

Spatial models
- correlation based on distance
- paramerterized in terms of correlation and
variance

Compound variance structures
- formed as a direct product
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General Variance
structures

Unstructured (US) is parameterised directly
as variances and covariances

Symmetric Lower triangle rowwise
V11

V21 V22

V31 V32 V33
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Reduced
parameterization

Diagonal (DIAG) has zero covariances
Factor Analytic (FACV, XFA): Σ = ΛΛ′ + Ψ
Cholesky (CHOLn, CHOLnC): Σ = LDL

′

where L is unit lower triangle
Antedependence (ANTEn): Σ−1 = UDU

′

where U is unit lower triangle
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Reduced
parameterization

Aim in using alternate forms is
–to accomodate the variance heterogeneity
adequately while minimising the number of
parameters
–force a positive definite structure.

ANTE (a generalization of AR) is suited to
ordered levels (e.g. times)

CHOL, XFA, FACV are suited to unordered
levels (e.g. sites, traits)
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General variance
structures

DIAG - off diagonal is zero

CHOLi - Σ = LDL
′

- L is lower triangle unit matrix with i
off-diagonal bands
- D is diagonal matrix of conditional
variances.
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CHOL1 of order 4

e.g. in CHOL1 L =











1 0 0 0

a 1 0 0

0 b 1 0

0 0 c 1











D = diag(A B C D) so that

Σ =











A aA 0 0

aA aAa + B bB 0

0 bB bBb + C cC

0 0 cC cCc + D










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CHOL1C of order 4

e.g. in CHOL1C L =











1 0 0 0

a 1 0 0

b 0 1 0

c 0 0 1











D = diag(A B C D) so that

Σ =











A aA bA cA

aA aAa + B bAa cAa

bA bAa bAb + C bAc

cA aAc cAb cAc + D










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Antedependence

is a generalized form of Autoregressive

ANTEi - Σ−1 = UDU
′

- U is upper triangle unit matrix with i
off-diagonal bands
- D is diagonal matrix of conditional inverse
variances.

Since parameterization is obtuse for CHOL
and ANTE, you may supply an unstructured
matrix as starting values and ASReml will
factorize it.
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Factor Analytic

Correlation Form: FAi
Σ = D(LL

′ + E)D′

Parameters are elements of p × i matrix L

and diag(Σ) = DD; E is defined such that
diag(LL

′ + E) is Identity.

Variance Form: FACVi
Σ = ΛΛ′ + Ψ
Paramaters are Λ = DL and Ψ = DED
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Extended Factor
Analytic

Same parameterization as FACV but in order
(Ψ) vec(Λ)

Elements of Ψ may be zero (making Σ
singular)

Requires use of xfa(T, i) model term which
inserts i columns of zeros into the design
matrix corresponding to the i factors.

Much faster than FAi and FACVi when more
than 10 levels in term.
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Extended Factor
Analytic

... xfa(Trait,1).dam ...
xfa(Trait,1).dam 2
xfa(Trait,1) 0 XFA1

2*0
1.1 0.9
dam
Covariance/Variance/Correlation Matrix XFA
1.550 1.000 1.000
1.437 1.332 1.000
1.245 1.154 1.000
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Other structures

US - unstructured

OWNi - user supplies program to calculate G
and the derivatives of G

AINV - Use fixed relationship matrix

GIVi - Use user defined fixed relationship
matrix (see .giv, .grm)
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Spatial structures

ID - Identity
CORU - uniform correlation
AR1 1 ρ ρ2 ρ3 ρ4 ρ5

· · ·

AR2, MA1, MA2, ARMA, SAR1, SAR2,
CORU, CORB, CORH
EXP, GAU
IEXP, AEXP, IGAU, AGAU, IEUC, LVR, ISP,
SPH, MAT
one or two dimensional distance
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Variances

Equal variance correlation
append V to code e.g. AR1V, CORUV

Unequal (Heterogeneous) variance
correlation
append H to code e.g. AR1H, CORUH

If D is the diagonal matrix of variances, and
C is a correlation matrix, Σ = D

0.5
CD

0.5
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ASReml workshop

3.2 Spatial Analysis

Arthur Gilmour
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Two basic kinds

Regular grid e.g. field trial
- interest is in adjusting for other effects
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Two basic kinds

Regular grid e.g. field trial
- interest is in adjusting for other effects

Irregular grid e.g. survey
- interest is in modelling the spatial pattern
- kriging
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Two basic kinds

Regular grid e.g. field trial
- interest is in adjusting for other effects

Irregular grid e.g. survey
- interest is in modelling the spatial pattern
- kriging

ASReml is regularly used for former
- developing capability for latter
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Single field trial

Slate Hall Farm - Barley 1976
- Balanced Incomplete block design
- 25 varieties, 6 replicates
- layout 10 rows by 15 columns

BIB Model
fixed: treatments
random: rep block

Spatial Model
Autoregressive error model R = ΣR ⊗ ΣC
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Slate Hall base

Slate Hall 1976 Cereal trial
rep 6 latrow 30 latcol 30
fldrow 10 fldcol 15
variety 25
yield !/100

shf.dat !DOPART $1
!DISPLAY 15 !SPATIAL !TWOWAY
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Slate Hall - Design
based

!PART 1 RCB Analysis
yield ˜ mu var !r rep

!PART 2 # BIB analysis
yield ˜ mu var !r rep latrow latcol
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Slate Hall - Model
based

!PART 3 # Fitting AR1.AR1
yield ˜ mu var
predict var
1 2
fldrow fldrow AR .1
fldcol fldcol AR .1
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Slate Hall - Model
+ Design

!PART 4 # Fitting AR1.AR1
yield ˜ mu var !r rep latrow latcol
predict var
1 2
fldrow fldrow AR .1
fldcol fldcol AR .1
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Slate Hall - summary

Model LogL(l) −2∆(l)

RCB -167.694 2
BIB design -132.134 4
Spatial model -124.676 3
BIB+Spatial -124.312 6

Spatial correlation model fits better than the
BIB model
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Spatial components

Source terms Gamma Component Comp/SE % C

rep 6 6 .2003E-05 .724166E-05 0.00 0 B

latrow 30 30 .6327E-01 .228684 0.71 0 P

latcol 30 30 .1608E-03 .581362E-03 0.00 0 P

Variance 150 125 1.000 3.61464 4.28 0 P

Residual AutoR 10 .4652 .465209 4.85 0 U

Residual AutoR 15 .6741 .674095 8.76 0 U
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Variogram
Slate Hall 1976 Cereal trial      F3 1

    Variogram of residuals   31 Jan 2005 16:15:30

0  

 1.888194   

Outer displacement Inner displacement
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Residual to plan
Slate Hall 1976 Cereal trial      F3 1

    Field plot of residuals   31 Jan 2005 16:15:30
Range:      −4.80      5.37
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row/column
Slate Hall 1976 Cereal trial      F3 1Residuals V Row and Column position: 31 Jan 2005 16:15:30

Range:      −4.80      5.37
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Multi environment
trial

In early generational cereal breeding, run
several trials with 1 or two replicates of test
lines, 20 percent check lines for error
estimation.

More power from fitting as correlated effects
across sites.
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MET in ASReml

Three Multi Environment Trial

seq

col 15 # Actually 12 12 and 15 respectively

row 34 # Actually 34 34 and 28 respectively

chks 7 # Check 7 is the test lines

test 336 # coded 0 for check lines

geno 337

yld !*.01

site 3

met.dat !section site
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Spatial models

yld ˜ site chk.site !r at(site,3).row .02,

at(site).col .90 .40 .036 site.test

site 2 1

12 col AR .1271 !S2=2.19

34 row AR .751

12 col AR .25 !S2=0.84

34 row AR .56

15 col ID !S2=0.19

28 row AR .38
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Model genetic
variation

site.test 2

site 0 FA1

.5 .5 .5

.1 .1 .1

test
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Components

Source Model terms Component Comp/SE % C

Residual 1236 1213

at(site,01).col 15 15 0.323302E-05 0.00 0 B

at(site,02).col 15 15 0.142114 1.32 0 P

at(site,03).col 15 15 0.446791E-01 1.77 0 P

at(site,3).row 34 34 0.241380E-01 2.80 0 P

Variance[ 1] 408 0 2.60271 5.18 0 P

Residual AR=AutoR 12 0.407051 4.45 0 U

Residual AR=AutoR 34 0.882580 33.50 0 U

Variance[ 2] 408 0 1.00339 8.29 0 P

Residual AR=AutoR 12 0.282407 4.84 0 U

Residual AR=AutoR 34 0.580701 11.37 0 U

Variance[ 3] 420 0 0.105411 5.59 0 P

Residual AR=AutoR 28 0.687455 10.14 0 UArmidale Animal Breeding Summer Course AABSC 2005 – p. 35



Factor Analytic

site.test FA D(L 1 1 0.518516 5.35 0 U

site.test FA D(L 1 2 1.13028 2.18 0 U

site.test FA D(L 1 3 0.735010 6.04 0 U

site.test FA D(L 0 1 0.991585 7.99 0 U

site.test FA D(L 0 2 0.731805E-01 1.07 0 U

site.test FA D(L 0 3 0.121810 7.17 0 U

Covariance/Variance/Correlation FA D(LL’+E)D

0.9916 0.5865 0.3811

0.1579 0.7308E-01 0.8313

0.1325 0.7844E-01 0.1218
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Spatial analysis in
Forest Genetic trials.

Typically not a complete rectangle
- add missing values to complete the pattern
- use map points (if < 5000 trees)

With Tree model, must include Nugget
variance
- either Nugget is residual, spatial is in G

or spatial is residual and Nugget is G,

spatial model typically superior to ’design’
model for growth/production traits
- less so for disease and conformation traits
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MicroArray

spatial pattern
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ASReml workshop

3.3 Repeated Measures

Arthur Gilmour
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Main approaches

General variance structure
(Multivariate approach)
UnStructured, Autoregressive, EXPponential

Repeated measures
Longitudinal model
Repeated measures.
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Multivariate approach

Suited when most animals have most
measures

Repeats are at significant standard times
Say WWT, 200dayWT, 400dayWT, 600dayWT

Discuss

Armidale Animal Breeding Summer Course AABSC 2005 – p. 41



Multivariate

WWT WT200 WT400 WT600 ˜ Trait Tr.sex,
!r Tr.animal !f Tr.cohort

1 2 1

0

Trait 0 US

10*0

Tr.animal 2

Tr 0 US

10*0

animal 0 AINV
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Multivariate

WWT WT200 WT400 WT600 ˜ Trait Tr.sex,

!r Tr.animal !f Tr.cohort

1 2 1
0
Trait 0 US
10*0

Tr.animal 2

Tr 0 US

10*0

animal 0 AINV
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Multivariate

WWT WT200 WT400 WT600 ˜ Trait Tr.sex,

!r Tr.animal !f Tr.cohort

1 2 1

0

Trait 0 US

10*0

Tr.animal 2
Tr 0 US
10*0
animal 0 AINV
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Random Regression

Appropriate when
- there is considerable unbalance in times of
measurement
- there are varying numbers of measurements
- all animals have multiple measures

Concept: Regression for each individual
consisting of an overall response pattern
(fixed) plus an individual (random)
adjustment.
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RR principles

This is a reduced parameterization model
which must be well formulated
- mean profile of higher order than random
profile - random profile generally low order

Usually formulated as polynomial but could
be low order spline
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RR Example

!WORK 150
This is random regression analysis of emd

animal !P sire 89 !I dam 1052 !I
year 2 !I !V21=V4 !==2 !*-365
flock 5 sex 2 !A aod
tobr 3 !I dob !-14800 !+V21
age wt fat emd

sdf01a.ped !SKIP 1
sdfwfml.csv !SKIP 1 !MVremove !DOPART $1

!DDF !TYPEIIISS !MAXIT 20
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RR Model

!PART 1 # Linear RR

emd ˜ mu age year wt sex sex.wt flock,

tobr aod dob year.dob year.age,

year.sex year.flock year.tobr,

sex.dob tobr.dob,

!r animal animal.age,

ide(animal) ide(animal).age,

at(year,1,2).spl(age,20)
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RR G structure

0 0 2
animal 2
2 0 US !GP # Intercept and slope
1.3 0.01 0.01
animal 0 AINV
ide(animal) 2# Intercept and slope
2 0 US !GP
1.6 0.01 0.03
ide(animal)
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Fitting PART 1

Fixed terms year.age, year.sex year.tobr are
NS

variance of ide(animal).age is at boundary

LogL after dropping 3 interactions was
-726.867
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Quadratic RR

!PART 2 # Quadratic RR using pol
emd ˜ mu age year wt sex sex.wt flock tobr aod,

dob year.dob year.flock sex.dob tobr.dob,
!r pol(age,2).animal pol(age,1).ide(animal) ,
at(year,1,2).spl(age,20)

0 0 2
pol(age,2).animal 2
3 0 US
1.6 .6 .6 .3 .3 .3
animal 0 AINV
pol(age,1).ide(animal)
2 0 US
2.1 .6 1.3
ide(animal)
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PART 2 G structures

0 0 2
pol(age,2).animal 2
3 0 US
1.6 .6 .6 .3 .3 .3
animal 0 AINV
pol(age,1).ide(animal)
2 0 US
2.1 .6 1.3
ide(animal)

Armidale Animal Breeding Summer Course AABSC 2005 – p. 52



PART 2

LogL -643.67 so significant quadratic
curvature

Obtained inital values by ignoring G structure
in initial run.
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Spline curvature

!PART 3
!SPLINE spl(age,3) 4 0 6
emd ˜ mu age year wt sex sex.wt flock tobr aod dob,

year.dob year.age year.sex year.flock year.tobr sex.dob tobr.dob,
!r animal animal.age animal.spl(age,3),

ide(animal) ide(animal).age,
ide(animal).spl(age,3),
at(year,1,2).spl(age,20)

0 0 2
animal 2
3 0 US !GU # Icept,slope,spl
1.3 0.1 0.01
.1 .01 .1
animal 0 AINV
ide(animal) 2
3 0 US !GU
1.6 0.1 0.03 .1 .01 .1
ide(animal)
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Simpler

!PART 4

emd ˜ mu age year wt sex sex.wt flock tobr aod dob,

year.dob year.age -year.sex year.flock year.tobr sex.dob tobr.dob,

!r pol(age,2).animal ide(animal) ,

at(year,1).spl(age,20) at(year,2).spl(age,20)

0 0 1

pol(age,2).animal 2

3 0 US

1.6

.6 .6

.3 .3 .3

animal 0 AINV
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Interpretation

.res file has pol() coefficients. say T
Form TGT’ to get full matrix of variances (all
times).
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