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Bayesian Methods

1. Bayesian inference
Bayes' theorem
Prior probability
Probability density functions
2. The mixed model in Bayesian inference
Predicting additive values and estimating genetic parameters
Marginalization
Interlude: MCMC
BLUP and REML considered as Bayesian methods
Interlude: Inference on breeding values and genetic parameters under selection
3. The multitrait model
Traits having the same model

Data augmentation



Bayes theorem

A: to be man

B: to be British

N: Total number of individuals
N, number of men

Ng: number of British people
N,g: number of British men

P(A,B):%

But if we take only the British people, the probability of being a man is

_ N

B

P(A|B)



Bayes theorem



Bayes theorem

P(A,B) P(A|B) - P(B)

P(BIA) - P(A)

P(A|B) = P(B|A) - P(A) / P(B)




Bayes theorem

Model: y=Group +e

Group: Selected line (S)
Control line (C)

QueN S#C ?



Bayes theorem

Model: y=Group +e

Group: Selected line (S)
Control line (C)

Question: Is S>C ?
P(S>C)? or P(S-C>0)?



Bayes theorem

P(A|B) = P(BJ|A) - P(A) / P(B)

P(S-Cly) =P(y[S-C) - P(S-C)/P(y)

S: Selected line
C: Control line
y: data



Density functions

f(5-Cly)

Probability os S-C being
between a and b is the area
of the distribution P(S-C|y)




Prior information

4.1. Exact prior information

4.2. Vague prior information

4.3. No prior information

4.4. Improper priors

4.5. The Achilles heel of Bayesian inference
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Exact Prior information

Po

AA

Aa

dd

aA
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Exact Prior information

?

dd

dd
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Exact Prior information

aA

dd

dd
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Exact Prior information

?

dd
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Exact Prior information

lack JENANIES

P(AA) = 1/3

P(Aa) = 2/3

aA

dd
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Exact Prior information

P(A|B) = P(B|A) P(A)/P(B)

P(AA | y=3B) = P(y=3B |AA) * P(AA) / P(y=3B)

P(y=3B |AA) = 1

??
A siock N RERY srown
P(y=3B) J

acl| Black.
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Exact Prior information

P(A|B) = P(B|A) P(A)/P(B)

P(Aa | y=3B) = P(y=3B |Aa) * P(Aa) / P(y=3B)

P(y= 3B |Aa) = (1/2)3

P(Aa) = 2/3

P(y=3B) J

acl| Black.
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Exact Prior information

P(A,B) = P(A|B) P(B)

Ply=3B) = (y=3B&AA) + P(y=3B & Aa) =
P(y= 3B |AA) P(AA) + P(y= 3B |Aa) P(Aa) =

1 - 13 + (123 - 2/3 =

= 5/12 = 0.42



Exact Prior information

P(AA | y=3B) = P(y=3B |AA) - P(AA) / P(y=3B)

P(y=3B |AA) = 1
P(AA) = 1/3

P(y=3B) = 5/12

P(AA | y=3B) = 1 - (1/3) / (5/12) = 0.80
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Exact Prior information

P(Aa | y=3B) = P(y=3B |Aa) ' P(Aa) / P(y=3B)

P(y= 3B |Aa) = (1/2)3

P(Aa) = 2/3 2?

P(y=3B) = 5/12 ME

P(Aa | y=3B)=(1/2)3>(2/3) / (5/12)= 0.20

dd

Aa
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Exact Prior information

Notice that

P(AA | y=3B) = 0.80

P(Aa | y=3B) = 0.20
1.00

However, the likelihoods
P(y= 3B |Aa) = (1/2)3= 0.125

By ML we choose AA without a measure of uncertainty
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Exact Prior information

WITH FLAT PRIOR INFORMATION

P(AA) = 1/2
P(Aa) = 1/2

P(A? | y=3B) = P(y= 3B | A?) - P(A?) / P(y=3B)

P(y=3B) = P(y= 3B |AA) P(AA) + P(y= 3B |Aa) P(Aa) =
= 1 -1/2 + (1/2)3-1/2 = 9/16 = 0.56

P(AA |y=3B)= 1 - (1/2)/(9/16) = 0.89
P(Aa | y=3B) = (1/2)3 (1/2) / (9/16) = 0.11
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Exact Prior information

WITH HIGH PRIOR INFORMATION

P(AA) = 0.002
P(Aa) = 0.998

P(A? | y=3B) = P(y= 3B | A?) - P(A?) / P(y=3B)

P(y=3B) = P(y= 3B |AA) P(AA) + P(y= 3B |Aa) P(Aa) =
= 1 -0.002 + (1/2)3 - 0.998 = 0.13

P(AA |y=3B)= 1 -0.002/0.13 = 0.02
P(Aa | y=3B) = (1/2)3- 0.998 / 0.13 = 0.98
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Exact Prior information

Aa

Aa

AA
Aa

aA
P(AA) = 0.33

P(Aa) = 0.67

X

|

 Black_

PRl Brown
P(AAly) = 0.80
P(Aaly) = 0.20
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Exact Prior information

lack IR SE SR B'ack

Black JEENAETIISGEPIN Brown.

=




Exact Prior information

P(AA) = 0.33
P(Aa) = 0.67

P(AA|y=3B) = 0.80
P(Aaly=3B) = 0.20

P(AA|y=7B) = 0.99
P(Aaly=7B) = 0.01
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Exact Prior information

P(AA) = 0.33
P(Aa) = 0.67

P(AA) = 0.50
P(Aa) = 0.50

P(AA) = 0.33
P(Aa) = 0.67

P(AA) = 0.50
P(Aa) = 0.50

ﬁ

P(AA]y=3B) = 0.80
P(Aaly=3B) = 0.20

ﬁ

P(AA|ly=3B) = 0.89
P(Aaly=3B) = 0.11

ﬁ

P(AA|y=7B) = 0.99
P(Aaly=7B) = 0.01

ﬁ

P(AA|y=7B) = 0.99
P(Aaly=7B) = 0.01

When
more
data,
prior is
irrelevant

27



Exact Prior information

When more data, prior becomes irrelevant

F(6]y) o f(y| 0)F(6)

f(y1,y2,...,yn |6)f(e):
f(y,10)f(y,10)...f(y,|0)f(6)

log f(6]y)oclog f(y,|6)+log f(y,|0)+...+log f(y,|6)+]og f(6)
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Vague prior information

e PROBABILITY describes BELIEFS

e Subjective probability is not arbitrary
e |t should be vague (otherwise, no reason to perform an experiment)
e When not vague, make conditional inferences (avoid problems)

e USE APPROPRIATE PRIOR DENSITIES

e Linear beliefs (for effects, etc.) are symmetrical: Normal for example.
e Quadratic beliefs (for variances, h?, etc.) are assymetrical. I-gamma for example

e TRY SEVERAL PRIORS

e |f posteriors are almost the same, prior information is irrelevant
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Vague prior information

Use appropriate functions
to describe vague prior knowledge

' Priorl Blasco et al. 1998
Genetics 143: 301-306
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Vague prior information

PROBLEMS

« How can be integrated information from other

experiments?

* |Is your experiment fully comparable with other
experiments?

* Do you believe in ALL published results?

« How can you define multiyariate beliefs?

* The posterior of to Orrow’s prior
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No Prior information

FLAT PRIORS

f(h?)
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No Prior information

FLAT PRIORS

Event A = h?<0.5
f(h?)
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No Prior information

FLAT PRIORS

Event A = h2<0.5 = h%<0.25
f(h2)

P(A) = P(h2<0.5) = -

|
|
|

0 0.5 1 P(A) = P(h%<0.25) =-
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No Prior information

FLAT PRIORS

Event A = h?<0.5 = h*<0.25
f(h?)

P(A) = P(h2<0.5) = 1>

| |
0 025 0.5 1 P(A) = P(h*<0.25) ="
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No Prior information

Non informative priors are informative

Thus, we introduce information we do not know where it comes from
Some non-informative priors minimize the information introduced

We should avoid (in general) improper priors

We should check how results are affected by using a prior, even if this
prior is non-informative

... but we do not know how to do this in the multivariate case
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No Prior information

Other alternatives have been proposed:
Jeffrey’s priors:

They are invariant to transformations

Bernardo’s Reference priors:
Minimum prior information

Maximum entropy prior information:
Minimum prior information with some
subjective informative restrictions

However, all of them have problems in the multivariate case
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No Prior information

MULTIVARIATE PRIORS

We cannot have subjective multivariate priors

Subijective priors: hire a psicoanalist
We cannot have ‘objective’ multivariate priors !!

Do not use big flat priors

Do not use almost big flat priors!!

Be careful with some common priors like inverted Wishart !!
A practical solution:

Flat priors with sound limits
Vague Informative priors with sound limits
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Improper priors

« Some priors are not densities

— Example: f(0) = k k: arbitrary constant

| f(8) do =

« They can produce improper posterior densities

» They lead to proper posterior densities when

f(y) = | f(y|®) f(8) d < =
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Improper priors

» Sometimes they are innocuous
Example: y~N(u,1) M~k

f(y)= [ F(ylw)f(w)du=[" f(yln)kdu=k [ f(y|n)du=
_kj—exp[ . )2]du=kj‘ﬁeXp{_(u;y)z}dM:k

f(uly):f(YIu)f(u) _f(y|M)'k =f(y|n)

fly) Kk

But sometimes they are not !
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Improper priors

Improper priors may lead to improper posteriors
When using MCMC improper posteriors may not be detected

Do not use improper priors !!
Do not use big flat priors
Do not use almost big flat priors!! E.g.: f(8) ~ N(0, 109)
(they behave as impropre priors and give a false sense of safety)

A practical solution:
Flat priors with sound limits
Vague Informative priors with sound limits

41



No Prior information

Modern Bayesians consider prior information as just a
mathematical artefact that allow us to work with probabilities

.. but  PROBABILITY x ARTEFACT # PROBABILITY
PROBABILITY x ARTEFACT = ARTEFACT
If we behave as if it is a probability, the distortion is not high

... and we can enjoy the advantages of working with
probabilities
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The Bayesian choice

SOME DISSAPOINTMENTS ALONG YOUR LIFE:

Father Christmas are mum and dad

In the improbable case of the existence of the Heaven, nobody has
make a reservation for you there

s the frequentists

Bayesian me
or the other one

ones, and it is

have a more
can understand

My opini
straightforw
better what y
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Density function

f(x) is not a probability
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Density function

f(x) is not a probability

f(x)-Ax is approx. a
probability

f(x)-dx is a probability f(x)

AX
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Density function

f(x)-dx is a probability

j f (x)dx is a probability (a sum of probabilities)

a
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Density function

P(a < x <b) =jabf(x)dx

A\
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Conditional distribution
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Conditional distribution

f(x,y) = f(xly) - f(y)

T
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Conditional distribution




Working proportionally

Mode, median and mean are the same

MODE MEAN

MEDIAN
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Working proportionally

Probabilities are the same
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Risk, bias and variance

ERROR OF ESTIMATION

e=u-—-uU

LOSS FUNCTION

RISK

53



Features of Bayesian inference

« MEAN: minimizes RISK = E(0 — u)? (0 —u)?

« MEDIAN: minimizes RISK = E|U — u] |u—ul

« MODE: is the most probable value

54



Features of Bayesian inference

... but MODE has a horrible loss function!

0 if MODE =true value
1 =if not
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Features of Bayesian inference

f(rly) 0 if MODE =true value
1 = if not

-0.1
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Features of Bayesian inference

... but MEAN also has a horrible loss function!

(G — u)2is NOT invariant
to transformations !!

X X2

1 1

2 4 i.e.: the loss of u? is not

3 9 the square of the loss of u !!

274 i.e.: the MEAN for o2 is not
the square of the MEAN of o
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Features of Bayesian inference

Only the MEDIAN is invariant

x= 11122344555

median x =3

x?=11144916 16 25 25 25

medianx=9
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Features of Bayesian inference

f(S-Cly) Probability of

S >C
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Features of Bayesian inference

f(5-Cly)

k is a guaranteed value

for P=95% or for P= 80%,

or for other P
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Features of Bayesian inference

f(S-Cly)

Shortest interval with P=0.95

61



Features of Bayesian inference

f(S-Cly)

Shortest interval with P=0.95
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Features of Bayesian inference

f(S-Cly)

Shortest interval with P=0.95
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Features of Bayesian inference

f(S-Cly)

Shortest interval with P=0.95
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Features of Bayesian inference

f(S-Cly)

MODE
__0.90 £0.15
Correlation
efficient
00 Y s a7 06

Symmetric interval with P=0.95
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Features of Bayesian inference

Notice that zero can be within the confidence
interval and still P(S-C>0) can be >0.95

If 0 is within the HPD interval, this does not mean
that there are no “significant differences”
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Features of Bayesian inference

Relevant value: the minimum difference between S and C
having an economical or biological meaning

* [t is the minimum value from which we take a decision
* It is the value used for experimental designs

* It should be proposed for each trait based on biological or
economical arguments

* When no clues, use a fraction of the standard deviation

* In animal production, most economical relevant values go from
1/2 to 1/3 s.d. of the trait
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Features of Bayesian inference

Probability of RELEVANCE

f(S-Cly)

elevant
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Features of Bayesian inference

Probability of SIMILITUDE

f(S-Cly) S#C always!

There is no difference
between S and C
to take a decision

There is no difference
(in practice)

between S and C

Relevant Relevant



Features of Bayesian inference

Probability of SIMILITUDE

For my decision, | do not know whether S>C or S<C

f(5-Cly)

Relevant Relevant



Features of Bayesian inference

Before being Bayesian

n.s. = no sé (I do not know)

X
Xl

After being Bayesian

R R

There are no differences | do not know
(in practice)
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Features of Bayesian inference

We still have the problem of which difference is “relevant” for many
traits:

FLAVOUR: metallic, liver, grass, sweet, etc.
ENZYMES ACTIVITY, WHC, COLOUR, etc.

Relevant value: 1/2 or 1/3 SD of the trait

Relevant value: 5% or 10% higher (or lower)
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Features of Bayesian inference

Use ratios
instead of

f(s /C | Y) differences
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Features of Bayesian inference

Probability of
S >C

f(S/C|y)

74



Features of Bayesian inference

Probability of S being at least
a 10% higher than C

f(S/C|y)
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Features of Bayesian inference

S is k times higher than C
with a probability of 80%

f(S/C|y)
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The Bayesian choice

2.1. Bayes theorem

2.2. Features of Bayesian inference
2.3. Marginalisation

2.4. Bayesian Hypothesis tests

2.5. Advantages of Bayesian inference
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Marginalisation

SALARY British B Spanish S
Men M 36 26
(40%) (10%)
Women W |30 20
(20%) (30%)
fiw)=5(wio)-£(6) > wie)- L) 022

2 1
British salary = 36-§+30-§ =34

0.3 0.1
Spanish salary =26 - +20-
0.3+0.1 0.3+0.1
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Marginalisation

SALARY British Spanish
Men 36 26
(40%) (10%)
Women 30 20
(20%) (30%)
SALARY British Spanish
34 24.5
(60%) (40%)
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Marginalisation

EXAMPLE

A=b-y+e=h?-y+e

unknowns: A and h? data: y

Example: h? can only take two values: 0.1 or 0.2

f(A]y)=f(A | h?=0.1,y) P(h?=0.1) + f(A | h*=0.2 , y) P(h?=0.2)

When estimating A, we take into account the error of estimation of h?
(its probability of being 0.1 or 0.2)
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Marginalisation

/ Summed up

f(x) = [ f(x,y)dy = [f(x | y) f(y) dy
I ~——

Each value of y by its probability

A=b-y+e=h2-y+e

h? can take any value between 0 and 1
1

f(A1y) = | f(A |02 y) f(h2)dh?
0

all possible values of h? (which is ‘given’), weighted by
their probabilities f(h?)dh?

81



The Bayesian choice

2.1. Bayes theorem

2.2. Features of Bayesian inference
2.3. Marginalisation

2.4. Bayesian Hypothesis tests

2.5. Advantages of Bayesian inference
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Hypothesis test

This is NOT a hypothesis test

P(S-Cly)
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Hypothesis test

Calculate the probability of each
hypothesis

... and choose the M; more probable

1 P(y) P(y [M,)+P(y [M,)+---
M,: y=f(8)+e

P(yIM,)=[f(y8)-f(6)-de
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The Bayesian solution

BAYES FACTORS

If P(Mo) = P(M;)

Moreover, often P(M,) # P(M,)
Be careful !!




The Bayesian choice

2.1. Bayes theorem

2.2. Features of Bayesian inference
2.3. Marginalisation

2.4. Bayesian Hypothesis tests

2.5. Advantages of Bayesian inference
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Advantages of Bayesian Inference

We are not worried about bias (there is nothing like bias in a Bayesian context)
We should not decide whether an effect is fixed or random (all of them are random)
We normally do not need Hypothesis tests

We have a measure of uncertainty for both hypothesis tests and credibility intervals, we
work with Probabilities

We work with marginal probabilities: i.e., all multivariate problems are converted in
univariate.

We have a method for inferences, a path to be followed.
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Interlude

MCMC



MCMC light

(without MCMC)



f(S-Cly)

MCMC

WHAT YOU WANT
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MCMC

WHAT YOU GET

-0 -05 04 -03 -02 -01 1] 0.1 n.z
Intensity of flavour
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MCMC

* You get a sample of the marginal posterior distribution for each level
of each effect in the model

* You can create new samples as functions of the samples
(for example, S—C or S/C)

S:[3.1,3.3,4.1,4.8,4.9,....]
C:[24,26,26,26,2.38,.....]

S-C:[0.7,0.7,1.5,2.2,21,......... ]
S/C:[1.3,1.3,1.6,18,1.7,......... ]
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Marginal posterior distribution

06 05 04 -03 -02 -01 0 0.1 0.z
Intensity of flavour
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Marginal posterior distribution

f(uly)
OBJECTIVE

f(02 |y)

random samples of f(u|y):12,11,15,9,6,
OBJECTIVE

\random samples of f(cs2 |y) -3.1.5,1.8,2, 3.4, -
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Gibbs sampling

Sl S Ty

. e T T T e,
'”M}—_———ffffff;"

LEE LT ETEFETEEEE L SEEL LTSS ETETITT A

95



Gibbs sampling

f(o?, ply)

OBJECTIVE:
Random samples
from f(02, uly)

o | M
——] 3 |12 |]
—{| 15[ 18 |]
—{l 2 [ 11 ]]
Random Random
samples of samples of
f(o*ly) f(u ly)
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Gibbs sampling




Gibbs sampling

—

’W ”fﬂfffjfffffffﬁ T ' eg ‘ffj-”” w TS

> Y e | |
J}J’ffffffr;;;z;;;_;_p-_p-;;;,p 7 o T
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Gibbs sampling

02 %@J/ 0° |Y) (_\02—1 arbitrary
~

f(HIOZ—l)

IEIR\N SN AN
\QD f(o2|n=4) /N
\
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Gibbs sampling

f(o?, ply)

OBJECTIVE:
Random samples
from f(02, uly)

o | M
——] 3 |12 |]
—{| 15[ 18 |]
—{l 2 [ 11 ]]
Random Random
samples of samples of
f(o*ly) f(u ly)
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Gibbs sampling

72 \f(u,ozlv)
f(ulo2y) : [4, 3,3.3, 4.1 4.8, 4.9, .. ] E
SREINNNY
f 4.8,49,... P N
(ny) [ ] &D}
f(o2lwy) : [2, 5, 3, 3, 2.6, 2.6, 2.8,... ]
p=2 p=4 U

f(o2|y}:[2.6, 2.8,...]
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Inferences

Throw the burn-up & Sort the chain
f(uly) = [-5, -4.8, -3.9, -3.9, -1, 0.1, 1, 1.8, 3.3, 4.1, 4.9, ...]

P(n>0) Find the % of positive samples
f(uly) : [-5, 4.8, -3.9, -3.9, -1, ¢.1, 1, 1.8, 3.3, 4.1, 4.9, ...]

Find the % of samples
P(1<pu <4 between 1 and 4

f(uly) : [-5, 4.8, -3.9, -3.9, -1, 0.1, 4, 1.8, 3.3, <I.1, 4.9, ..]
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Credibility intervals
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Inferences

P[k,+00)=95%
Find the 5 % of the first samples

f(uly) = [-5, -4.8, -3.9, -3.9, -1, 0.1, 1, 1.8| 3.3,4.1,4.9, ..]
k=3.3

HPD(95%)

Try intervals with 95 % of samples.
Choose the shortest one

f(uly) : [-5, -4.8,|3.9, -3.9,-1,0.1,1, 1.8, 3.3|4.1, 4.9, ..]
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Inferences

P[k,+00)=95%
Find the 5 % of the first samples

f(uly) : [-5, -4.8, -3.9, -3.9, -1, 0.1, 1, 1.e| 3.3,4.1,4.9, ..]
k=3.3

HPD(95%)

Try intervals with 95 % of samples.
Choose the shortest one

f(uly) : [-5, -4.8, -3.9, -3.9,|-1, 0.1,1, 1.8, 3.3, 4.1, 4.9, |..]

105



Inferences

Probability of relevance

Define the minimum relevant quantity R
Find the % of samples higher than R

f(uly) = [-5, 4.8, -3.9, -3.9, -1, 0.1, §, 1.8, 3.3, 4.1, 4.9, ...]

Relevant quantity R= 0.5

P(1=R) = 0.89

106



Gibbs sampling
is not a method of estimation
it is a numerical procedure
to obtain
MARGINAL POSTERIOR
DISTRIBUTIONS
used for Bayesian estimation
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Gibbs sampling

« We transform a multivariate problem in several
univariate problems

« We do not accept the first samples because they are
not taken at random (burn-in).

« All samples are correlated. We have a Monte Carlo
error
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Gibbs sampling

We always accept the samples, but we should know how to sample
There are algorithms to sample from known functions

FOR EXAMPLE: How to sample from a N(0,1) distribution:

1) Take two random samples x € [0,1] from a random number
generator
2) Calculate Y =+/—2l0gX; COS (2nx, )

y is then a random sample from a N(0,1)
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Gibbs sampling

XE[0’1] -

0 1

y = —2logx, -cos(2nx, )
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0.24

-0.16

-0.36

-0.56

-0.76

-0.96

Convergence
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Convergence

0.24 —

I

-0.16
-0.36

-0.56

-0.76

-0.96 SRR
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Gibbs sampling
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Convergence tests

+ GELMAN & RUBIN

— The variance between chains is not higher than the
variance within chains

+ GEWEKE

— The first half of the chain has the same average as the
second part of the chain

+ JOHNSON

— Chains with the same random seed and different initial
values should converge

...they never assure convergence !!
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Burn-in

* VISUAL INSPECTION

— Usually it works, but it can give surprises in complicated
models

 RAFTERY & LEWIS METHOD

— It requires your chain to have some properties you do not
know whether it has. It is commonly cited, mainly because
it gives very low values of burn-in.

« JOHNSON COUPLED CHAINS

— Chains with the same random seed and different initial
values should converge. You decide when.

...they never assure convergence !!
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Monte Carlo s.e.

We estimate the posterior distribution, we have an error of
estimation called Monte Carlo s.e.

We can make it as small as we want, taking more samples

Samples can be highly correlated. Efective sample size is
the size of a uncorrelated sample giving the same Monte
Carlo s.e.

Usually it is not a worth to take two consecutive samples,
e.g., we take one each 20 or one each 50. This is called the
sampling lag

We shall calculate autocorrelation between two consecutive
samples
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Other sampling methods

WE DO NOT KNOW HOW TO SAMPLE
— ACCEPTANCE-REJECTION SAMPLING
—METROPOLIS-HASTINGS

—IMPORTANCE SAMPLING

.. etc
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End of the Interlude
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