Conditional distribution

f(y|u,02)=f(y1,y2myn |Ha02):ﬁf(yi | M,Gz):
1

: 1 _ (yi — H)z |
= eXx
H»\/chsz p_ 262 |




Conditional distribution

1 Zn:(yi _“)2
f(Y'H’Gz): - Y : 262
(V2r) (o%)? °
f(c?)=constant
f(02|y,p)ocf(y|c72,u)f(02) Olc : exp
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NOT
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Conditional distribution

fy) o - exp| —




Conditional distribution

f(x|a,p) e x:” exp{—ﬁx}

INVERTED GAMMA




Conditional distribution

Z(yi_u)z
f(o” I, y) o —— exp| ————;
2 26
(o")?
1 B
f(x | oc,B) oC o exp{—;} INVERTED GAMMA
1T 2 n
- o LN
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Conditional distribution

EXAMPLE
, Zn:(yi_“)z
y=[216/8] f(Glu,y)oc(Gz)gexp— 25° }
p=4
2 4) +(6-4) +(8-4)
T

- exp{_z}
() L°
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Conditional distribution

fuly.o®) o f(ylum,o®)f(n)

f(n)=constant

l 1 _ Zj:(yi _“)2_
x n eXp - 2
CO N
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NOT
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Conditional distribution
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Conditional distribution

f(p)oc

1

1

[var(w)J?

- (-E(w)”

exp| —

2var(p) _




Conditional distribution

—\2 —
f(H|G2,Y) oc eXpP —(M_)zl) oC 1 1 exp _(“_}2/)
29 \/_(62 T 29

n 21 F N
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Conditional distribution

EXAMPLE | { ( }
f(ulo®y)oc ————exp -
y=[2,6,8] w1

0°=2




Gibbs sampling

(_\ o2 arbitrary

2 :
f(ulo2=1,y) 4 O arbitrary
N (i | 02=0¢ y)
f(02 ||J=4,Y)/\5 2

f(o? | p=pq,Y)

f(UW?;Y)\j

f(o? [u=2,y 6
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Gibbs sampling

f(u|o?,y) : [3.1, 3.3, 4.1, 418, 4.9, ...
f(uly): [418, 4.9,...

f(o2|u,y) : [2.4, 2.6, 2.6, 2|6, 2.8, ...
f(o2ly):[2l6, 2.8, ..

]

]
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Flat Priors

FIRST: Joint density

f(o |y) o f(yu,c®)f(u,0%) < f(y|pn,c®)

— exp| —

I

f(n,0%) = constant

Sy

1
262
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Flat Priors

SECOND: Conditional densities

1 Z:(yi_u)2
.
26

L

Algorithms for

random sampling

1 Z:(yi_!"l)2

exp| —— - NORMAL

z 26
(o°)?
Z(yi_u)z
exp| ———— Inverted gamma

- 26

(o°)
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Gibbs sampling

OBJECTIVE: samples of f(62|y) and f(uly)

2
O ¢ arbitrary

R

f(o? | H=Ho ,Y)
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y' =[2.4,4,2]

Gibbs sampling

V=3, n=4, Zn:yi:12, iy?=4o
i=1 1

_ o
f(},t|c52,y) oc N(y,;j

f(o | u,y) o Ilgamma:

|

2
3 G—j
4

%{i(yf)—zuiyi +nu2} = %(40—24]44—4“2)

(1
-]

(04

n

2

-wf

n
2

—1

=|gamma-

P=2

1

(40—-24p+4p?)

o =1



Gibbs sampling

2

3 v @)

NORMALS INVERTED GAMMA 18



y' =[2.4,4,2]

Gibbs sampling

0 \/\ B=%(40—24u+4u2)
(MIG ) oC N( 4}

f(ulo®y) o N(3,

f(o |u,y)oclgamma[

-bll\)

f(czm, )oclgamma4 1

n=2 _.»522(40—24-2+4-22)

8

o

8, 1] 6? =2

40 24.3+4.3%) =

S =




Gibbs sampling

v
2 2 CONDITIONALS

N7

f(u|o2y) : [2, 3, 3.3, 4.1,
f(uly): [48,4.9,...] MARGINALS

Igamma (8,1) Igamma (4,1)

Igamma (/,1) CONDITIONALS

\

f(o?lw,y) : [2, 5, 3, 3, 2.6,R.6, 2.8,...]
f(o?|y): [2]6, 2.8,...] MARGINALS




Gibbs sampling
iIs not a method of estimation
it is a numerical procedure
to obtain
MARGINAL POSTERIOR
DISTRIBUTIONS

used for Bayesian estimation




Vague prior information

/ ...... o

Use appropriate functions
to describe vague prior knowledge

Your linear beliefs are symmetrical
Your quadratic beliefs are not

0.2 0.4 0.6

X
heri tability
" Priorl
= Prior2
Prior 3

0.8 1
R

Blasco et al. 1998
Genetics 143: 301-306
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f(c® [ y) o f(y|ou)f(c?)

Conjugated Priors

— exp

T (o°)?

f(o?)=lgamma(f,a)

_ i(yi —u) —2B— /

1
267

- -
Z(yi _H) .
- 252 ) e ot eXp{
lgamma (b,a)
n
a=—+ao
2
1
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Vague prior information




A

Conjugated Priors

_ 2.y _“)2_

1

267

oc exp| —

ocN(W,dz)
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The genetic “mixed” model

THE MODEL

y=u+ S+ P+ B-A+u+p+e
P Pt 1 el

Capital: FIXED effects Small: RANDOM effects

/N

L&

Shrinking

26



The genetic “mixed” model

THE MODEL

y=u+ S+ P+ B-A+u+p+e

cow 1: 7520 =pu+ S, +P, +B - 534 +u, +p, + e,
cow 1:6880=pu+S,+P,+-534 +u, +p, +e,,
cow 1:6920 =y +S;+P;+ 3 -534 +u, +p; + e,
cow 2:9801=pu+S,+P,+-650+u,+p,+ e,
cow 2:8754 =p+S;+P,+ 650 +u,+p,+e,
cow 3:5950=p+S;+ P, +-485+u, + p, + e,



The genetic “mixed” model

THE MODEL
y=u+ S+ P+ B-A+u+p+e
775201 1000 0 =] o [1 00 ] e, ]
6880 1 0 0 0 0 - u1 10 0 ey,
6920 10000 || * 100 Prl e,
9801| = Xb +/0 1 0 0 0 || [+[0 1 0 P2 4 e,
8754 00100 0 || " [0 10 Pal e,
5950 0010 0 --[|5] |0 0 f S e,

y = Xb+ Z u + w p + e



The genetic “mixed” model

[ 7520 |
6880
6920
9801
8754
5950

Xb +

Xb +

O O O A a a

O -~ A~ O O O

- O O O O O

O O O O o o

O O O O O o

THE MODEL

O O O A a a

O a~ A O O O

-~ O O O O o

| |p,
P

y=u+ S+ P+ B-A+u+p+e

P:
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The genetic “mixed” model

var(u) = var

THE MODEL
2 1 2 1 2
— — 0 0
“7] FULL sIBS So2% g™
« 1csu c’ 1(55 0 0
HALF SIBS 4
— 1 2 1 2 2
—0 ZG c, 0 0
A - 1
SIRE-DAUGHTER 0 0 0 o -=¢
<« 2
0 0 0 %65 o

. 2
= Ac;
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The genetic “mixed” model

y=Xb+Zu+Wp+e

BJECTIVE

fbly) | JOBEC

f(u

(uly) First: Joint density f(b,U,Pﬁi’Gﬁ’Gz Iy)

f(ply)

f(csﬁ y Second: Conditionals f(blup,cl.o;.05y)
f(ulb,p Gﬁ,cﬁ,oi,y)

f((js y) Third: Gibbs sampling f(p [b,0%,0%,0%,y)

f(Gi y f(63|b,u,p,6§,02,y)
f(c: [bup,cl,c2,y)
f(oi |u,c,b,63,6§,y)




Gibbs sampling

FIRST: Joint density

f(b,u,p,gi,cﬁ,ci | y) oc f(y | b,u,p,Gﬁ,Gi,ci)-f(b,u,p,cﬁ,oi,ci)

oc f(y|b,u,p,c55,c5§,c5§)-f(u | A,Gﬁ)-f(p | 05)

(y—Xb—Zu—Wp)'(y—Xb—Zu—Wp)} 1 . -exp{— tu'A’u}

1 1
(c2)? 20, 2 .exp|:_ 207" p}

(o2)° "
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Gibbs sampling

SECOND: Conditionals

oC

1 1 4 1 ’ 1 '
exp| ———(y-Xb-Zu-W —~Xb-Zu-Wp) |-exp| ——u'Au |- -
rexp| —o— (Y p) (¥ p)} p{ 257" U} exp{ 2Gzlolo}

2\2 G, p
(o2)




f(csi |p,b,u,c§,0§,y) oc

f(ci |p,b,u,cﬁ,0§,y) oc

f(2 |p.b,u,cl 02, y) o

f(b,u,p|cﬁ,c§,0§,y)oc

! —exp| = (v~ Xb-Zu—Wp) (y-Xb—Zu-Wp) | — 5 €XP| - -

n 2(5 = 20
@ L L
-exp| ~= Ly~ Xb~Zu—Wp) (y - Xb—Zu-Wp) |——-exp| -1
@ L% G
i 1 ’ ] 1 I 1

—exp| ——(y—Xb—-Zu-Wp) (y—Xb-Zu-Wp) PR Y
. (I
1 , 1 L

-exp| - (y—Xb-Zu-Wp) (y—Xb—Zu—Wp)} q-exp[— 2
o2f L2 O

Gibbs sampling

SECOND: Conditional densities

u'A1u} 1 . .exp{—z%p'p:lAG(a, B)

m c
22 P
(Gp)

uA'u 1m -exp| — 12p'p ~1G(,B)
o\ 26
@ LR
p
] 1]
uAl'u —-exp| —=—=PP |~ 1G(a,B)
Joze L 20, |
p
- 1 1
uA u} — -exp{——zpp}m N(m,V)
Gp

(o)?

Appendix 7.1 p. 164

A. Blasco. Bayesian Data Analisis for Animal Scientists.




Gibbs sampling

THIRD: Gibbs Sampling

2
e arbitrary

2 2
up,c,,0,,0

/

uip’Gﬁ’Gs’Gesy!> 1 b

Normal (multivariate)

b,p.5,,05,6¢,Y) e T

Normal (multivariate)

Normal (multivariate)

lgamma

lgamma

C“ ~ ©
'OqN

lgamma
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Gibbs sampling

Muestra aj a an o’ o> o’ o R
1 0.30 -0.05 0.20 0.01 0.05 0.06 0.17 0.41
2 0.05 -0.10 0.22 0.04 0.07 0.11 0.36 0.35
3 0.12 0.12 0.15 0.06 0.12 0.18 0.33 0.29
4 -0.01 -0.35 0.35 0.06 0.09 0.12 0.50 0.31

elevant

Relevant

/

0

Relevant

k
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BLUP as a Bayesian estimator

HOW HENDERSON DERIVED BLUP (Henderson, 1949)

https://acteon.webs.upv.es/ARTICULOS/HENDERSON%201949.pdf

y=Xb+Zu+e

Henderson says he maximizes

o=f(ylu)f(u)

E(y|b,u)=Xb+Zu

o exp —%(y —Xb - Zu)' (Ici )_1 (y—Xb- Zu)} exp [—%U'G‘h}

This is really f(y|ub,o?)

where G = Ac?
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Henderson maximized

¢=f(ubly,Gc?)xf(ylub,Gol)f(ub] G,cg)é

G :AcslzJ

BLUP as a Bayesian estimator

WHAT HENDERSON REALLY DID

If u and b are independent

o F(y 15,602 ) (] G 02 ) (b) o Lot

< f(ylub,Go?)f(ulGal)ox

oc exXp [—%(y ~Xb-2Zu) (Ic2 )_1 (y—Xb - Zu)} exp [—%U'G‘h}

38



BLUP as a Bayesian estimator

1 ' 1 .
|Og(poc2 ~(y—Xb - 2Zu) (y—Xb—Zu)+262uA1u

e u

0 1

e

9 g o« 21 7 (y-Xb—-Zu)+2- A'u=0

ou c; 20,

Equating to zero to find the maxima, we obtain

ZX ZZ+aoA'||u

X'Xb +X'Zt =Xy N {X’X X'Z } ﬂ_[

ZXb+Z'Zu+oAu=2Yy

2

(e}
where o =—
GU

X'y

Z'y

|



BLUP as a Bayesian estimator

X'X X'Z b] [Xy
ZX ZZ+oA'||u| |2V

if a= —> 0 thenuis"fixed"

qu\) | CDQI\)

if 6°———> o thenuis"fixed"

if o;—> o then f(u)=constant

Fixed effects are the same as random effects, but with different priors




BLUP as a Bayesian estimator

BLUP =mode f(u,b|A,c’,c2,y)

for independent uand b and f(b) =constant

Notice that here BLUP is not unbiased
(there is no bias in a Bayesian context)

. 2 2 .
Notice that here G,,G. “true values” are not required

Notice that here b is not “fixed”, it only has a different prior
(there are not fixed effects in a Bayesian context)

Notice that the usual Bayesian solution is better than BLUP
(posterior densities of all unknowns, including variances)

41



Interlude

Inference on breeding values and genetic parameters
under selection



f(u,b ly,G, cﬁ) oc exp[—%(y —Xb - Zu)' (Icﬁ) (y—Xb- Zu)} exp[—%u'Gh}

E(u) # 0 when data are selected

1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
-0.2

OR

Selected data

y=Xb+Zu+e

-1

9 10

Generation

BLUP: ignore selection if a mysterious
L gives L’X=0

REML: ignore selection if all data used
in selection and full relationship
matrix are included

43



British (B) Spanish (.5)

Men (M) 40% 30%

Women (W) 20% 10%

FIBM, BW, SM, SW|=(04,. 02,03, 0.1}

T IBI 04 2
fIMB|=fIM|B|-fIBl] — fIM|B|= =—
F|B| 06 3

_ i i FfIW. B} 02 1
fIW.B\=f|W|B)-fIBl] — [fIW|B|= = =_
7l B| 06 3

1"

f-(BM, BW |\=f(M|B.W B|_ 3)

L.u||~..:-



Selected data

Yo -
yi-

Data from generation 0, not selected

Data from generation 1 from selected parents of generation 0
. Selection threshold
: Parameters and effects that we have to estimate

fs(¥1:¥0) = F(¥1,¥o 1Y > €)= F(¥%) —_—
f(¥o >¢) F(x]y)
£ (¥1.¥0,0)=F(¥.,¥,.01y, >¢)= fjfz;;y:'j)
£s(¥1:¥0,0)= £ (01¥1,¥, ) £ (Y1, ¥0) ~—F(xy)=F(x|y)f(y)
£(¥1,¥,.0)
o e o

f(y,>c¢)

45



Selected data

mutatis mutandi

fs(@1y? y©)=1f6]y° y©)

yP = data directly selected
y© = correlated data, indirectly selected

46



o U A W N B

Selected data

» (7] >
> $> 3
9 2 ~
% > %
10 6/<:
11 1
12 4

Repetition 1 Repetition 2

47




Selected data

* 10.151 rabbits of 11 generations of selection, with single data of
growth rate yP

e 137 rabbits of generation 11, weekly weighted from weeks 1 to 40
(not all of them arrived to the 40th week of age)

but we estimate the unknowns of all the rabbits !

(Data augmentation)

48



End of the Interlude



The multivariate model

50



The multivariate model

y,=Xb, +e,
y,=X,b, +Wc+e,

b, [l constant
b, [l constant

cOIN(0,I6?) C,- ["3 ° ]
e, IN(0,Ic2) G

e, IN(0,lc2,) P
Reomrensr =1OR: - { }




The multivariate model

DATA AUGMENTATION

. Y . Y
Y1:{ 1} Y2:{ 2}
Z, Z,

y, =Xb,+Wc, +e.
y, =Xb, +Wc, +e,

y*=Xb+Wc+e

0 =Db,c,C R,

y;=Xpb; +e,

y,=X,b,+Wc+e,

b [] constant
cl] N(O,I®C0)
el N(O,I@Ro)

52



The multivariate model

DATA AUGMENTATION
y"=Xb+Wc+e
8 =b,c,C,,R, OUR OBJECTIVE
/

f(b|y*).f(c|y*).f(o | y*).f(oo, | Y*).f(o | ¥*).f(o, | V). (00 | Y*)

OUR UNKNOWNS

b,c,C,,R,,z=0,z

53



The multivariate model

First: Joint distribution

f(b,c.Co.R,z|y)=f(8,z]y)

Second: Conditionals

( )

( 2)

f(c|b,Cy.Ry.Y,2)

% @% f(C,lc,bR, Y, 2)
( Y.2)

54



The multivariate model

f(6,z]y)ocf(y|6,z)-f(6,z)=
=f(y|6,z)-f(z|0)-f(0)
f(y,z|0)=f(y|z0)-f(z]90)

~f(y,218)-f(8) =f(y"|8)-f(8)

then by Gibbs sampling we
obtain 6 and z, and we forget z

... all inferences are conditioned
ONLY ony

55



The multivariate model

Conditionals:

Normal (multivariate)
Normal (multivariate)
Normal (multivariate)
Inverted Wishart
Inverted Wishart

Inverted Gamma

Inverted Wishart = multivariate

56



The multivariate model

G: Growth
F: Food intake

EXAMPLE

SET1: Growth & Food intake recorded
SET2: Only Growth recorded

Yo = Xibg +eg, Ve = X b + e,

Yo = X,bg +€g, z =X,b. +eg,

Yo = {ym } yr = {ym} X is the same for both traits
Yo r4

y*=Xb+e

57



The multivariate model

y—-m, =B(x-m,)+e

E(ylx)=m, +B(x—m,)=m, +

cov(zz,y)(y_my)

E(zly)=m, +

Ve, = X,bs+e,, M, =E(ys,)=X,bg cov(zy) - cov(eg,e;)

z =X,b: +e, m, = E(Z) =X,b, 65 ) Gze

58



Gibbs sampling

z and y are jointly Normally distributed

E(zly)=m, + 02’ (y—my)

z|bg. bRy, Y. ~N[E(z]y).Var(z]y)]

2|bg.be R Y. ~N| X,b, + 55 > (Yoo ~Xobg), |

€c

59



Gibbs sampling

60



The multivariate model



The genetic multivariate model

y,=Xb,+Zu, +e,
y, =X,b,+Z,u, +Wp +e,

b, U constant cov(e;,e, )sorteney =1 ®R,
b. [ constant INDIVIDUAL
2 COV(U1,U2 )SORTED sy =A®G,
u |AL N(O’A(551) INDIVIDUAL
u, | AT N(0,Ac’ A
2 | ( GuZ) R, = 1 ;2 P, :{
pU N(O,Icﬁ) Gee, O

e, IN(0,Ic%,) o
e, 1N(0,l6?,) G, = }

uquy u,




The genetic multivariate model

DATA AUGMENTATION

y, =Xb, +Zu, + Wp, +e,
y, =Xb, +Zu, + Wp, +e,

. Y . Y
Y1:{ 1} Y2:{ 2}
Z, Z,

y*=Xb+Zu+Wp+e

8=b,up,G,P,R,

63



Gibbs sampling

b1u1p7G01R01
b uapaGOaRO’P()’y’

u
y

p
f(G, |b,u,p, 0,Po,y,z)_= :
f(R, | b,u,p, 0,Po,y,z! Gy
f(P, |b,up,G, R, Y,z Ry

Py

(
(
(pb,U,Gy,R,,P,.Y,2
(
(
(




Gibbs sampling

Muestra U, U, u, o’ o’ o’ K R
1 0.30 -0.05 0.20 0.01 0.05 0.06 0.17 | 041
2 0.05 -0.10 0.22 0.04 0.07 0.11 0.36 0.35
3 0.12 0.12 0.15 0.06 0.12 0.18 0.33 0.29
4 -0.01 -0.35 0.35 0.06 0.09 0.12 0.50 0.31

elevant

Relevant

/

0

Relevant

k
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