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Bayes theorem

( ) ABN
P A,B

N
=

( ) AB

B

N
P A |B

N
=

A: to be man

B: to be British

N: Total number of individuals

NA
: number of men

NB: number of British people 

NAB: number of British men

But if we take only the British people, the probability of being a man is 
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Bayes theorem

( )

( ) ( )

= =  =

= 

AB AB B

B

N N N
P A,B

N N N

P A | B P B
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Bayes theorem

   P(A,B) = P(A|B) · P(B)

   = P(B|A) · P(A)

  

   P(A|B) = P(B|A) · P(A) / P(B)
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Model:      y = Group + e

Group: Selected line (S) 

Control line   (C)

Question: Is S≠C ?
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Bayes theorem



Model:      y = Group + e

Group: Selected line (S) 

Control line   (C)

Question: Is S>C ?

P(S>C) ?    or P(S-C>0) ? 

7

Bayes theorem



Bayes theorem

    P(A|B) = P(B|A) · P(A) / P(B)

    P(S−C|y)  = P(y|S−C) · P(S−C) / P(y)

    S: Selected line

    C: Control line

    y: data
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P=0.47

a               b

f(S-C|y)

Density functions

Probability os S-C being

between a and b is the area

of the distribution P(S-C|y)
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Prior information

4.1. Exact prior information

4.2. Vague prior information

4.3. No prior information

4.4. Improper priors

4.5. The Achilles heel of Bayesian inference
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Exact Prior information

AA 

aa Brown

Black

Aa Black aA Black
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Exact Prior information

?? x aa AA
Aa  aA

BrownBlack

Brown

aa 
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Exact Prior information

aA x aa BrownBlack

Brown

aa 

Aa
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Exact Prior information

?? x aa AA
Aa  aA

Brown

Black

Black
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Exact Prior information

?? x aa AA
Aa
aA

Brown

Black Black Black

Black

P(AA) = 1/3

P(Aa) = 2/3
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Exact Prior information

P(AA | y=3B)

◼ P(y=3B |AA) = 1

◼ P(AA) = 1/3

◼ P(y=3B) 

AA x aa 

??

Aa

Black

Black

Brown

P(A|B) = P(B|A) P(A)/P(B)

=  P(y=3B |AA) · P(AA) / P(y=3B)
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Exact Prior information

◼ P(y= 3B |Aa) = (1/2)3

◼ P(Aa) = 2/3

◼ P(y=3B)

Aa x aa 

??

Aa

Black

Black

Brown

P(A|B) = P(B|A) P(A)/P(B)

P(Aa | y=3B) =  P(y=3B |Aa) · P(Aa) / P(y=3B)
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Exact Prior information

   P(y=3B) =     (y= 3B & AA) +    P(y=3B & Aa)       =

 

                 P(y= 3B |AA) P(AA) +  P(y= 3B |Aa) P(Aa) =

    

                        1     ·  1/3  +        (1/2)3    ·  2/3   =

=  5/12  =  0.42

P(A,B) = P(A|B) P(B)
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◼ P(y=3B |AA) = 1

◼ P(AA) = 1/3

◼ P(y=3B) = 5/12

P(AA | y=3B) = 1 · (1/3) / (5/12) = 0.80

P(AA | y=3B) = P(y=3B |AA) · P(AA) / P(y=3B)

Exact Prior information
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Exact Prior information

P(Aa | y=3B) = P(y=3B |Aa) · P(Aa) / P(y=3B)

◼ P(y= 3B |Aa) = (1/2)3

◼ P(Aa) = 2/3

◼ P(y=3B) = 5/12

P(Aa | y=3B)=(1/2)3·(2/3) / (5/12)= 0.20

Aa x aa 

??

Aa

Black

Black

Brown
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Exact Prior information

Notice that 

P(AA | y=3B) = 0.80

P(Aa | y=3B) = 0.20

                       1.00

However, the likelihoods

P(y= 3B |AA) = 1

P(y= 3B |Aa) = (1/2)3= 0.125

By ML we choose AA without a measure of uncertainty
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Exact Prior information

P(AA) = 1/2   

P(Aa) = 1/2 

P(AA | y=3B) =    1    · (1/2) / (9/16) = 0.89

P(Aa | y=3B) = (1/2)3 · (1/2) / (9/16) = 0.11

WITH FLAT PRIOR INFORMATION

P(A? | y=3B) = P(y= 3B | A?) · P(A?) / P(y=3B)

P(y=3B) = P(y= 3B |AA) P(AA) + P(y= 3B |Aa) P(Aa) =

              =             1    · 1/2   +         (1/2)3 · 1/2    =  9/16 = 0.56 
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Exact Prior information

P(AA) = 0.002   

P(Aa) = 0.998 

P(AA | y=3B) =    1    · 0.002 / 0.13 = 0.02

P(Aa | y=3B) = (1/2)3 · 0.998 / 0.13 = 0.98

WITH HIGH PRIOR INFORMATION

P(y=3B) = P(y= 3B |AA) P(AA) + P(y= 3B |Aa) P(Aa) =

              =          1     · 0.002   +      (1/2)3 ·  0.998  =  0.13 

P(A? | y=3B) = P(y= 3B | A?) · P(A?) / P(y=3B)

23



Exact Prior information

Aa 

??

Aa x

x aa AA
Aa
aA

Black

Brown

Black

Black Black Black

Black

P(AA|y) = 0.80

P(Aa|y) = 0.20

P(AA) = 0.33

P(Aa) = 0.67
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Exact Prior information

    Aa 

??

Aa x

x aa AA
Aa
aA

Black

Brown

Black

Black Black Black Black Black Black Black

Black
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Exact Prior information

P(AA|y=7B) = 0.99

P(Aa|y=7B) = 0.01

P(AA|y=3B) = 0.80

P(Aa|y=3B) = 0.20

P(AA) = 0.33

P(Aa) = 0.67
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Exact Prior information

When 
more 
data,  
prior is 
irrelevant

P(AA|y=3B) = 0.80

P(Aa|y=3B) = 0.20

P(AA) = 0.33

P(Aa) = 0.67

P(AA|y=3B) = 0.89

P(Aa|y=3B) = 0.11

P(AA) = 0.50

P(Aa) = 0.50

P(AA|y=7B) = 0.99

P(Aa|y=7B) = 0.01

P(AA) = 0.33

P(Aa) = 0.67

P(AA|y=7B) = 0.99

P(Aa|y=7B) = 0.01

P(AA) = 0.50

P(Aa) = 0.50
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Exact Prior information

When more data,  prior becomes irrelevant

( ) ( ) ( ) ( ) ( )
1 2 n

f | f | f f y ,y , ,y | f  = =   y y 

( ) ( ) ( ) ( )1 2 nf y | f y | f y | f   = 

( ) ( ) ( ) ( ) ( )1 2 nlog f | log f y | log f y | log f y | log f     + + + +y 
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Vague prior information

• PROBABILITY describes BELIEFS
• Subjective probability is not arbitrary
• It should be vague (otherwise, no reason to perform an experiment)

• When not vague, make conditional inferences (avoid problems)

• USE APPROPRIATE PRIOR DENSITIES
• Linear beliefs (for effects, etc.) are symmetrical: Normal for example.

• Quadratic beliefs (for variances, h2, etc.) are assymetrical. I-gamma for example

• TRY SEVERAL PRIORS
• If posteriors are almost the same, prior information is irrelevant

29



Vague prior information

0.2 0.4 0.6 0.8 1

Prior1

Prior 2

Prior 3

heri tability

5.41557

1.953e-062

g1( )x

g2( )x

g3( )x

10.01 x

Use appropriate functions

to describe vague prior knowledge

Blasco et al. 1998

Genetics 143: 301-306
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Vague prior information

• How can be integrated information from other 

experiments?
• Is your experiment fully comparable with other 

experiments? 

• Do you believe in ALL published results?

• How can you define multivariate beliefs?

• The posterior of today is tomorrow’s prior

PROBLEMS
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No Prior information

FLAT PRIORS

0

f(h2)

0 1

f(h2)
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No Prior information

FLAT PRIORS

0 10.5

f(h2)

Event A ≡ h2<0.5 
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No Prior information

FLAT PRIORS

0 10.5

f(h2)

P(A) = P(h2<0.5) = ½

P(A) = P(h4<0.25) =½

Event A ≡ h2<0.5 ≡ h4<0.25
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No Prior information

FLAT PRIORS

0 10.5

f(h4)

P(A) = P(h2<0.5) = ½

P(A) = P(h4<0.25) =½

Event A ≡ h2<0.5 ≡ h4<0.25

0.25
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No Prior information

◼ Non informative priors are informative

◼ Thus, we introduce information we do not know where it comes from

◼ Some non-informative priors minimize the information introduced

◼ We should avoid (in general) improper priors

◼ We should check how results are affected by using a prior, even if this 
prior is non-informative

◼ … but we do not know how to do this in the multivariate case
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No Prior information

◼ Other alternatives have been proposed:

◼  Jeffrey’s priors: 

  They are invariant to transformations

◼  Bernardo’s Reference priors:

  Minimum prior information

◼   Maximum entropy prior information:

  Minimum prior information with some 

  subjective informative restrictions

◼ However, all of them have problems in the multivariate case

37



No Prior information

◼ We cannot have subjective multivariate priors

◼   Subjective priors: hire a psicoanalist

◼ We cannot have ‘objective’ multivariate priors !!

◼   Do not use big flat priors

◼   Do not use almost big flat priors!!

◼   Be careful with some common priors like inverted Wishart !!

◼ A practical solution:

◼ Flat priors with sound limits

◼  Vague Informative priors with sound limits 

MULTIVARIATE PRIORS
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Improper priors

• Some priors are not densities

– Example: f(θ) = k          k: arbitrary constant

∫ f(θ) dθ = ∞

• They can produce improper posterior densities

• They lead to proper posterior densities when

f(y) = ∫ f(y|θ) f(θ) dθ < ∞
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Improper priors

( )
( ) ( )

( )
( )

( )


= =


=
 


f y | f f y | k

f | y f y |
f y k

( ) ( ) ( ) ( ) ( )f y f y | f d f y | k d k f y | d
  

− − −
=    =   =   =  

But sometimes they are not !
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Improper priors

◼ Improper priors may lead to improper posteriors

◼ When using MCMC improper posteriors may not be detected

◼ Do not use improper priors !!

◼   Do not use big flat priors

◼   Do not use almost big flat priors!!  E.g.:  f(θ)  N(0, 106)

(they behave as impropre priors and give a false sense of safety)

◼ A practical solution:

◼ Flat priors with sound limits

◼  Vague Informative priors with sound limits 
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No Prior information

◼ Modern Bayesians consider prior information as just a 
mathematical artefact that allow us to work with probabilities

 … but      PROBABILITY  x  ARTEFACT  ≠  PROBABILITY

 PROBABILITY  x  ARTEFACT  =  ARTEFACT

◼ If we behave as if it is a probability, the distortion is not high

 … and we can enjoy the advantages of working with

        probabilities
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The Bayesian choice

SOME DISSAPOINTMENTS ALONG YOUR LIFE:

• Father Christmas are mum and dad

• In the improbable case of the existence of the Heaven, nobody has 
make a reservation for you there

• Bayesian methods have conceptual problems, as the frequentists 
ones, and it is a matter of choice to take a system or the other one

 My opinion as user: Most problems have a more 
straightforward Bayesian solution, and you can understand 
better what you are doing. 

The great advantage
 is to work with 

Probabilities
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Density function

NT

0.129661

1.825e-007

g1( )x

250 x

−1 2x x

f(x)

f(x) is not a probability
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Density function

NT

0.129661

1.825e-007

g1( )x

250 x

−1 2x x

f(x)

f(x) is not a probability

f(x)·Δx  is approx. a 

probability 

f(x)·dx  is a probability

Δx
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Density function

Δx

( )
+


a

f x dx

a

is a probability (a sum of probabilities)

f(x)·dx is a probability
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Density function

( )
b

a
P a b   f x dx( )x  = 

a         b
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Conditional distribution

( )
( ) ( )

( )

  
 =



f y | x y f x x
f x | y x

f y y

( )
( ) ( )

( )

P B | A P A
P A |B

P B


=

( )
( ) ( )

( )


=

f y | x f x
f x | y

f y
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Conditional distribution

f(x,y) = f(x|y) · f(y)

( )
( )
( )

f x y
x

,
f | =y

f y

( )
( )
( )

= =
0

0

0

f ,y
f

x
| y y

f y
x

( )
( )
( )

⎯⎯→
f ,y

f |y =
x

x
f y
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Conditional distribution

( )
( ) ( )

( )


=

f y | x x
x

f
f | y

f y

( ) ( ) ( )f | y f y fx | x x 

( )
( ) ( )

( )


=

f y | x f x
f x | y

f y
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Working proportionally

MODE MEAN

MEDIAN

Mode, median and mean are the same
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Working proportionally

Probabilities are the same

52



Risk, bias and variance

ERROR OF ESTIMATION

LOSS FUNCTION

RISK
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• MEAN: minimizes RISK = E(û – u)2 

• MEDIAN: minimizes RISK = E|û – u|

• MODE: is the most probable value

u

(û – u)2

u

|û – u|

A. Blasco. Bayesian data análisis of animal scientists. Appendix 2.1
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Features of Bayesian inference

POINT ESTIMATES



… but MODE has a horrible loss function!

0 if MODE =true value

1 = if not
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POINT ESTIMATES

Features of Bayesian inference



f(r|y) 0 if MODE =true value

1 = if not
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POINT ESTIMATES

Features of Bayesian inference

0

-0.1



… but MEAN also has a horrible loss function!

(û – u)2 is NOT invariant 

to transformations !!

i.e.: the loss of u2 is not

the square of the loss of u !!

i.e.: the MEAN for σ2 is not

the square of the MEAN of σ 

x      x2

1      1 

2      4

3      9
Mean     2       4.7

22 ≠ 4.7
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POINT ESTIMATES

Features of Bayesian inference



Only the MEDIAN is invariant 

       

 x = 1 1 1 2 2 3 4 4 5 5 5

                median x = 3                        

 x2=1 1 1 4 4 9 16 16 25 25 25
   median x = 9 
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POINT ESTIMATES

Features of Bayesian inference



f(S-C|y)

P>0

92%

0

Probability of

 S >C
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CREDIBILITY INTERVALS

Features of Bayesian inference



P=0.95

0 k

f(S-C|y)

k is a guaranteed value

for P=95% or for P= 80%, 

or for other P
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CREDIBILITY INTERVALS

Features of Bayesian inference



P=0.95

Shortest interval with P=0.95

f(S-C|y)

61

CREDIBILITY INTERVALS

Features of Bayesian inference



P=0.95

Shortest interval with P=0.95

MEAN

f(S-C|y)
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CREDIBILITY INTERVALS

Features of Bayesian inference



P=0.95

Shortest interval with P=0.95

MODE

f(S-C|y)
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CREDIBILITY INTERVALS

Features of Bayesian inference



P=0.95

Shortest interval with P=0.95

MODE

MEAN

f(S-C|y)
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CREDIBILITY INTERVALS

Features of Bayesian inference



P=0.95

Symmetric interval with P=0.95

MEAN

f(S-C|y)
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CREDIBILITY INTERVALS

Features of Bayesian inference



P=0.95

Notice that zero can be within the confidence 

interval and still P(S-C>0) can be >0.95

P=0.96

0 0
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CREDIBILITY INTERVALS

Features of Bayesian inference

If 0 is within the HPD interval, this does not mean 
that there are no “significant differences”



Relevant value: the minimum difference between S and C

having an economical or biological meaning

• It is the mínimum value from which we take a decision

• It is the value used for experimental designs

• It should be proposed for each trait based on biological or

economical arguments

• When no clues, use a fraction of the standard deviation

• In animal production, most economical relevant values go from

1/2 to 1/3 s.d. of the trait
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CREDIBILITY INTERVALS

Features of Bayesian inference



P=0.93

0
Relevant

f(S-C|y)

Probability of RELEVANCE
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Features of Bayesian inference



P=0.96

Relevant              Relevant

f(S-C|y)

0

Probability of SIMILITUDE

There is no difference
(in practice)

between S and C

There is no difference

between S and C

to take a decision

S≠C always!
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P>0
P=0.21

0

f(S-C | y)

RelevantRelevant

For my decision, I do not know whether S>C or S<C

Probability of SIMILITUDE

Features of Bayesian inference



P>0

R R

I do not know

R R

There are no differences
(in practice)

NT

0.129661

1.825e-007

g1( )x

250 x

Before being Bayesian

1 2x - x

After being Bayesian

n.s. = no sé (I do not know)
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Features of Bayesian inference



We still have the problem of which difference is “relevant” for many 

traits:

FLAVOUR: metallic, liver, grass, sweet, etc.

ENZYMES ACTIVITY, WHC, COLOUR, etc.

Relevant value: 1/2 or 1/3 SD of the trait

Relevant value: 5% or 10% higher (or lower)
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Features of Bayesian inference



P>0

1

f(S/C | y)

Use ratios 
instead of 

differences
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Features of Bayesian inference

CREDIBILITY INTERVALS



P>0
P=0.98

1

Probability of

 S >C

f(S/C | y)

74

Features of Bayesian inference

CREDIBILITY INTERVALS



P>0
P=0.94

1.1

Probability of S being at least 

a 10% higher than C

f(S/C | y)
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CREDIBILITY INTERVALS

1

Features of Bayesian inference



P>0
P=0.80

1

k

S is k times higher than C 
with a probability of 80%

f(S/C | y)
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CREDIBILITY INTERVALS

Features of Bayesian inference



The Bayesian choice

2.1. Bayes theorem

2.2. Features of Bayesian inference

2.3. Marginalisation

2.4. Bayesian Hypothesis tests

2.5. Advantages of Bayesian inference 
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Marginalisation

SALARY British B Spanish S

Men M 36          

(40%)

26           

(10%)

Women W 30          

(20%)

20           

(30%)

( ) ( ) ( ) ( )
( )

( )

, 0.4 2
, | |

0.6 3

f M B
f M B f M B f B f H B

f B
=  → = = =

( ) ( ) ( ) ( )
( )

( )

, 0.2 1
, | |

0.6 3

f W B
f W B f W B f B f W B

f B
=  → = = =

=  +  =
2 1

British salary 36 30 34
3 3

=  +  =
+ +

0.3 0.1
Spanish salary 26 20 24.5

0.3 0.1 0.3 0.1
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Marginalisation

SALARY British Spanish

Men 36          

(40%)

26           

(10%)

Women 30          

(20%)

20           

(30%)

SALARY British Spanish

34         

(60%)

24.5           

(40%)
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Marginalisation

A = b · y + e = h2 · y + e

unknowns: A and h2 data: y

Example: h2 can only take two values: 0.1 or 0.2

f(A | y) = f(A | h2=0.1 , y) P(h2=0.1) + f(A | h2=0.2 , y) P(h2=0.2)

When estimating A, we take into account the error of estimation of h2 

(its probability of being 0.1 or 0.2)

EXAMPLE
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Each value of y by its probability

Summed up

f( ) f( ,y)dy f( | y) f(y) dyx x x=  = 

81

Marginalisation

1

0

A = b · y + e = h2 · y + e

h2 can take any value between 0 and 1

f(A | y) =     f(A | h2, y) f(h2)dh2

all possible values of h2 (which is ‘given’), weighted by

their  probabilities f(h2)dh2 



The Bayesian choice

2.1. Bayes theorem

2.2. Features of Bayesian inference

2.3. Marginalisation

2.4. Bayesian Hypothesis tests

2.5. Advantages of Bayesian inference 
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Hypothesis test

P>0

0

P(S-C|y)

This is NOT a hypothesis test
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
= 1 1

1

P( | M ) P(M )
P(M | )

P( )

y
y

y

Calculate the probability of each 
hypothesis

         P(M1|y), P(M2|y), P(M3|y), …

… and choose the Mi more probable

( )

( ) ( )

= +

=  

1

1

M : f

P( | M ) f | f d

y e

y y θ θ

θ

θ


=

+ +
1 1

1 2

P( | M ) P(M )

P( | M ) P( | M )

y

y y
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Hypothesis test



=  0

1

P(M )

P(M )
BF0

1

P(M | )

P(M | )

y

y


=



0 0

1 1

P( |M ) P(M ) / P( )

P( |M ) P(M ) / P( )

y y

y y

= 0

1

P( |M )
BF

P( |M )

y

y

BAYES FACTORS

If P(M0) = P(M1) 

=0

1

F
P(M | )

P(M | )
B

y

y

Moreover, often P(M0) ≠ P(M1) 
Be careful !!

The Bayesian solution
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The Bayesian choice

2.1. Bayes theorem

2.2. Features of Bayesian inference

2.3. Marginalisation

2.4. Bayesian Hypothesis tests

2.5. Advantages of Bayesian inference 
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Advantages of Bayesian Inference

• We are not worried about bias (there is nothing like bias in a Bayesian context)

• We should not decide whether an effect is fixed or random (all of them are random)

• We normally do not need Hypothesis tests

• We have a measure of uncertainty for both hypothesis tests and credibility intervals, we 
work with Probabilities

• We work with marginal probabilities: i.e., all multivariate problems are converted in 
univariate. 

• We have a method for inferences, a path to be followed.
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Interlude

MCMC



MCMC light
(without MCMC)
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MCMC

f(S-C|y)

0

WHAT YOU WANT
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MCMC

WHAT YOU GET
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MCMC

• You get a sample of the marginal posterior distribution for each level 

of each effect in the model

• You can create new samples as functions of the samples

(for example, S–C or S/C)

S: [3.1, 3.3, 4.1, 4.8, 4.9,…..]

C: [2.4, 2.6, 2.6, 2.6, 2.8,.....]

S–C: [0.7, 0.7, 1.5, 2.2, 2.1,…..….]

                               S/C: [1.3, 1.3, 1.6, 1.8, 1.7,…..….]
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Marginal posterior distribution

f(S-C|y)

P=0.96
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OBJECTIVE

Marginal posterior distribution

( )f | y

( )2f | y

OBJECTIVE

( )samples of f | :12, 11, 15,rand 9,om 6, ···y

( )2samples of f | : 3, 1.5, 1.8, 2, 3rando ·m .4, ··y
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Gibbs sampling



Gibbs sampling

f(σ2, μ|y)
σ2

μ

OBJECTIVE:

Random samples

from  f(σ2, μ|y)

σ2 μ

3 12

1.5 18

2 11

··· ···

··· ···

Random

samples of

f(σ2|y)

Random

samples of

f(μ |y)
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Gibbs sampling
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Gibbs sampling



Gibbs sampling

f(µ, σ2|y)

µ

f(µ|σ2=1)       

f(σ2|µ=4)  

f(µ|σ2=5)  

f(σ2|µ=2)    
µ=4µ=2

σ2=6
4

5

2

6

σ2=1 arbitraryσ2

σ2=1

σ2=5
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Gibbs sampling

f(σ2, μ|y)
σ2

μ

OBJECTIVE:

Random samples

from  f(σ2, μ|y)

σ2 μ

3 12

1.5 18

2 11

··· ···

··· ···

Random

samples of

f(σ2|y)

Random

samples of

f(μ |y)
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Gibbs sampling

f(|σ2,y) : [4, 3, 3.3, 4.1, 4.8, 4.9, …]

                            f(|y): [4.8, 4.9,…]

f(σ2|,y) : [2, 5, 3, 3, 2.6, 2.6, 2.8,... ]

                            f(σ2|y):[2.6, 2.8,...]
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Inferences

Throw the burn-up & Sort the chain

f(|y) : [-5, -4.8, -3.9, -3.9, -1, 0.1, 1, 1.8, 3.3, 4.1, 4.9, …]

P(>0)

f(|y) : [-5, -4.8, -3.9, -3.9, -1, 0.1, 1, 1.8, 3.3, 4.1, 4.9, …]

Find the % of positive samples

P(1≤  ≤ 4)

f(|y) : [-5, -4.8, -3.9, -3.9, -1, 0.1, 1, 1.8, 3.3, 4.1, 4.9, …]

Find the % of samples

between 1 and 4
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P=0.9
5

0 k

P(|y)

Credibility intervals
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Inferences

P[k,+∞)=95%

f(|y) : [-5, -4.8, -3.9, -3.9, -1, 0.1, 1, 1.8, 3.3, 4.1, 4.9, …]

Find the 5 % of the first samples

HPD(95%)

f(|y) : [-5, -4.8, -3.9, -3.9, -1, 0.1, 1, 1.8, 3.3, 4.1, 4.9, …]

Try intervals with 95 % of samples. 

Choose the shortest one

k=3.3
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Inferences

P[k,+∞)=95%

f(|y) : [-5, -4.8, -3.9, -3.9, -1, 0.1, 1, 1.8, 3.3, 4.1, 4.9, …]

Find the 5 % of the first samples

HPD(95%)

f(|y) : [-5, -4.8, -3.9, -3.9, -1, 0.1, 1, 1.8, 3.3, 4.1, 4.9, …]

Try intervals with 95 % of samples. 

Choose the shortest one

k=3.3
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Inferences

Probability of relevance

f(|y) : [-5, -4.8, -3.9, -3.9, -1, 0.1, 1, 1.8, 3.3, 4.1, 4.9, …]

Define the minimum relevant quantity R

Find the % of samples higher than R

Relevant quantity R= 0.5

P(≥R) = 0.89
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Gibbs sampling

is not a method of estimation

it is a numerical procedure

to obtain

MARGINAL POSTERIOR 

DISTRIBUTIONS

used for Bayesian estimation
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Gibbs sampling

• We transform a multivariate problem in several 

univariate problems

• We do not accept the first samples because they are 

not taken at random (burn-in). 

• All samples are correlated. We have a Monte Carlo 

error
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Gibbs sampling

◼ We always accept the samples, but we should know how to sample

◼ There are algorithms to sample from known functions

FOR EXAMPLE: How to sample from a N(0,1) distribution:

1) Take two random samples x ∈ [0,1] from a random number 

generator

2) Calculate ( )= −  1 2y 2log c s 2x xo

y is then a random sample from a N(0,1)
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x ∈ [0,1] 

( )= −  1 2y 2log c s 2x xo

Gibbs sampling

0 1



Convergence

rg
(a

,k
)

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4
(X 10000)

-0.96

-0.76

-0.56

-0.36

-0.16

0.04

0.24
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Convergence

rg
(a

,k
)

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4
(X 10000)

-0.96

-0.76

-0.56

-0.36

-0.16

0.04

0.24
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Gibbs sampling

re
(b

,a
d
g
)

0 1 2 3 4
(X 10000)

-0.6

-0.3

0

0.3

0.6

0.9
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Convergence tests

• GELMAN & RUBIN 

– The variance between chains is not higher than the 

variance within chains

• GEWEKE

– The first half of the chain has the same average as the 

second part of the chain

• JOHNSON 

– Chains with the same random seed and different initial 

values should converge

…they never assure convergence !!
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Burn-in

• VISUAL INSPECTION 

– Usually it works, but it can give surprises in complicated 
models 

• RAFTERY & LEWIS METHOD

– It requires your chain to have some properties you do not 
know whether it has. It is commonly cited, mainly because 
it gives very low values of burn-in.

• JOHNSON COUPLED CHAINS

– Chains with the same random seed and different initial 
values should converge. You decide when.

…they never assure convergence !!
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Monte Carlo s.e.

• We estimate the posterior distribution, we have an error of 

estimation called Monte Carlo s.e.

• We can make it as small as we want, taking more samples

• Samples can be highly correlated. Efective sample size is 

the size of a uncorrelated sample giving the same Monte 

Carlo s.e.

• Usually it is not a worth to take two consecutive samples, 

e.g., we take one each 20 or one each 50. This is called the 

sampling lag

• We shall calculate autocorrelation between two consecutive 

samples
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Other sampling methods

WE DO NOT KNOW HOW TO SAMPLE

– ACCEPTANCE-REJECTION SAMPLING

– METROPOLIS-HASTINGS

– IMPORTANCE SAMPLING

     

 … etc
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End of the Interlude 
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