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Conditional distribution
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Conditional distribution
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Conditional distribution
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Gibbs sampling
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Gibbs sampling

f(|σ2,y) : [3.1, 3.3, 4.1, 4.8, 4.9, …]

                          f(|y): [4.8, 4.9,…]

f(σ2|,y) : [2.4, 2.6, 2.6, 2.6, 2.8,... ]

                          f(σ2|y):[2.6, 2.8,...]
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Flat Priors
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Flat Priors
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Gibbs sampling

OBJECTIVE: samples of f(2|y) and f(|y) 
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Gibbs sampling
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Gibbs sampling

f(|σ2,y) : [2, 3, 3.3, 4.1, 4.8, 4.9, …]

                          f(|y): [4.8, 4.9,…]

f(σ2|,y) : [2, 5, 3, 3, 2.6, 2.6, 2.8,... ]

                         f(σ2|y): [2.6, 2.8,...]
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Gibbs sampling

is not a method of estimation

it is a numerical procedure

to obtain

MARGINAL POSTERIOR 

DISTRIBUTIONS

used for Bayesian estimation
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Vague prior information

0.2 0.4 0.6 0.8 1

Prior1

Prior 2

Prior 3

heri tability

5.41557

1.953e-062

g1( )x

g2( )x

g3( )x

10.01 x

Use appropriate functions

to describe vague prior knowledge

Blasco et al. 1998

Genetics 143: 301-306

Your linear beliefs are symmetrical

Your quadratic beliefs are not

22



Conjugated Priors
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Vague prior information


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Conjugated Priors
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The  genetic “mixed” model

THE MODEL

=  + + +  + + +y   S  P  A  u p  e

Capital: FIXED effects Small: RANDOM effects
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THE MODEL

cow 1: 7520 = μ + S1 + P1 + β · 534 + u1 + p1 + e11

cow 1: 6880 = μ + S2 + P2 + β · 534 + u1 + p1 + e12

cow 1: 6920 = μ + S3 + P3 + β · 534 + u1 + p1 + e13

cow 2: 9801 = μ + S2 + P1 + β · 650 + u2 + p2 + e21

cow 2: 8754 = μ + S3 + P2 + β · 650 + u2 + p2 + e22

cow 3: 5950 = μ + S1 + P1 + β · 485 + u2 + p2 + e31

... ....      ...  ...  ...  ...  ...  ...  ...   ...  ...  ...

=  + + +  + + +y   S  P  A  u p  e
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THE MODEL
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2 2 2

u u u

2 2 2

u u u

2 2 2

u u u

2 2

u u

2 2

u u

1 1
0 0

2 4

1 1
0 0

2 4

1 1
0 0

4 4

1
0 0 0

2

1
0 0 0

2

FULL SIBS

HALF SIBS

SIRE-DAUGHTER
= 2

uA

30

The  genetic “mixed” model



OBJECTIVE( )

( )

( )

( )

( )

( )







2

u

2

p

2

e

f |

f |

f |

f |

f |

f |

y

y

y

y

y

y

b

u

p

( )

( )

( )

( )

( )

( )

  

  

  



 



 

 

2 2 2

u p e

2 2 2

u p e

2 2 2

u p e

2 2

p e

2 2

u e

2

u

2

u

2

p

2 2

pe

f | , , , , ,

f | , , , , ,

f | , , , , ,

f | , , , , ,

f | , , , , ,

f | , , , , ,

u p y

b p y

b u y

b u p y

b u p

u

u c b

b

p

y

y

y = Xb + Zu + Wp + e

( )  2 2 2

u p ef , , , , , |b u p yFirst: Joint density

Second: Conditionals

Third: Gibbs sampling
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( ) ( ) ( )2 2 2 2 2 2 2 2 2

u p e u p e u p ef , , , , , | f | , , , , , f , , , , ,         b u p by uy p b u p

( ) ( ) ( )2 2 2 2 2

u p e u pf | , , , , , f | , f |    b u p pAuy

( )
( ) ( )

( ) ( )

−
     − − − − − − −  −

  
  

 −    
    



 


2 2 2

2 2 2e u p
e u

n q m

2 2 2
p

1 1 1 1 1 1
exp exp exp

2 2 2

1y Z p pb u p b u pX Z W uAuy X W

FIRST: Joint density
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SECOND: Conditionals
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( )
( ) ( ) −

     − − − − − − −  −  −    
 






  

    
2 2 2

2 e u

n

2 p
e

1 1 1 1
exp exp exp

2 2 2

1y b u p b u p uX Z W y X Z W A u p p

Gibbs sampling



Gibbs sampling

( )
( )

( ) ( )

( ) ( )

−
         − − − − − − −  −  −    

         




2 2

p e n 2 q m 2
2 2e

2

u 2
2 u p2

pu
2 2

e

1 1 1 1 1 1
f | , , , , , exp exp exp

2 2 2

1p b u y y Xb Zu Wp y Xb Zu Wp u A u p p

SECOND: Conditional densities

( )
( )

( ) ( )

( ) ( )

−
         − − − − − − −  −  −    

         




 2 2

u e n 2 q 2 m
2 2e 2u2

p
2 2

e u

2

p 2

p

1 1 1 1 1 1
f | , , , , , exp exp exp

2 2 2

1p b u y y Xb Zu Wp y Xb Zu Wp u A u p p

( )
( )

( ) ( )

( ) ( )

−
         − − − − − − −  −  −    

        


2

2 e2

2 2

u p n q 2 m 2
2 2u p2 2
u p

2

e

e

1 1 1 1 1 1
f | , , , , , exp exp exp

2 2 2

1p b u y y Xb Zu Wp y Xb Zu Wp u A u p p

( )
( )

( ) ( )

( ) ( )

−
        − − − − − − −  −  −    

         

 



2 2 2

u p e n 2 q 2 m 2
2 2 2e u p2 2 2
e u p

1 1 1 1 1 1
f , , | , , , exp exp exp

2 2 2

1py y X Z Zb u p b u pW y X W Ab u p u u p ( ) N ,m V

A. Blasco. Bayesian Data Análisis for Animal Scientists. 
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( )

( )

( )

( )

( )

2 2 2

u p e

2 2 2

u p e

2 2 2

u p e

2 2

p e

2 2

u e

2 22

p

2

u

2

p

e u

f | , , , , ,

f | , , , , ,

f | , , , , ,

f | , , , , ,

f | , , , , ,

f | , , , , ,

  

  

  

 

 

 







u p y

b p y

b u y

b u p y

b u p y

b u p

b

u

p

y

   arbitrary

2 2 2

u p e, , , ,u p

b

u

2
u

2
e

p

2
p

THIRD: Gibbs Sampling
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Normal (multivariate)

Igamma

Normal (multivariate)

Normal (multivariate)

Igamma

Igamma

Gibbs sampling



Muestra a1 a2 ··· an 
2

A
  2

e
  2

P
  2

h  R 

1 0.30 -0.05  0.20 0.01 0.05 0.06 0.17 0.41 

2 0.05 -0.10  0.22 0.04 0.07 0.11 0.36 0.35 

3 0.12 0.12  0.15 0.06 0.12 0.18 0.33 0.29 

4 -0.01 -0.35  0.35 0.06 0.09 0.12 0.50 0.31 

··· ··· ···  ··· ··· ··· ··· ··· ··· 

 

Gibbs sampling
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( ) ( ) ( )
1

2

e

1 1
exp exp

2 2

−
−    − − −  − − −   




  

1y X Z I y X Z uGb u b u u

( ) ( ) = f fy |u u

HOW HENDERSON DERIVED BLUP (Henderson, 1949)

Henderson says he maximizes

( )2

ef , ,u by |This is really

= + +y Xb Zu e

2

uwhere = G A

37

( ) = +E | ,y b u Xb Zu

BLUP as a Bayesian estimator

https://acteon.webs.upv.es/ARTICULOS/HENDERSON%201949.pdf



BLUP as a Bayesian estimator

( ) ( ) ( )
1

2

e

1 1
exp exp

2 2

−
−     − − −  − − −   

   

1y X Z I y X Z uGb u b u u

WHAT HENDERSON REALLY DID

Henderson maximized

( ) ( ) ( ) =     2 2 2

e e ef , | , , f , , , f , ,y G y | G | Gu b u b u b

( ) ( )2 2

e ef , , , f ,   y | Gu| Gu b

( ) ( ) ( )2 2

e ef , , , f , f   u Gb G uy | b|

If u and b are independent

If f(b)=constant

− −=  =


2 1 1

u 2

u

1
;G A G A
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BLUP as a Bayesian estimator

1−

      
=      +     

X X X Z X yb

Z X Z Z A Z yu





( )2 2

e u

1 1
ln 2 2 0

2 2

−   − − − + =
  

1Z y X AuZb u
u

( )2

e

1
ln 2 0

2

   − − =
 

y XbX
b

Equating to zero to find the maxima, we obtain

1−

  + =

  + +  =

X Xb X Zu X y

Z Xb Z Zu A u Z y

 

  →

( ) ( ) 1

2 2

e u

1 1
log 

2 2

−  − − − + −
 

y X Z yb u b u uX Z A u

2

e

2

u

where


 =

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BLUP as a Bayesian estimator

2

e

2

u

if 0 then is" fixed"


 = ⎯⎯→


u

1−

      
=      +     

X X X Z X yb

Z X Z Z A Z yu





2

uif then is" fixed" ⎯⎯→  u

Fixed effects are the same as random effects, but with different priors

( )2

uif then f constant ⎯⎯→  =u
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BLUP as a Bayesian estimator

( )2 2

u eBLUP mode f , | , , ,=  u b A y

( ) =for independent and and f constantu b b

Notice that here BLUP is not unbiased

(there is no bias in a Bayesian context)

Notice that here “true values” are not required

Notice that here b is not “fixed”, it only has a different prior

(there are not fixed effects in a Bayesian context)

Notice that the usual Bayesian solution is better than BLUP

(posterior densities of all unknowns, including variances)

2 2

u e, 
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Interlude

Inference on breeding values and genetic parameters

 under selection



          y = Xb + Zu + e

E(u) ≠ 0  when data are selected

Selected data
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( ) ( ) ( ) ( )
−

−      − − −  − − −   
   

1
2 2

e e

1 1
f , | , , exp exp

2 2

1u b b u y b u u uy G y X Z I X Z G ( ) =E u 0

BLUP: ignore selection if a mysterious 

L gives L’X=0

REML: ignore selection if all data used 

in selection and full relationship 

matrix  are included
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British (B) Spanish (S)

Men (M) 40% 30%

Women (W) 20% 10%



( )
( )

( )

( )
( )
( )
( )

( )

( )
( )

1 0

1 0 0 1 0

1 0 1 0

1 01 0 1 0

0

, ,

, , , ,
| , | ,

,, ,

S

S

S

f

f f c f
f f

ff f

f c



 
 


= = = =



y y

y y y y y
y y y y

y yy y y y

y

Selected data

( ) ( )
( )

( )
1 0

1 0 1 0 0

0

,
, , |S

f
f f c

f c
=  =



y y
y y y y y

y

( ) ( )
( )

( )
1 0

1 0 1 0 0

0

, ,
, , , , |S

f
f f c

f c


 =  =



y y
y y y y y

y

( ) ( ) ( )1 0 1 0 1 0, , | , ,S S Sf f f =y y y y y y

y0 : Data from generation 0, not selected

y1 : Data from generation 1 from selected parents of generation 0

c  : Selection threshold

θ : Parameters and effects that we have to estimate

( )
( )

( )
=

,
|

f x y
f x y

f y

( ) ( ) ( )=, |f x y f x y f y
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mutatis mutandi

fS(θ | yD, yC  ) = f(θ | yD, yC  )

yD  = data directly selected

yC = correlated data, indirectly selected

Selected data
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Selected data

1 7

2 8

3 9

4 10

5 11

6 12

 
 
 
  
 
 
 
 
  

5 10

3 12

2 7

6 8

1 11

4 9

 
 
 
  
 
 
 
 
  

Repetition 1 Repetition 2



• 10.151 rabbits of 11 generations of selection, with single data of 

growth rate  yD

• 137 rabbits of generation 11, weekly weighted from weeks 1 to 40 
(not all of them arrived to the 40th week of age)

   but we estimate the unknowns of all the rabbits !

(Data augmentation)
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Selected data



End of the Interlude



The  multivariate model
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The  multivariate model

1 1 1 1

2 2 2 2

= +

= + +

y X b e

y X b Wc e

  
=  

   

1 1 2

1 2 2

2

e e e

0 2

e e e

R
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( )

( )

( )







= 











1

2

2

c

2

1 e1

2

2 e2

SORTED BY 0
INDIVIDUAL

constant

constant

N ,

N ,

N ,

b

b

c 0 I

e 0 I

e 0 I

R I R

 
=  

  

1

2

2

c

0 2

e

0

0
C







= + +

= + +

1 1 1 1

2 2 2 2

y Xb Wc e

y Xb Wc e

DATA AUGMENTATION

2

1 2

2

    
= =   

   

1

1

y y
y y

z z

* = + +y Xb Wc e

= 00, , ,c Cθ b R

 
=  

  

  
=  

   

1

2

1 1 2

1 2 2

2

c

0 2

c

2

e e e

0 2

e e e

0

0
C

R
( )

( )











0

0

constant

N ,

N ,

b

c 0 I C

e 0 I R

1 1 1 1

2 2 2 2

= +

= + +

y X b e

y X b Wc e
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The  multivariate model

DATA AUGMENTATION

* = + +y Xb Wc e

= 0 0, , ,θ b c C R

    2 2 2 2 2

c1 c2 e1 e2 e1e2f( | *),f( | *),f( | *),f( | *),f( | *),f( | *),f( | *)yb cy y y y y y

OUR OBJECTIVE

OUR UNKNOWNS

=0 0, , , , ,b c C R z θ z
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( )

( )

( )

( )

( )

0 0

0 0

0 0

0

0 0

0

f | , , , ,

f | , , , ,

f | , , , ,

f | , , , ,

f | , , , ,

c b C R y

c C R y z

b C R y z

c b

z

c

C

z

b

R

R y z

c b C y

First: Joint distribution

( ) ( )=0 0f , , , , | f , | yb yc z θ zC R

Second: Conditionals

54

The  multivariate model



The multivariate model

( ) ( ) ( )f , | f | , f ,  =θ z θ z θy zy

then by Gibbs sampling we

obtain θ and z, and we forget z

( ) ( ) ( )f | , f | f=  θ z z θy θ

( ) ( ) ( )f , | f | , f |= z θ z θy zy θ

… all inferences are conditioned

    ONLY on y

( ) ( ) ( ) ( )f , | f f | f=  = z θ θ θy y θ
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Conditionals:

( )

( )

( )

( )

( )

0 0

0 0

0 0

0

0 0

0

f | , , , ,

f | , , , ,

f | , , , ,

f | , , , ,

f | , , , ,

c b C R y

c C R y z

b C R y z

c b

z

c

C

z

b

R

R y z

c b C y

Normal (multivariate)

Inverted Wishart

Inverted Wishart

Inverted Wishart = multivariate

Inverted Gamma

56

Normal (multivariate)

Normal (multivariate)

The multivariate model



G1 1 G G1 F1 1 F F1

G2 2 G G2 2 F F2

= + = +

= + = +

y X b e y X b e

y X b e z X b e

EXAMPLE

G1 F1

G F

G2

    
= =   

  

y y
y y

y z

* = +y Xb e

G: Growth

F: Food intake

SET1: Growth & Food intake recorded

SET2: Only Growth recorded

X is the same for both traits
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( )− =  − +y xy m x m e
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( ) ( )
( )

( )= +  − = + −


y x y x2

X

cov x,y
E y | x m x m m x m

( )
( )

( )= + −


z y2

y

cov z,y
E z | y m y m

= +

= +

G2 2 G G2

2 F F2

y X b e

z X b e

( )

( )

= =

= =

y G2 2 G

z 2 F

E

E

m y X b

m z X b

( ) ( )
=

 
G

G F

2 2

y e

cov z,y cov e ,e

The multivariate model



Gibbs sampling

z and y are jointly Normally distributed
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( )
( )

( )= + −


z y2

y

cov z,y
E z | y m y m



Gibbs sampling

( )

( )

( )

( )

( )

2

2 2

c e

2 2

c e

2 2

c e

2

e

2

c

c

2

e

f | , , , ,

f | , , , ,

f | , , , ,

f | , , , ,

f | , , , ,



 

 

 



 

c b y

c y z

b y z

c b y z

c b

z

b

y

c

z

z

b

2
c

2
e

c
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The multivariate model

Magic !!
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The  genetic multivariate model

1 1 1 1 1 1

2 2 2 2 2 2

= + +

= + + +

y X b Z u e

y X b Z u Wp e

( )

( )

SORTED BY1 2 0
INDIVIDUAL

SORTED BY1 2 0
INDIVIDUAL

cov ,

cov ,

= 

= 

e e I R

u u A G

1 1 2

1 2 2

2

e e e

0 2

e e e

  
=  

   

R

1 1 2

1 2 2

2

u u u

0 2

u u u

  
=  

   

G
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1 u1
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2 e2
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
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u A 0 A
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


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The  genetic multivariate model

1 1 1 1

2 2 2 2 2





= + + +

= + + +

1y Xb Zu Wp e

y Xb Zu Wp e
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Gibbs sampling
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Muestra a1 a2 ··· an 
2

A
  2

e
  2

P
  2

h  R 

1 0.30 -0.05  0.20 0.01 0.05 0.06 0.17 0.41 

2 0.05 -0.10  0.22 0.04 0.07 0.11 0.36 0.35 

3 0.12 0.12  0.15 0.06 0.12 0.18 0.33 0.29 

4 -0.01 -0.35  0.35 0.06 0.09 0.12 0.50 0.31 

··· ··· ···  ··· ··· ··· ··· ··· ··· 

 

Gibbs sampling

65

u1 u2 un

2

u


	Slide 1:  Conditional distribution
	Slide 2:  Conditional distribution
	Slide 3:  Conditional distribution
	Slide 4:  Conditional distribution
	Slide 5:  Conditional distribution
	Slide 6:  Conditional distribution
	Slide 7:  Conditional distribution
	Slide 8:  Conditional distribution
	Slide 9:  Conditional distribution
	Slide 10: Conditional distribution
	Slide 11:  Conditional distribution
	Slide 12:  Gibbs sampling
	Slide 13:  Gibbs sampling
	Slide 14:  Flat Priors
	Slide 15:  Flat Priors
	Slide 16:  Gibbs sampling
	Slide 17:  Gibbs sampling
	Slide 18:  Gibbs sampling
	Slide 19:  Gibbs sampling
	Slide 20:  Gibbs sampling
	Slide 21:  Gibbs sampling is not a method of estimation it is a numerical procedure to obtain  MARGINAL POSTERIOR DISTRIBUTIONS used for Bayesian estimation
	Slide 22:  Vague prior information
	Slide 23:  Conjugated Priors
	Slide 24
	Slide 25:  Conjugated Priors
	Slide 26: The  genetic “mixed” model
	Slide 27: The  genetic “mixed” model
	Slide 28: The  genetic “mixed” model
	Slide 29: The  genetic “mixed” model
	Slide 30
	Slide 31: The  genetic “mixed” model
	Slide 32: Gibbs sampling
	Slide 33: Gibbs sampling
	Slide 34:  Gibbs sampling
	Slide 35: Gibbs sampling
	Slide 36
	Slide 37:  BLUP as a Bayesian estimator
	Slide 38:  BLUP as a Bayesian estimator
	Slide 39:  BLUP as a Bayesian estimator
	Slide 40:  BLUP as a Bayesian estimator
	Slide 41:  BLUP as a Bayesian estimator
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48: Selected data
	Slide 49
	Slide 50:  The  multivariate model
	Slide 51:  The  multivariate model
	Slide 52:  The  multivariate model
	Slide 53:  The  multivariate model
	Slide 54:  The  multivariate model
	Slide 55:  The multivariate model
	Slide 56:  The multivariate model
	Slide 57:  The multivariate model
	Slide 58:  The multivariate model
	Slide 59:  Gibbs sampling
	Slide 60:  Gibbs sampling
	Slide 61:  The multivariate model
	Slide 62:  The  genetic multivariate model
	Slide 63:  The  genetic multivariate model
	Slide 64
	Slide 65

