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Balancing long-term and short-term selection response 
 

J. W. James 
Reprogen, Faculty of Veterinary Science, University of Sydney. 

 
 

SHORT TERM RESPONSE 
 
When we learn about designing animal breeding programs we usually begin with the 
classic equation of Rendel and Robertson (1950): 
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where  i  = standardised selection differential; 
  r = correlation between true and estimated breeding values; 
  s A = standard deviation of true breeding value; 
  l = generation interval; 
  ? G = gain in mean breeding value; 
and the summations are over all relevant pathways of improvement such as males to 
breed males, males to breed females, and so on. 
 
If r is constant over all pathways, this equation reduces to 
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and maximising response to selection involves maximising the ratio Si / Sl.  There is 
normally some intermediate generation length which maximises genetic gain, though 
with very high reproductive rates it may be best to turn over generations as quickly as 
possible.  A good general discussion of these matters was given by Ollivier (1974).  
There is a module in GENUP for doing these calculations. 
 
If the amount of information on animals changes with age, as it often does, the optimum 
age structure will be affected, and in fact we can avoid having to specify the age structure 
which will maximise gain by noting that the greatest gain is achieved if the required 
number of parents are selected from among all those available on the basis of their 
estimated breeding values. This procedure will automatically give the best age structure 
(James, 1987).  In fact, more generally, if the accuracy of estimated breeding values 
varies within age groups in any way at all, selection on EBVs will deal with all 
difficulties.  In this sense, BLUP solves many of the problems which arise in the design 
of breeding programs.  But the problems which it solves are those arising from making 
use of available data to select a specified number of animals.  What it does not do is tell 
us what data to obtain, nor how many animals to select.  Some aspects of these two 
questions will be dealt with in these notes. 
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First we will deal with the question of how many animals should be selected from among 
those available.  To some extent this is governed by rates of reproduction: we need to 
select enough parents to produce the required number of offspring.  This may fix the 
number of breeding females needed, at least within limits, but the number of males 
needed will generally be considerably smaller.  With AI, the male reproductive rate may 
be very high indeed.  Of course, the number of females required will be reduced if MOET 
is used, but the number of males needed will still usually be smaller, so that the 
opportunity arises for a stringent selection of males. 
 
INBREEDING AND GENETIC DRIFT 
 
If we take the basic equation and seek to maximise gain we see at once that i should be as 
large as possible, but in practice this is never done, and the number selected is larger than 
necessary for breeding the necessary number of progeny.  The reason for this is that with 
very few parents selected the rate of inbreeding will be increased to an undesirable level.  
So it is common to set a minimum number of parents to limit inbreeding to an 
“acceptable” level. 
 
There are three main effects of inbreeding, or limited population size, on response to 
selection.  
 
1. Most traits of economic importance show some degree of inbreeding depression 
 
2. The available genetic variance is reduced by inbreeding, so that future response is less 
than if there were no inbreeding. 
 
3. Variation due to new mutations accrues more slowly, so that in later generations this 
source of variation contributes less to genetic gain. 
 
LONG TERM RESPONSE 
 
If we assume that selection is for a single trait in a monoecious population with discrete 
generations we can write simple approximate expressions for the effects of these three 
factors on genetic gain up to the tth generation. 
 
Let the effective population size be N and let Ft be the population average inbreeding 
coefficient in generation t.  Then 
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The inbreeding depression is –DFt, where D is the regression of performance on 
inbreeding, assumed linear, so that D is the loss of performance in a completely inbred 
population. 
 
The gain from exploitation of the original genetic variance in the base population is 
approximately 
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The gain from mutational variance is 
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where VM is the new mutational variance arising each generation. 
 
Putting all these factors together, we have for the response in generation t 
 

   tt
P

M
t

P

A DFNFt
V

NiF
n

V
Ni −−+− )2(2)

2
1

1(2
σσ

. 

 
As t becomes large, Ft approaches unity and we find that the mean Mt becomes 
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This approximation ignores inbreeding depression arising from new mutational variance 
and so will overestimate the genetic gain from mutation.  This aspect of the model could 
be improved, but it will not be pursued here.  It can be seen that when t is large the only 
continued improvement comes from mutation, and that the gain per generation from this 

source is 
P

MV
Ni

σ
2 . 

 
In some circumstances, such as when terminal sire breeds are bred so that inbreeding 
which accumulates in the pure-bred population is removed in the cross-bred progeny, or 
when the trait(s) selected show negligible depression, the term in D becomes 
unimportant.  The value of VM/VA is likely to be small, less than 0.01 in most cases, so 
this factor is likely to be of importance only in the long term, where it is the sole source 
of progress. 
 
In any case, we see that in the long term the greatest progress is made by maximising Ni.  
For a normally distributed selection criterion it is well known that the standardised 
selection differential is given by i = z/p, where p is the proportion selected, and z is the 
ordinate of the normal curve at the abscissa x truncating a fraction p in the upper tail of 
the distribution.  If T is the total number of animals available for selection, the number of 
parents selected is N = Tp, so that Ni = Tz and has a maximum at the mode of the normal 
curve, when x = 0 and p = 0.5.  This result has been known for a long time, having been 
pointed out by Dempster (1955) and Robertson (1960). 
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BALANCING LONG AND SHORT TERM GAINS 
 
However, although this gives the greatest long-term response the gain in the short term 
will be significantly less than would be achieved by selecting more intensely, and a 
breeder who adopted such a policy might well be out of business long before his strategy 
could pay off.  So we need to consider a compromise between short-term and long-term 
gains.  How can we make a sensible choice? 
 
Most recommendations are made on the basis of a more or less arbitrary choice of an 
“acceptable” rate of inbreeding which will determine the number of parents to be used for 
breeding.  While this probably works reasonably well, it does leave the decision as to 
what is “acceptable” to individual taste, which is in some ways an unsatisfactory state of 
affairs.  Surely there should be a better way of reaching a compromise.  I am going to 
propose just such a method – in fact I proposed it in 1970 (James, 1972).  It was put 
forward independently by Dempfle (1973). 
 
The proposal is based on the idea of discounting future gains to present value.  This is a 
standard procedure in investment appraisal and cost/benefit analysis and was introduced 
to animal breeding by Poutous and Vissac (1962).  The method was more widely used 
after it formed the basis of an appraisal of investment in animal breeding by Hill (1971).  
The principle of discounting is simple.  If the rate of interest available is 100r%, one 
dollar can be invested at compound interest and in y years will be worth (1 + r)y dollars 
so it follows that a dollar obtained y years in the future is worth 1/(1 + r)y dollars now.  
Therefore, returns achieved y years later can be discounted to their present value and 
compared with returns achieved at present.  This provides a simple mechanism by which 
the conflict between short-term and long-term goals can be resolved. 
 
If we have a well-defined breeding program we can predict the responses expected year 
by year or generation by generation.  Let us suppose we have a monoecious population 
with discrete generations, and that the mean breeding value in generation t, measured 
from the current mean as origin, is Mt, while the economic value of a unit of breeding 
value is B dollars (or other currency unit).  Then the gain in economic value in generation 
t is Wt = BMt.  However, in present value this is worth Wt/(1 + R)t, where R is the per-
generation discount rate.  Therefore the present value of the entire breeding program, 
from now into the indefinite future, is 
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The discount rate is chosen to be appropriate for an investment with a degree of risk 
(which is always present) but should not include any allowance for inflation.  Inflation 
should usually affect returns and it is assumed that all returns are evaluated at present-day 
currency values.  Of course there may be cases where the returns from the breeding 
program are affected differently from the rest of the economy, but this is probably not the 
normal case.  Therefore I suggest that for a suitably chosen discount rate the worth of a 
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breeding program be evaluated as t

t
t RMB )1/(

1

+∑
∞

=

and this measure of worth is what 

should be maximised. 
 
Often such investment appraisals are made over a fixed time period, such as 20 years and 
Hill (1971) used a fixed time period in his influential paper.  But in my opinion this is 
seldom justified.  It may be so if a company is planning to build a toll road which will 
revert to public ownership after a set number of years, but presumably a genetically 
improved animal popula tion will not be disposed of after a given time.  Even if the 
breeder plans to sell the breeding operation and retire, the purchase price paid should 
reflect the value of the population as a going concern, which will depend on the prospects 
of future profits.  If future profits are ignored, it is clearly best to select at maximum 
intensity in the last generation taken into account, since there is no need to allow for 
future improvement.  In fact, Robertson (1970) showed that to maximise gain achieved 
by a given time a dynamic policy was required, with progressively more intense 
selection.  The same would apply with discounted gains up to a specified time.  In what 
follows I shall assume that the summation continues to infinity, though this is not 
necessary in principle, and the method can be used with any desired length of time.  In 
fact, in many cases the distinction may be of relatively little importance, since gains made 
far into the future will be heavily discounted. 
 
OPTIMISATION 
 
To illustrate the method let us suppose we have selection in a monoecious population 
with discrete generations, and that mutational variance and inbreeding depression can be 
ignored.  We then have approximately 
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and on inserting this into the equation for W and simplifying we find 
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Only the last term is affected by the breeder’s decision on selection intensity, so W is 
maximised by finding the maximum of Ni/(2NR + 1).  If T is the number of candidates 
for selection the crit erion can be written as Tz/(2TpR + 1).  It turns out that this is a 
maximum when  
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When R = 0 and future gains are not discounted we have x = 0, corresponding to p = 0.5 
in agreement with the results of Dempster and Robertson. 
 
For any given value of TR the corresponding value of p can be readily found from tables 
of the normal distribution or from a computer program.  It is probably simplest to start 
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with a value of p from which the values of z and x are obtainable, and the value of TR 
which corresponds to the given value of p can be computed.  By trying a few values of p 
the value which gives the required value of TR can be found by trial and error.  The value 
of p does not usually need to be very precisely known.  Alternatively, a computer 
program or subroutine which takes TR as input and iterates to the required value of p 
could be written. 
 
It should be noted that for this model the rate of decline of genetic variance is constant so 
that the pattern does not change with generation.  This means that the future looks the 
same with respect to the present at all times, so a fixed rather than a dynamic strategy is 
called for, in contrast to a fixed time horizon. 
 
The above analysis is a very simple one, but it can be easily extended to the case of 
selection primarily in males.  If S sires are selected each generation from TS available 
candidates the effective population size is 4S and so the above analysis can be carried 
over with 4TS being used instead of T, on the assumption that the number of females is 
much larger than that of males.  Similarly, if the effective size is kN the replacement of T 
by kT allows the equations to be used.  In practice the value of k is likely to depend on p 
as shown by Robertson (1961) and Wray and Thompson (1990) so that this simple device 
will probably not work very well. 
 
If we look at the equation connecting p with TR, or plot a graph, we can see that p 
declines as TR increases.  This is obvious enough for increasing values of R, since when 
future gains are more heavily discounted it will pay to put more emphasis on short-term 
gains rather than the relatively low-valued long-term gains.  Similarly, as T increases the 
effective size increases and the time-scale over which response occurs is stretched, so that 
for a given selection intensity more gain is made at later times in large than in small 
populations and is more heavily discounted.  Though the analysis above is of only a 
simple case, these conclusions about the effects of R and T on the optimum selection 
intensity are clearly more general. 
 
EXAMPLE 
 
Let us now apply the theory as developed above to the breeding program examined by 
Hill (1971) as an example.  He proposed the establishment of a national breeding 
program in a herd of Hereford cattle which would be selected to improve slaughter 
weight when the bulls were crossed to Friesian cows to produce calves to be grown for 
beef.  His analysis concluded that this would be a profitable investment. 
 
The scheme he proposed involved selection in bulls only, cows being used for as short a 
period as possible in order to keep the generation interval as low as possible.  Cows 
would be mated only three times, to calve at 2, 3 and 4 years of age, giving an average 
dam age of 3 years.  Bulls would be mated once only, being 2 years old when their 
progeny were born.  This would give a generation length of l = 2.5 years.  It was assumed 
that selection would be for yearling weight, which had a phenotypic standard deviation of 
40 kg and a heritability of 0.4.  The economic value of one kg was then £0.15.  It was 
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assumed that bulls from the herd would produce 200 000 crossbred slaughter calves per 
year, or 500 000 per generation, and these crossbred calves would show half the genetic 
gain made in the purebred herd.  Thus the economic return from a gain of one kg in 
breeding value in the purebred herd would be B = £0.15 × ½ × 500 000 = £37 500. 
 
If the number of cows in the breeding herd is 400 and the number of calves reaching 
mating age per cow mated is 0.8, the number of young bulls available for selection each 
year is 160, or 400 per generation.  Assuming that the effective population size is 
determined very largely by the number of sires, the effective value of T is 1600.   
 
The interest rate taken for our purposes will be 5% per annum.  This can be converted to 
a per-generation interest rate by noting that for a generation of 2.5 years (1 + R) is equal 
to 1.052.5 or 1.1297 or R = 0.1297.  We then need to find the value of p corresponding to 
TR = 207.52.  The appropriate value of p is 0.015 to three decimal places.  Then the 
number of bulls selected each year would be 160 × 0.015 = 2.4.  We would therefore 
select 3 young bulls each year, to allow for possible wastage.  (This example illustrates 
why it is not essentia l to solve the equation with great accuracy).  The effective 
population size would be about 4 × 3 × 2.5  = 30 per generation and the annual rate of 
inbreeding would be about 0.67%.  Selecting 3 out of 160 bulls would give i = 2.44 so 
that averaged over sexes the selection differential would be 1.22.  The initial rate of 
genetic gain would then be 1.22 × 0.4 × 40 / 2.5 = 7.8 kg / yr.  The overall worth of the 
program would be 
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which is a very considerable amount. 
 
The effect of a higher interest rate can be seen by taking an annual rate of 8%, from 
which R = 1.082.5 – 1 = 0.2121, so that TR = 339.36.  The corresponding value of p is 
0.010 and the number of bulls to be selected is 1.6.  To allow for possible wastage we 
would select the best 2 bulls.  The effective population size would be 20 and the annual 
rate of inbreeding about 1%.  The standardised selection differential averaged over sexes 
would be 1.30 and the initial rate of gain would be 8.3 kg / yr. and the tota l worth of the 
breeding program would be £18 800 370.  Because future gains are much more heavily 
discounted, the higher discount rate makes a very large difference to the worth of the 
breeding program. 
 
In the mathematical analysis several simplifications have been made to make the 
mathematics easier and to avoid complications which would make the main points more 
difficult to illustrate.  For a numerical analysis of a specific problem these simplifications 
are not necessary.  The model appropriate for the  problem can be programmed and the 
computations carried out for a range of options to locate the optimum. 
 
OPTIMUM SCALE 
 
The approach taken here can be extended to optimising the scale of a breeding program.  
Assume that the costs of setting up and operating a breeding program have some fixed 
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and some variable costs.  Suppose the capital costs of setting up the breeding program are 
C + DT, while the recurrent costs are U + VT per generation.  Then the present value of 
the recurrent costs is (U + VT)(1 + R)/R and the present value of all costs is 
  [C + U(1 + R)/R} + [D + V(1 + R)]T  =  F + KT. 
If there is a lag of g generations before improvement is realised, the present value of all 
future improvement is Wg = W/(1 + R)g and so the present value of future profits is 
   P  =  Wg  - F  -  KT. 
To find the optimum size of the breeding program we must maximise P with respect to 
variation in both T and p, since we have seen that the optimum value of p changes with T. 
The solution depends on the ratio Q, the present value of the initial response per unit 
standardised selection differential divided by the present value of all costs per animal.  
That is,    
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On doing the required mathematics we find that the solution is given by taking 

   Q
pxz

z =
− 2)(2

 

in conjunction with the previous equation involving TR.   For a given value of Q we can 
find the optimum value of p and this gives us the optimum value of T. 
 
In my 1972 paper I made such an analysis for the breeding program proposed by Hill 
using an 8% annual discount rate and found a Q value of 3500.  This led to a calculation 
of about 600 bulls tested per year, of which the best 3 would be selected.  This was a 
much larger operation than proposed by Hill.  As you may perhaps have guessed, the UK 
government did not fund the program. 
 
CONCLUSION 
 
I would stress again that the important point here is one of principle.  The equations I 
have given are primarily for illustration.  In practice one would model the breeding 
program based on all available information, and use the predictions from this model to 
measure the total worth of the breeding program.  Analyses would be based on year to 
year responses rather than gains per generation.  The idea of choosing a selection 
intensity by this method of balancing short-term and long-term gain is the main thing I 
would like you to consider. 
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THE BREEDING PYRAMID 
 
Although there are some vertically integrated animal production systems where the 
breeding program is controlled by the commercial producer, or where commercial 
producers work under contract to suppliers of breeding stock, for the most part genetic 
improvement of livestock is carried out in studs or breeding nucleus herds or flocks.  
Genetic improvement is then disseminated to commercial stock by the transfer of animals 
(mainly sires) or gametes. 
 
This pattern was described by Robertson and Asker (1951) in British Friesian cattle using 
pedigree records from herdbooks.  They showed that the structure was pyramidal, with a 
small group of elite studs at the apex of the hierarchy with one or two layers of 
“multiplier” studs between the elite nucleus and commercial herds.  The elite studs were 
identified as those who exchanged animals among themselves, transferred animals to 
other herds, but did not introduce stock from these other herds. Other layers can be 
defined in a similar way.  This work has been confirmed in many other studies.  With 
changes in animal breeding over the last 50 years there have been changes, but it is still 
true that genetic improvement is made in a special nucleus and transferred to commercial 
herds and flocks through animals or gametes. 
 
The result of this hierarchical structure is that, after an initial settling in period, the whole 
population improves at the same rate, which is set by the nucleus.  Each tier in the 
pyramid lags behind the one above it.  In a very simple case, where all sires in any level 
are introduced from the tier above, there is no selection of females and the sires bought 
are of average breeding value in the group in which they were born, each tier lags behind 
the one above it by two generations of genetic improvement.  More complex situations 
require more complex expressions for lag, and have been considered by Bichard (1971) 
and James (1977) among others.  It should be noted that any selection in the lower tiers 
does not affect the steady-state rate of genetic gain in the population, unless there is 
upward t ransfer of genes in the hierarchy (an open nucleus).  But it does affect the lag, as 
does selection of better-than-average sires from the upper tiers.  It will also affect lag if 
producers buy some breeding stock from two tiers above rather than one. 
 
In principle it is possible for the lag to be negative,  This can happen if (say) the nucleus 
is making no genetic progress, but selection of superior females in the commercial 
population raises its mean breeding value above that of the nucleus. 
 
Another point to note is that in a population with a pyramidal structure the rate of 
inbreeding is controlled entirely by what happens in the elite nucleus, and since this is 
typically a small fraction of the whole population, the effective size of the population will 
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be much smaller than might be expected from the population size.  The dominance by the 
nucleus of the population inbreeding is for the same reason as for its effect on genetic 
improvement.  Genes flow from the nucleus to the rest of the population but not vice 
versa, so that eventually the whole population consists of genes from the nucleus, the 
genes at different levels originating in the nucleus at various times in the past. 
 
VALUING GENETIC SUPERIORITY 
 
One might expect that a nucleus breeder would like to limit expenses in running a genetic 
improvement program to produce animals for sale.  If stock can be sold for satisfactory 
prices, avoiding spending on an effective breeding program may be a good option.  If the 
nucleus begins  at a higher genetic leve l than a commercial flock the commercial breeder 
can achieve genetic improvement by grading up to the nucleus, but the difference is 
halved each generation and would soon disappear without genetic gain in the nucleus.  
For the nucleus to remain significantly superior to commercial stock it must run an 
effective improvement program.  This raises production costs in the nucleus and will be 
justified only if a suitable premium can be charged for breeding stock.  A commercial 
producer, on the other hand, will want to reduce sire purchase costs, which can be done 
by buying sires less often or by buying cheaper ones.  Thus a sire buyer will want to have 
a strategy covering frequency of  purchase and cost (presumably related to breeding 
value) of sires. 
 
An approach to devising such a strategy can be based on discounted gene expressions.  
This concept was introduced by McClintock and Cunningham (1974) to provide a 
rational method of giving economic weights to meat and milk traits in dual-purpose 
cattle, and was based on the idea of a farmer who was considering buying a dose of 
semen to inseminate a cow.  Sires whose semen is available for purchase have EBVs for 
meat and milk traits.  If the calf born is male it will be slaughtered for meat.  If it is 
female it will be kept for milking over a number of lactations.  Thus the meat traits in a 
male are expressed once, while milk traits will be expressed several times.  When the 
cow is culled its sale value may be influenced by its meat traits.  So the milk traits will 
contribute more often than meat traits, but returns from females will occur later than from 
males, and so will be discounted more heavily.  However, there is a further complication.  
Female calves may be used for breeding and pass on half their breeding value for both 
meat and milk to their progeny, which will then express them after another delay, so even 
more heavily discounted.  So in order to give appropriate weights to meat and milk traits 
it is necessary to take account not only of the number of expressions of the traits but the 
pattern of expression.  Thus to choose a dose of semen from different sires we must 
weight their EBVs  for meat and milk in a suitable way.  We also need to compare 
expected returns with costs. 
 
The approach of McClintock and Cunningham was used by Napier and Jones (1976) to 
evaluate purchase of a ram rather than a dose of semen.  Essentially all we need to do is 
consider that when the ram is bought he can generate many progeny rather than the single 
one from a dose of semen.  If he is to be used for only one mating season, his value will 
be that of M doses of semen, where M is the number of ewes to which he is mated.  If he 
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is to be used for several seasons, then successive seasons can be added, each being 
discounted to present value while making allowance for possible death or disability.  In 
this way the value of a purchased ram can be calculated and compared with the purchase 
price. 
 
One problem with this method of evaluation is that each additional season of use adds 
more value to the sire, and an uncritical use of this criterion could lead a producer to use 
a sire for as long as possible.  This would be the correct procedure if better sires are not 
available at a competitive price.  But what should the producer do if better sires are 
continually becoming available?  The buyer needs a policy which can give guidance on 
when to replace a sire he already owns with a new one.  Of course if the sire can no 
longer produce the required progeny he has to go.  But assuming he is still fertile, should 
he be retained or replaced?   
 
REPLACEMENT POLICY 
 
The basic principle is the same for terminal sires and sires which will breed replacements, 
but some details are different, and another approach is possible for replacement-breeding 
flocks.  Let us therefore begin with the simpler case of buying a terminal sire.  The 
females may be bred on-site as part of a breeding program or purchased from another 
breeder.  The question of how to improve the females is a separate one, and here we 
concentrate on the purchase of terminal sires. 
 
A method of assessing the value of terminal sires was given by Ollivier and James (1986) 
and James (1994).  Here we follow the presentation of James (1994).  Let P be the 
number of progeny produced by a sire in a given period, and let W be the probability that 
the sire survives to the next mating period, P and W being assumed constant ( a 
convenient but not necessary assumption).  The maximum number of mating periods for 
which a sire will be used is T, possibly determined by declining fertility.  If d denotes the 
discount rate per period, the discount factor is defined as r = 1/(1 + d), and we denote by 
Y  the number of periods between sire purchase and first returns.  Let B be the monetary 
value of a unit of overall breeding value.  Then the present value to the producer of a unit 
of breeding value in the sire is 
   )1/()1(5.0 rWWrBPrv TTy −−= . 
Suppose the producer has the choice among several potential sires, the jth having 
breeding value Aj and cost Cj.  Then the profitability of the jth sire is vAj – Cj, and this 
provides a criterion for choosing the best sire to buy from among those available, on the 
assumption that a purchase is to be made. 
 
Next we need to consider the profitability of a sire already owned.  This sire has breeding 
value Ak but his purchase cost is now zero.  However, if he was bought t time periods ago 
he will be used for only another T – t time periods.  Thus his profitability will be 
   )1/()1(Pr5.0 rWWrBA tTtTY

k −− −− . 
Thus the difference in profitability between the new and old sires is 
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and sire k should be replaced by sire j if this is positive.  In practice we would not use this 
criterion, but simply evaluate all potential sires and choose the most profitable.  But this 
expression allo ws us to gain some insights. 
 
Let us suppose sire j has the same breeding value relative to his nucleus contemporaries 
as sire k had when he was bought, and that the breeding nucleus has been making genetic 
progress at the rate of G per time period.  Then Aj = Ak + tG and the criterion for 
replacement becomes 
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This has an especially simple form when sires will not be replaced at any fixed age but 
will be kept indefinitely until a more profitable sire is found.  Then T ?  8 and the 
criterion becomes 
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This shows clearly what is obvious anyway, namely that, when G > 0, as t increases the 
more likely it is that a sire should be replaced, and that the time before replacement 
should be shorter when more rapid genetic progress is being made.  The more expensive 
potential sires are, the less frequently they should be bought, other things being equal. 
 
ADDITIONAL EVALUATION 
 
For New Zealand sheep, Amer (1999) has discussed the evaluation of purchased rams 
and ewes by computing the expected numbers of discounted genetic expressions of 
slaughter traits and repeated traits such as amount and quality of wool and number of 
lambs born.  He did this separately for terminal sires and for rams breeding self- replacing 
ewes.  For a basic situation the numbers of discounted expressions of lamb slaughter 
traits were 145 and 196 respectively, while for ewe traits the number was 243, greater but 
not remarkably so.  The reason is that though the ewe traits are expressed more frequently 
they are expressed later than slaughter traits, and so are more heavily discounted.  The 
discount rate used was 7% and the planning horizon used was 10 years.  A planning 
horizon of 10 years seems rather short, but Amer claimed that that it gave close 
agreement with a much longer period.  With a lower discount rate the agreement might 
not be so good.  In this work the number of years for which a sire would be used is taken 
as given.  The paper gives a detailed account of how the calculations are done. 
 
A modification of this approach can be used to value a sire with a known genotype for an 
important locus.  For example, Wood, van der Werf and Parnell (2004) have shown how 
to value a bull known to be homozygous for a desirable recessive allele.  Clearly the 
bull’s progeny will show no advantage if the cows are all homozygous for the “bad” 
allele, since then they will all be heterozygotes.  However, in the following generation 
there should be some “good” homozygotes.  What is required is to trace genotype 
frequencies across generations to find the discounted number of homozygous recessive 
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genotypes produced.  If there are some “good” genes in the cows, there will be some 
immediate production of homozygous recessives, so that the value of the homozygosity 
of the bull would be higher.  Obviously the evaluation needs to be done in relation to the 
current gene frequency in the cow herd.  This process was modelled and applied to the 
case of marbling.  The case of an additive gene would show a different pattern of 
expression, but would also depend on gene frequency.  
 
REPLACEMENT-BREEDING FLOCKS 
 
We saw earlier that the value of a terminal sire could be evaluated simply because only 
its immediate progeny produce expressions of his breeding value.  With a sire of self-
replacing females, his grandchildren, great-grandchildren and so on also contribute 
expressions of his breeding value, albeit halved each generation and progressively more 
discounted.  It was shown by James (1980) that the effect of these extra expressions could 
be accounted for by the factor J, which depends on the breeding age structure and fertility 
of females and the discount factor.  If fj is the genetic contribution of females aged j to 
each progeny crop, so that ∑ =

j
jf 5.0 , then 

   )1/(1 j

j
jrfJ ∑−= . 

If a sire for a female replacement-breeding flock has a breeding value A and a cost C then 
his profitability can be found by multiplying the value of v for a terminal sire by J and is 
 CrWrWJBPAr TY −−− ]1/[])(1[5.0 . 
Thus the same type of analysis may be made as for terminal sires except for the inclusion 
of the factor J. 
 
As an example of the calculation of J, let us consider the following example.  Suppose 
the chosen discount rate is 5%, and that the reproductive contributions are: 
Age  1  2 3 4 5 
Contribution 0            0.15     0.15    0.12     0.08 
Then we have 

 4270.0
05.1
08.0

05.1
12.0

05.1
15.0

05.1
15.0

05.1
0

/11 5432 =++++=− J  

so that J = 1.7453.  If r = 1 and there is no discounting we have J = 2 so that discounting 
has reduced the effective contributions by about 13%. 
 
Although James (1980) presented this result, he devoted more attention to a different 
approach to determining sire buying policies.  He introduced the concept of a lag cost, 
based on the idea that the profitability of a commercial flock or herd will depend on its 
productivity in relation to its competitors.  Therefore the profitability can be regarded as 
dependent on the mean breeding value as well as other environmental and managemental 
factors.  Ignoring these other factors as not involved in sire buying decisions, the measure 
of the effects of sire purchase will depend on the mean breeding value, which at any 
particular time can be measured relative to the sire breeding nucleus, or the improvement 
lag. 
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The lag in a particular herd or flock will depend on the selection practised on females, on 
the rate of turnover of breeding stock and the mean breeding value of purchased sires.  As 
shown by James (1977) the lag can be written as 2(lBG – SB) where lB is the generation 
interval in the commercial population, G is the rate of overall genetic gain and SB is the 
genetic selection differential in the commercial population.  Then SB = ½(DB + dB), where 
DB is the mean breeding value of purchased sires relative to their contemporaries in the 
nucleus and dB is the genetic superiority of selected female replacements.  If lMB and lFB 
are the average ages of male and female parents in the commercial population then we 
have lB = ½(lMB + lFB), and we have 
  lag  = (lMBG –DB) + (lFBG – dB). 
If N is the total number of sires used in any mating period, there are P progeny per sire 
and B is the value per animal of a unit of breeding value, then if the lag were zero the 
extra value of production per period would be  NPB[(lMBG –DB) + (lFBG – dB)].  This can 
thus be defined as the lag cost.  Letting n be the number of sires replaced in each period 
at an average cost of C, the “total cost” can be written as 
  NPB{(lMBG – DB) + (lFBG – dB)} + nC. 
The second part of the expression in {} does not depend on sire buying policy, so if we 
ignore it we can write the cost relevant to sire purchase as 
  NPB(lMBG – DB) + nC. 
Now if we again assume that the probability that a sire survives to the next mating period 
has a constant value W and that a sire will be used at most T times, we have 
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where a is the age of a sire at birth of its first progeny, and 
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If there is no wastage (W = 1) the corresponding expressions are a + (T + 1)/2 and NC/T. 
Therefore the cost relevant to sire purchase is 
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or, when there is no wastage 
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Although the analysis can be done without assuming there is no wastage, we will 
illustrate with the simpler form. 
 
If we divide by NPBG, the value of one period’s genetic gain, we obtain the criterion 
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Writing C/PBG  as Q and DB/G as S we have 
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We wish to minimise this cost and find that  
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and U is a minimum when QT 2= .  The more expensive sires are with respect to the 
value of genetic gain, the longer they should be used for breeding.  Thus if the price of a 
sire is twice the value of one season’s genetic gain for a mating of that sire, he should be 
mated twice, while if his price is 8 times the value of genetic gain he should be used four 
times. 
 
In the above analysis we have calculated the optimum usage for sires of a given genetic 
superiority S, assuming that this has been chosen as an appropriate class of sires for 
purchase.  But how do we decide which class of sire to buy?  Clearly it will depend on 
the relation between price of sire and breeding value.  Obviously from what we have seen 
above the optimum replacement rate would change as sire prices and breeding values 
altered.  We need to consider their simultaneous optimisation.  Therefore let us suppose 
that Q = Q0k(S) where Q0 is the value of C/PBG for a sire of average breeding value 
among his contemporaries and k(S) is the function relating sire price to EBV.  Then 
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Then the task is to minimise U with respect to variation in both S and T. 
 
Upon differentiation we find 
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Thus the shape of the curve relating C to S determines the optimum.  Essentially what 
one has to do is find the price – breeding value relationship and then find how to 
minimise cost. 
 
James (1980) argued that if there is a class of sires, as judged by EBV and price, which is 
more profitable than other classes, competition for these sires should drive up their price, 
while the price obtainable for less profitable sires should decline.  In the long run the 
price – breeding value relationship should shift so that all classes of sire are equally 
profitable if used for the correct number of mating seasons.  He showed that this would 
lead to 

   2
0 )2/1()( QSSk +=  

for which                     02QST +=  

and      025.0 QaU ++= . 
 
This relationship is not what is observed.  James obtained sale prices of boars sold from 
French testing stations with known selection index values in 1978 and found that the 
relation between price (francs) and index values was roughly 
   Price  =  1500 + 5(I – 100) + 0.5(I – 100)2. 
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G was about 2.5 index points, each point being worth 1.5 francs per pig, and with 200 
progeny per boar per period, PBG = 750 francs.  Since index values had a mean of 100, 
the value of Q0 was 2, so that since S = (I – 100)/2.5 the price function can be written 
   Price  =  1500 + 12.5 S + 3.125 S2 
from which 
   k(S) = 1 + S/120 + S2/480. 
With such a price function it would be best to buy the very best available boars, say with 
index values of about 140.  Then the optimum value of T would be 2.58.  So the optimum 
with this price function would be to buy relatively expensive boars and use them for 2 or 
3 time periods (12 or 18 months) before replacing them.  The analysis indicates that the 
best boars were not achieving the market premium they deserve, on the basis of the 
assumptions made. 
 
CONCLUSION 
 
Perhaps because I introduced it, I have found this lag approach sensible, but it has not 
found any favour with others.  The discounted expressions approach has met with 
reasonable acceptance for valuation, but again the optimisation of replacement rates in 
the formal fashion suggested here has not been widely used.  For example, Amer (1999) 
has assumed that the number of times a sire is used is determined externally. 
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Optimising expenditure on trait measurement 
 

J.W.James 
Reprogen, Faculty of Veterinary Science, University of Sydney 

 
In the past thirty years there has been a great development of the use of computers in 
genetic evaluation, due in part to the rapidly increasing power of these machines and in 
part on the development of methods such as BLUP and REML which rely on computing 
power for their practical implementation.  We know very well now how to include all 
available information in our genetic evaluations, and how to make selection decisions 
based on these evaluations.  This is all on a very sound theoretical basis.  Of course, we 
often do not have the information we would like, but we can use what we have.  We are 
still faced with the question of what information we should gather.  How can we decide 
on such matters? 
 
PROGENY TESTING 
 
It was nearly 50 years ago that Robertson (1957) sought to rationalise progeny testing 
programs in dairy cattle.  This is now so well established that it is hard to realise how 
original it was at the time.  Essentially he asked the question: How can a limited amount 
of test material, the cows to be mated to young bulls for tes ting, best be used?  He pointed 
out that the greater the number of young bulls tested, the greater would be the selection 
intensity, but the smaller would be the accuracy of selection, and that the product of the 
standardised selection differential and the correlation between true and estimated 
breeding value was the quantity to be optimised.  He found a simple approximation to the 
optimum family size.  This well-known theory is not usually thought of as involving 
optimising the distribution of expenditure on measurement over candidates for selection, 
but it is an example.  Some young bulls have progeny test measurements, while others do 
not.  In the theory it is assumed that the breeder has no useful information to choose 
among the young bulls, so all selection is based on the progeny test results.  This would 
have been a reasonable assumption in the early days of dairy cattle progeny testing, even 
if less so now.  Others soon extended Robertson’s idea to other situations, e.g. Rendel 
(1958) and Smith (1959).    
 
INCOMPLETE TESTING  
 
In discussing the design of pig testing schemes, Smith (1959) pointed out that if the 
number of animals tested was no greater than that required for use, progress was possible 
only if part of the required breeding stock were selected from the tested animals, with the 
remainder being made up of randomly chosen untested animals.  He remarked that it was 
always preferable to choose at random from among untested stock than to choose a tested 
animal known to be below average, since the  EBV of an animal with no records is zero, 
and hence higher than that of a below-average tested animal.  (This assumes that the 
mean EBVs of tested and untested animals are equal).  James (1966) applied this idea to 
selecting a fixed number of animals from a population on the basis of a measurement that 
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is relatively expensive compared to the expected gain from selection.  He found the 
optimal fractions to measure for given proportions culled and ratios of benefit to cost.  
For instance, if the cost of a measurement exceeded 0.3989 of the value of a standard 
deviation superiority in an animal it was best to do no measurement.  Although a formal 
solution was given, in practice it would be straightforward to program a computation to 
find the most profitable measurement fraction.  It was also pointed out that if comparison 
of a cheap and an expensive method was made assuming complete testing there might be 
a bias against the expensive method, because complete testing is less likely to be optimal 
for it than it is for the cheap one. 
 
PREVIOUS INFORMATION 
 
The analysis by Robertson (1957) of optimal family size in progeny testing was based on 
the assumption that nothing was known about the breeding values of the young bulls, or 
at least that there was no difference among their EBVs prior to the progeny test.  If there 
is previous information, this ought to be combined with the progeny test data in the final 
evaluation.  Another limitation placed on the progeny testing is that each tested sire has 
the same number of progeny.  Thus the distribution of progeny among the available bulls 
is such that only two family sizes are possible: zero or n.  But the general situation is that 
each available bull could be given an arbitrary number of progeny, subject to the 
restriction that the total number of progeny matches the testing facilities.  James (1979) 
considered the optimum distribution of varying numbers of progeny to available sires 
subject to selection of a fixed number and that the total number of progeny is fixed.  We 
present his approach here. 
 
Suppose the prior information is summarised in the form of an EBV, 1Ĝ , scaled so that 
the regression of true breeding value on this EBV is unity, and that the correlation 
between G, the true breeding value, and 1Ĝ  is r1.  A second set of data is then obtained 

such that if the prior information is ignored breeding value can be estimated as 2Ĝ  with a 
correlation r2 with G.  Let r be the correlation between these two EBVs.  Then the best 
combination of these two EBVs is Ĝ , where 
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Then each sire is evaluated on its value of Ĝ and the required number is selected by 
truncation (Henderson, 1963).  This truncation point X can be taken as a deviation from 
the prior EBV as 

1
ˆˆ1 /)ˆ(

GG
GX

−
− σ which we denote as x.  The corresponding probability 

of selection is p and z is the ordinate of a normal curve at x.  Thus the expected gain 
following selection on Ĝ  is 
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where we have dropped the subscript on 
1

ˆˆ GG−
σ , and summation is over all prospective 

sires with Sp chosen to give the required number of selected sires.  The problem is then 
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to choose the appropriate value of 
1

ˆˆ GG−
σ conditional on the prior EBV.  James gave a 

formal solution, but it was so complex as to be of little practical use. 
 
However, a few general points can be brought out.  The equations show that the response 
to selection can be regarded as having two components: selection among groups with the 
same prior EBV, and selection within these groups on the difference between final a nd 
initial EBV.  Sires with small numbers of progeny have small 

1
ˆˆ GG−

σ  values, and in the 

limit with no progeny will have a final EBV equal to the initial one.  Animals without 
progeny will be selected on 1Ĝ  so that if 1Ĝ >X, an animal which is not progeny tested is 

certain to be selected, while if 1Ĝ  < X it is certain to be culled.  Independent culling 
levels can be regarded as corresponding to the second case.  There is then reason to 
suggest that animals with very high initial EBVs need not be progeny tested, nor should 
those with very low values, attention being concentrated on testing those for which 
further information will be critical for making selection decisions.  Of course, such a 
situation can arise only if the accuracy of the prior EBV is rather high, which would 
probably occur only rarely when progeny testing is being considered.  Although the 
theory was developed with progeny testing in mind, it applies to any further gathering of 
information. 
 
It would be usual to obtain further data on the animals judged best from initial EBVs 
when the amount of further data collection was limited, which is a form of independent 
culling level selection.  The suggestion that attentio n might be concentrated on animals 
with intermediate EBVs is similar to the concept of selection of extremes due to 
Abplanalp (1972).  Independent culling levels involves a series of tests, all of which a 
candidate must pass in order to be selected.  Selection of extremes also involves a series 
of tests, all of which an animal must fail in order to be culled.  Abplanalp showed that in 
some situations it was better than independent culling levels in terms of genetic gain, 
though it is more expensive, since each animal must be tested for all traits, while with 
independent culling levels those that fail the first test will not be given the second test. 
 
TESTING MALES AND FEMALES 
 
Suppose a breeder has facilities for testing 1000 animals for a quantitative trait and will 
select 10 males and 500 females from among those tested.  If he tests 500 of each sex he 
will have no selection differential in females unless he replaces the worst tested females 
with untested ones.  Suppose this is done.  Then he selects 10 out of 500 males with a 
selection differential of 2.42s and 250 out of 500 females with a selection differential of 
0.80s together with 250 untested females so that the overall female selection differential 
in females is 0.40s and averaged over both sexes it is 1.41s.  But if the number of males 
tested was to be 400, the males would have a selection differential of 2.34s, and there 
would be 300 selected tested females with a selection differential of 0.80s and 200 with a 
value of zero, so that the average would be 0.48s, and averaged over sexes it would be 
1.41s also.  Essentially these are the same. 
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Now suppose we want to select 10 males and 250 females.  In this case with equal testing 
we can select all animals required from among those tested.  The selection differential in 
males would again be 2.42s, while that in females would be 0.80s with an average of 
1.61s.  If 400 males and 600 females are tested the selection differentials are 2.34s and 
0.93s respectively, giving an average of 1.64s.  There is thus in this case a small 
advantage to testing more females than males. 
 
Smith (1969) made a theoretical analysis of this situation using his approximation to the 
standardised selection differential 
   )1ln(8.0]/)1ln[(8.0 −+=−+= θppi  
where i is the standardised selection differential, p is the proportion selected, and ? = 1/p.  
Here I will give a brief idea of what is involved. 
 
Suppose we have T testing places and we need to select S sires and D dams from among 
N available animals of each sex, while T = 2N, so that not all can be tested.  The breeder 
decides to allocate a fraction f of testing places to males, and 1 – f to females.  To avoid 
complications we assume that all animals required may be selected from those tested, as 
in the second example above.  The required numbers as fractions of the numbers tested 
will then be S/Tf and D/T(1 – f) respectively.  Then if we write ? M and ?F as the 
reciprocals of the selection intensities the selection response is proportional to iM + iF 
which can be written as, approximately, 
   0.8 + ln(?M – 1) + 0.8 + ln(?F – 1). 
To find the optimal value of f we differentiate this expression and set the derivative to 
zero.  The derivative can be written 
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and setting this to zero we find 
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Clearly there will be more complicated considerations when there are not enough testing 
places to meet the requirement that all selected animals are tested.  The condition will be 
met if the number of females tested is at least twice the number required, or 3S + D = T.  
For the numerical example above with S = 10, D = 250, T = 1000, the theory above 
would give optimal numbers tested as 380 males and 620 females, quite close to the 
values used in the example.  The advantage in this case is fairly small, but the principle is 
clear; it is better to use extra facilities to increase the selection differential in the sex in 
which more animals are to be selected. 
 
In many cases, the two sexes will be selected for different traits, with different 
correlations with overall breeding value, and with different measurement costs.  The 
analysis above can be easily modified to deal with these complications. 
 
Let rM and rF be the correlations between male and female traits and overall breeding 
value, and let cM and cF be the respective costs of measuring a male and a female, while 
CT is the total cost of measurement in the budget.  If we set TM = CT /cM with TF defined 
similarly for females, these are the total numbers of males and females which can be 
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measured if the whole budget is devoted to measuring one sex.  Let f be the fraction of 
the testing budget devoted to testing males.  Then the number of males tested is fCT/cM or 
fTM while the number of females tested is (1 – f)TF.  The selection intensities in the two 
sexes are S/fTM and D/(1 – f)TF. 
 
The response to selection is proportional to iMrM + iFrF and we again use Smith’s 
approximation to i.  Here ?M = fTM/S and ?F = (1 – f)TF/D and we need to maximise  
  rM[0.8 + ln(?M – 1)] + rF[0.8 + ln ( ?F – 1)] 
with respect to variation in f. On differentiating and setting the derivative to zero we have  
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from which the solution is 
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This shows that, other things being equal, more should be expended on the more accurate 
evaluation, which comes as no surprise.  Again, if the achievable proportion selected is 
greater in females than in males, other things being equal, more effort should be devoted 
to increasing the measurement of females.  This conclusion is sometimes regarded as 
wrong because of a prejudice that since male selection is more powerful than female 
selection more effort should be put into evaluating males.  This is not necessarily true.  
The optimal value above can easily be seen to reduce to the previous one if evaluation is 
equally accurate and equally costly in the two sexes, as it should. 
 
A somewhat different approach was initiated by Jackson, Lax and Wilson (1986), who 
assumed that a range of measurements could be made on males and females, and that the 
accuracy of selection was dependent on measurement expenditure with diminishing 
returns.  Specifically, they assumed that the accuracy of selection GG

r ˆ  is related to the 

cost of measurement c by the relation  
GG

r ˆ  = rmax(1 – kc) so that the accuracy is zero when 
c = 0 and is rmax as c becomes very large.  Of course, costs will not increase smoothly as 
implied by this equation, but will rise in a stepwise manner as more traits are added, but 
the equation allows some consideration to be given in a general manner.  This approach 
was also used by Wade and James (1990), also with reference to Merino sheep breeding.  
They followed Jackson et al. in taking k = 0.7 and presented some results to indicate the 
type of outcome which might be observed.  Assuming 50% of ewes and 1% of rams are 
required to be kept among the 500 candidates of each sex, a unit of cost = $0.50 and a 
total measurement budget of $1250 is allowed, they found that the optimum allocation 
was : 
 Test 170 rams at $4.05 per head     $687.65 
 Test 500 ewes at $1.13 per head     $562.50 
The selected proportions would be 3% in rams and 50% in ewes, with accuracies of 
0.94rmax in males and 0.55rmax in females. They also found that with this relation between 
cost and accuracy it always paid to measure at least twice as many animals as were 
required if that was possible, so that there was no need to select untested animals.  Of 
course if more than half of the available females must be kept, this is impossible.  In this 
example the proportion of the budget spent on testing males is 687/1250 = 0.55.  If we 
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apply the formula previously derived we have rM/(rM + rF) = 0.63, TM = 1250 /4.05 = 309, 
TF = 1250 /1.23  = 1106, rF/rM = 0.58, so that 

   
250 5

0.63[1 0.58 ]
1106 309

f = − +  = 0.49. 

Thus the approximation does not give the same result, though both methods suggest that 
about the same amount should be spent on evaluating each sex, but that fewer males 
should be tested with a higher accuracy than females. 
 
In the treatment given so far it has been assumed that the generation interval is fixed.  
However, it was pointed out by Ollivier (1990) that if generation interval is allowed to 
vary, the generation length will be affected by the amount of testing done, since the 
testing facilities will be on a per year basis, and by changing the numbers required for 
testing the breeder could alter the time needed for breeding replacements.  He showed 
that when testing facilities are very limited, only males should be tested, and  the 
maximum proportion to be selected is 27%, any other males required being taken at 
random from untested males.  This is based on the following development. 
 
Assume that the proportions of males and females required for breeding are pM and pF 
while the remainder (1 – pM) and (1 – pF) are chosen at random from untested animals.  
The standardised selection differentials are iM and iF respectively.  The generation 
intervals for the selected males and those taken at random are tM1 and tM0 with similar 
definitions for females.  Then the annual selection response is proportional to 

  
1 0 1 0(1 ) (1 )

M M F F

M M M M F F F F

p i p i
p t p t p t p t

+
+ − + + −

 

Assuming no wastage of breeding animals and fertility the same at all ages, the 
generation lengths can be written 
 tF1 = a + pFnF/2qF   tF0 = a + (1 – pF)/2(? – qF) 
 tM1 = a + pMnM/2f qM   tM0 = a + (1 – pM)/2f(? – qM) 
where ? is the number of progeny of each sex per dam per year, f is the number of 
females mated to each male, nM being the number of males tested per year per male 
selected, with nF defined similarly, and qM is the number of males tested per breeding 
female per year, with qF defined similarly.  If k is the proportion of the available animals 
of both sexes which can be tested annually, and f is the fraction of testing places given to 
males, then qF = 2k?(1 – f) and qM = 2k?f.  Using these relations and the relation between 
proportion selected and selection differential gave the result quoted above. 
 
Ollivier considered a number of cases other than this simplest one, and identified 
conditions which led to testing of males only, either with or without some use of untested 
males, and to testing of some females.  He let k1 be the value below which some untested 
males should be used and k2 denote the value above which some females should be 
tested.  A small sample of the results is given in the table below. 
 
Females per male (f )  10    100 
Value of a?  0.5 1.0 5.0  0.5 1.0 5.0 

 k1  0.061 0.037 0.009  0.006 0.004 0.001 
 k2  0.77 0.65 0.28  0.87 0.75 0.35 
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For higher female reproduction rate the value of k at which all selected males should 
come from those tested is lower, and in any case it is only for very restricted testing 
facilities that untested males should be used.  Of course, untested females will be used in 
many situations.  Ollivier’s paper should be consulted for further details. 
 
TWO-STAGE SELECTION 
 
All of the above analyses were carried out assuming selection in a single stage.  But it is 
often pointed out that if sequential culling is used, only those animals which survive the 
first culling need to be measured at the second stage, and therefore the survivors can be 
measured for more traits than would be possible for the same cost if there were no 
culling.  Wade and James (1996) dealt with the case of two-stage selection in conjunction 
with the approach taken above for single-stage selection. 
 
There was no simple solution in this case (at least none was found) and results were 
obtained by using computer programs which are described in the paper.  First they 
estimated the relationship between cost and accuracy of EBVs using a series of 
measurements appropriate for selection of Merino sheep (about 10 years ago).  The value 
of k in the relation 1 – kc with c measured in dollars was 0.8, which fitted quite well, 
though there were a few measurement combinations for which the fit was not so good.  A 
numerical example will illustrate what can be done. 
 
A breeder has a flock of 1200 ewes which produce 1000 lambs annually, and a budget of 
$2000 for measurement to allocate among the 500 progeny of each sex.  The proportions 
required for breeding were 5% of rams and 50% of ewes. The optimum was to allocate 
0.75 of the total to males and 0.25 to females.  Thus the expenditure should be $3 per ram 
and $1 per ewe.    Further analysis gave the following allocation of testing funds. 
 
Test 250 ram hoggets at $3.90 per head in stage 1, then choose the best 75 and test them 
in stage 2 at $7.00 per head.  This gives a total male testing cost of  

250×$3.90 + 75×$7.00  =  $1500. 
For females the best option was to test 500 in stage 1 at a cost of $0.65 per head, select 
the best 400 and test them at stage 2 at a cost of $0.44 per head, giving a cost of 
  500×$0.65 + 400×$0.44 = $501, 
and the total cost was $2001 as budgeted. 
 
In practice, these solutions would not be achievable.  An appropriate stage 1 criterion for 
males might be clean fleece weight at $4.00 per head, with perhaps mean fibre diameter 
and coefficient of variation of diameter at $6.00 per head in stage 2.  A visual classing 
criterion at $1.00 per head might be added.  For females, no measurements meeting the 
suggested costs are obvious.  It might then be best to measure all ewes at a single stage 
for a trait such as hogget body weight of a visual wool trait.  It would be necessary to 
consider the costs and accuracies of available traits in order to find a feasible plan.   
 
There were often only small differences between various options and similar gains could 
be achieved using quite different allocations of funds, so not too much attention should 
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be paid to the actual optima reported.  What is important is that in planning a breeding 
program a variety of possible strategies needs to be considered. 
 
CONCLUSION 
 
With the ready availability of quick and cheap computing, the planning of a breeding 
program should involve the modelling of a wide range of possible schemes with attention 
given to the way that funds are spent on obtaining data which provide efficient means of 
making genetic improvement. 
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Calculation of discounted genetic expressions 
 
 
Calculations will follow the procedures given by P.R.Amer (1999) N.Z.J.Agric.Res., 
42:325 – 336. 
 
Amer defines the following numbers of genetic expressions discounted to a ewe age of 
one year. 
 
Terminal Ewes. 
XFEA : ewe lambing trait expressed by a ewe over her lifetime. 
XFEC : ewe end of life trait. 
XFEL : ewe’s proge ny trait at birth.  
XFES : ewe’s progeny trait at slaughter. 
XFEH : ewe hogget trait.  XFEH = 1 by definition. 
 
Ewes Breeding Replacements 
XFRA       The H subscript refers to hoggets.  Otherwise the numbers correspond to those 
XFRC      for terminal ewes, the R subscript denoting that the ewes breed replacements. 
XFRH      A is for adult, C for cull, L for lamb, S for slaughter. F is for female, M for male. 
XFRL 
XFRS 
 
Terminal SireWith All Progeny Slaughtered. 
XMTL 
XMTS 
 
Sire Breeding Terminal Daughters. 
XMEA 
XMEH 
XMEC 
XMEL 
XMES 

 
Sire Breeding Self-replacing Daughters. 
XMRA 
XMRH 
XMRC 
XMRL 
XMRS 
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To calculate these values, flock structure data, survival rates, ages at culling, etc. need to 
be specified.  Amer gave the following definitions. 
 
s   vector of n elements  with si = probability of survival from age i – 1 to age i.  n is the 
greatest ewe age considered possible. We can set s1 = 0, since it is not used. 
p  vector of  n elements with pi = average number of progeny per ewe reaching slaughter 
or reproductive age. 
a  vector of probabilities that a ewe survives and lambs at age i, given she was present at 
age 1.           

  ∏
=

=
i

j
ji sa

2

.      i = 2,…c ,    = 0 otherwise. 

where c is the age, =n, at which a ewe will be culled.  For example, a4 = s2s3s4. 
d   vector of probabilities a ewe dies or is culled at age i. 
 di = 1 – ai  for i = 2; = ai-1 – ai for i = 3 to c – 1; = ai-1 for i = c; = 0 otherwise. 
Q  discounting matrix. 
 Qii = [1/(1 + r)]i-1 for i = 1,…,n.   Qij = 0 if i ? j. 
1 a vector of n ones. 
 
 XFEA = 1’Qa 
 XFEC = 1’Qd 
lS is probability of surviving from birth to one year of age. 
 XFEL =  p’Qa /2lS 
 XFES  =  p’Qa/2 
 
h is number of years in planning horizon from birth of replacement ewe.. 
 
D is a transition matrix (h by h) of survival probabilities lagged by one row for each birth 
year. 
 Dij = ai-j for j < i – 1 and i – j < c; = 0 otherwise. 
E is a matrix (h by h) of terminal lambs produced per ewe age group adjusted for ewe 
survival and lagged for birth year. 
 Ei,j = ai-j(pi-j – f)  for j < i – 1 and i – j < c; = 0 otherwise. 
f is the number of lambs required as replacements at first reproductive age per ewe 
lambing per year.  With a constant age structure, 

   ∑
=

=
c

i
iaf

1

/1 . 

F, G and H are similar matrices for lambs, culled ewes and hoggets respectively. 
 Fij = ai-jpi-j for j < i – 1and i – j < c;  = 0 otherwise. 
 Gij = di-j for j < i – 1 and i – j < c + 1;  = 0 otherwise 
 Hij = 1 for i – 1 = j;    = 0 otherwise. 
 
gk is a vector of h elements for increments of gene flow for each generation k from 1 to m 
where m is the maximum number of generations considered. 
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 g’1 = (1 0 0 …. 0) 
 gk  = ½ f D gk-1 
gsum is the aggregate yearly genetic expressions accumulated over generations. 

 ∑
=

=
m

k
ksum gg

1

. 

q is a vector of h elements of discount factors. 
 qi  =  [1/(1 + r)}i – 2  so the discount factor is 1 at a ewe age of one year. 
Then 
 XFRA  =  gsum’ D’q 
 XFRC  =  gsum’ G’q 
 XFRH  =  gsum’ H’q 
 XFRL  =  gsum’ F’q /2lS 
 XFRS  =  gsum’ E’q / 2 
 
Average number of lambs / ewe lambing either sold or breeding a replacement is 
 v  =  a’p / (1’a) (vectors are of length n) 
Average number of ewes lambing per sire used in any one year is e. 
Average number of years a sire is used is y. 
Proportion of sire’s daughters selected as terminal ewes is u. 
w is a vector of y elements such that  wi = [1/(1 + r)]i. 
z is a vector of y elements such that zi = [1/(1 + r)]i+1 
 
Then 
 XMTL  = ½1’w e v / lS 
 XMTS  =  ½1’w e v  
 XMEA  =  ¼1’z e v u XFEA  
 XMEH  =  ¼1’z e v u XFEH  
 XMEC  =  ¼1’z  e v u XFEC 

 XMEL  =  ½1’z e v (½uXFEL  + [1 + r]/lS)  
 XMES  =  ½1’z e v (½uXFES   + [1 - ½u][1 + r])  
In Amer’s paper the equations for XMEL and XMES give w instead of z.  Dr. Amer has 
pointed out the error in a personal communication. 
 
 XMRA  =  ¼ 1’z e v u XFRA 

 XMRH  =  ¼ 1’z e v u XFRH 
 XMRC  =  ¼ 1’z e v u XFRC 
 XMRL  =  ½ 1’z  e v (½ u XFRL + [1 + r] /lS) 
 XMRS  =  ½ 1’z  e v (½ u XFRS + [1 - ½ u][1 + r]) 
 
The basic structure used by Amer was as follows. 
Oldest accepted age of ewe: n = 7. 
The vector s’  =  (0  0.95  0.94  0.93  0.88  0.83  0.70) 
The vector p’  =  (0  1.1  1.25  1.25  1.35  1.30  1.10) 
Culling age:  c = 5. 
Planning horizon: h = 10 years 
Discount rate:  r = 0.07 
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Average ram working life: y = 3 years 
Ewes lambing per sire joined:  e = 90 
Proportion of ewe lambs retained: u = 0.85. 
Lamb survival to mating:  lS = 0.8. 
 
The object of this exercise is to use Microsoft Excel to calculate these numbers of 
discounted expressions from the base data.   
 
This will involve setting up the various matrices, with some matrix transposition and 
matrix multiplication, and vector additions. 
 
The matrix (vector) operations required can be done as shown on the following page 
provided by Julius van der Werf. 
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Matrix calculations using Excel 
 
You can do some basic matrix calculations with MS Excel.  
 
First put in the values of your matrices 
 
To multiply two matrices:  
  - select an area of the size of the resulting matrix 
  - type: =MMULT( 
  - select the area of the first matrix 
  - type  a comma (,) 
  - select area of the second matrix 
  - type a close bracket )  
       - press: Ctrl_Shift_Enter  
 
To add or subtract a matrix (vector): 
  - select an area of the size of the resulting matrix 
  - type: = ( 
  - select the area of the first matrix 
       - type a   +  or    - 
       - select area of the second matrix 
 - type a close bracket )  
  - press: Ctrl_Shift_Enter 
 
To invert a matrix: 
  - select an area of the size of the resulting matrix 
  - type: =MINVERSE( 
  - select the area of the first matrix 
  - type a close bracket )  
  - press: Ctrl_Shift_Enter 
 
To transpose a matrix (vector): 
  - select an area of the size of the resulting matrix 
  - type: =TRANSPOSE( 
  - select the area of the first matrix 
  - type a close bracket )  
  - press: Ctrl_Shift_Enter 
 
A more specialized matrix calculation program is MATLAB. It contains many more 
matrix functions and mathematical function than excel. MATLAB allows you to make 
and run programs, draw graphs, and run simulation). A MATLAB student version is very 
well suitable for animal breeding problems and quite easy to use. 
 
 
 


