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1 Introduction

In univariate analysis the basic assumption is that a single measurement arises

from a single unit (experimental unit). In multivariate analysis, not one measurement

but a number of different characteristics are measured from each experimental design,

e.g. milk yield, body weight and feed intake of a cow. These measurements are

assumed to have a correlation structure among them. When the same physical quantity

is measured sequentially over time on each experimental unit, we call them repeated

measurements, which can be seen as a special form of a multivariate case. Repeated

measurements deserve a special statistical treatment in the sense that their covariance

pattern, which has to be taken into account, is often very structured. Repeated

measurements on the same animal are generally more correlated than two

measurements on different animals, and the correlation between repeated

measurements may decrease as the time between them increases. Modeling the

covariance structure of repeated measurements correctly is of importance for drawing

correct inference from such data.

Measurements that are taken along a trajectory can often be modeled as a

function of the parameters that define that trajectory. The most common example of a

trajectory is time, and repeated measurements are taken on a trajectory of time. The

term ‘repeated measurement’ can be taken literally in the sense that the measurements

can be thought of as being repeatedly influenced by identical effects, and it is only

random noise that causes variation between them. However, repeatedly measuring a

certain characteristic may give information about the change over time of that

characteristic. The function that describes such a change over time my be of interest

since it may help us to understand or explain, or to manipulate how the characteristic

changes over time. Common examples in animal production are growth curves and

lactation curves.

 Generally, we have therefore two main arguments to take special care when

dealing with repeated measurements. The first is to achieve statistically correct models

that allow correct inferences from the data. The second argument is to obtain

information on a trait that changes gradually over time.
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Experiments are often set up with repeated measurements to exploit these two

features. The prime advantage of longitudinal studies (i.e. with repeated

measurements over time) is its effectiveness for studying change. Notice that the

interpretation of change may be very different if it is obtained from data across

individuals (cross sectional study) or on repeated measures on the same individuals.

An example is given by Diggle et al. (1994) where the relationship between reading

ability and age is plotted. A first glance at the data suggests a negative relationship,

because older people in the data set tended to have had less education. However,

repeated observations on individuals showed a clear improvement of reading ability

over time.

The other advantage of longitudinal studies is that it often increases statistical

power. The influence of variability across experimental units is canceled if

experimental units can serve as their own control.

Both arguments are very important in animal production as well. A good

example is the estimation of a growth curve. When weight would be regressed on time

on data across animals, not only would the resulting growth curve be more inaccurate,

but also the resulting parameters might be very biased if differences between animals

and animals’ environments were not taken into account.

Models that deal with repeated measurements have been often used in animal

production. In dairy cattle, the analysis of multiple lactation records is often

considered using a ‘repeatability model’. The typical feature of such a model from the

genetic point of view is that repeated records are thought of expressions of the same

trait, that is, the genetic correlation between repeated lactation is considered to be

equal to unity. Models that include data on individual test days have often used the

same assumption. Typically, genetic evaluation models that use measures of growth

do often consider repeated measurements as genetically different (but correlated)

traits. Weaning weight and yearling weight in beef cattle are usually analyzed in a

multiple trait model.

Repeatability models are often used because of simplicity. With several

measurements per animal, they require much less computational effort and less

parameters than a multiple trait model. A multiple trait model would often seem more

correct, since they allow genetic correlations to differ between different

measurements. However, covariance matrix for measurements at very many different
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ages would be highly overparameterised. Also, an unstructured covariance matrix may

not be the most desirable for repeated measurements that are recorded along a

trajectory. As the mean of measurements is a function of time, so also may their

covariance structure be. A model to allow the covariance between measurements to

change gradually over time, and with the change dependent upon differences between

times, can make use of a covariance function.

As was stated earlier, repeated measurements can often be used to generate

knowledge about the change of a trait over time. Whole families of models have been

especially designed to describe such changes as regression on time, e.g. lactation

curves and growth curves. The analysis may reveal causes of variation that  influence

this change. Parameters that describe typical features of such change, e.g. the slope of

a growth curve, are regressions that may be influenced by feeding levels, environment,

or breeds. There may also be additive genetic variation within breeds for such

parameters. One option is then to estimate curve parameters for each animal and

determine components of variation for such parameters. Another option is use a model

for analysis that allows regression coefficients to vary from animal to animal. Such

regression coefficients are then not fixed, but are allowed to vary according to a

distribution that can be assigned to them, therefore indicated as random regression

coefficients.

This course will present models that use random regression in animal

breeding. Typical applications are for traits that are measured repeatedly along a

trajectory, e.g. time. Different random regression models will be presented and

compared. The features of random regression models and estimation of their

parameters will be discussed. Alternative approaches to deal with repeatedly measured

traits along a trajectory are the use of covariance functions, and use of multiple trait

models. These approaches have much in common, since they all deal with

changing covariances along a trajectory. Differences that seem to exist are most often

due to the differences in the model, and generally not necessarily due to the approach

followed. This course will present and discuss the different methods, and show where

they can be equivalent. Different models that allow the study of genetic aspects of

changes of traits along a trajectory will be presented and discussed.

Most of the examples will refer to test day production records in dairy cattle,

since test day models have been used mostly to develop and compare random



5

regression models. However, the procedures and models presented have a much wider

scope for use, since many characters have multiple expressions, and often there is an

interest in how the expression changes over time.  A good example is the analysis of

traits related to growth. Another generalization is that the methodology developed not

necessarily refers to traits that are modeled as a function of time (i.e. regressed on a

time variable). In these notes, other extensions will be presented as well, e.g.

expressions of traits being function of production level.
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2    Exploring correlation patterns in repeated measurements

There are several ways to explore the correlation structure in repeated measurements

Diggle et al. (1994) . Graphical displays can be very useful to identify patterns

relevant to certain questions, e.g. the relationship between response and explanatory

variables. Figures 2-1, 2-2, and 2-3 (adapted from Diggle et al. 1994) illustrate this by

showing graphs for body weight in 5 pigs as a function of time. Figure 2-1 shows the

lines connecting the weights on an individual pig in consecutive weeks. This graph

shows that (1) pigs gain weight over time, 2) pigs that are largest at the beginning tend

to be largest at the end, and 3) the variation among weights is lower at the beginning

than at the end.

The second observation is important in relation to correlation structure, and

has important biological implications. Figure  2-2 gives a clearer picture of the second

point. By plotting deviations from the mean, the graph is magnified. In Figure 2-2, we

observe that lines do cross quite often, and rankings do change for different times on

the axis. Measurements tend to cross less in the later part of the experiment, i.e.

correlations might be higher in later part of the trajectory. With many individuals, it is

more difficult to interpret such graphs.
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Figure 2.1. Body weight for 5 pigs measured at 9 consecutive weeks
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Figure 2-2. Residual body weight (deviation from week mean) for 5 pigs measured at

9 consecutive weeks

Exact values such as correlations between measurements at different time points can

not be obtained from graphs like in Figure 2-1. When observations are made at equally

spaced times, associations between repeated measurements at two fixed times are

easily plotted and measured in terms of correlations. With unequally spaced

observations,  this is less evident. Diggle et al. (1994) suggest to use a variogram. This

is a function that describes the association among repeated values and is easily

estimated with irregular observation times. A variogram is defined as

γ ( ) [{ ( ( ) ( )} ],u E y t y t u u= − − ≥1
2

2 0

where γ ( )u  describes the squared differences between measurements that are u time

units apart. The variogram is calculated from observed half-squared differences

between pairs of residuals,

v r rijk ij ik= −1
2

2( )

and the corresponding time differences
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u t tijk ij ik= −

where yij is the jth observation on animal i, and  residuals are r y E yij ij ij= − ( ) ,  i.e.

they can be calculated as deviations from contemporary  means. If the times are

regular, !( )γ u  is estimated as the average of all vijk  corresponding to the particular u.

With irregular sampling times, the variogram can be estimated from the data pairs

(uijk,vijk) by fitting a curve A variogram for the example of  Figure 2-2 is given in

Figure 2-3. As an example, the point for u=8 is obtained as the average of the half-

squared differences between the residual for the first and the 9th observation  on the

five pigs: !( ) {( ) ( )} /. .γ u y y y yi i
i

= = − − −
=
∑8 51

2 1 1 9 9
1

5
2 ,

where y j.  is the average of the jth observation.
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Figure 2-3. Variogram for the pig example, showing γ ( )u  (gama(u)) for u=1,…8 (u=

distance between measurements in weeks)

A structure often used in repeated measurements to describe the correlation matrix is

the autocorrelation structure. We can define autocorrelation as the correlation between

two measurements as a function of the distance (in time) between the measurements.

The autocorrelation function can be estimated from the variogram as

!( ) !( ) / !ρ γ σu u= −1 2 , where !σ 2  is the ‘process variance’, which is calculated as the

average of all half squared differences  1
2

2( )y yij lk−  with i ≠ l.
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There exist several types of correlation models. In a uniform correlation

model, we assume that there is a positive correlation ρ  between any two

measurements on the same individual (independent of time). In matrix terms the

correlation matrix between observation on the same animal is written as

 V I J0 1= − +( )ρ ρ

where I is the identity matrix and J is a matrix with all elements equal to 1. The

uniform correlation model is used in what is generally called a ‘repeatability model’ in

animal breeding.

In the exponential correlation model , correlations between two observations

at the same animal at times j and k are

v t tjk j k= − −σ φ2 exp( | |) .

In this model, the correlation between a pair of measurements on the same individual

decreases towards zero as the time separation between measurements increases. The

rate of decay is faster for larger values of φ. If the observation times are equally

spaced, than the correlation between the jth  and the kth  measurements can be

expressed asv jk

j k= −σ ρ2 | | , where ρ φ= −e . Sometimes the correlation decreases

slow initially, and then decreases sharply towards zero. Such behaviour may be better

described by a Gaussian correlation function:

 v t tjk j k= − −σ φ2 2exp( ( ) ) .

The exponential correlation model is sometimes called the first order

autoregressive model. In such a model, the random part of an observation depends

only on  the random part of the previous observation: ε ρεj j jz= +−1 , where z j is an

independent random variable. Models where random variables (e.g. errors) depend on

previous observations are called ante-dependence models, and a when random

variable depend on p previous variables we have a pth order Markov model.

In general we can distinguish three different sources of random variation that

play a role in repeated measurements (Diggle et al., 1994):

•  Random effects. When the units on which we have repeated measurements are

sampled at random from a population, we can observe variation between units.

Some units are on average higher responders than other units. In animal breeding,
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an obvious example of such effects are animal effects, or more specific, the

(additive) genetic effects of animals.

•  Serial correlation. This refers to part of the measurement that is part of a time

varying stochastic effect. Such an effect causes correlation between observations

within a short time interval, but common effects are less correlated if

measurements are further away.

•  Measurement error. This is an error component of an observation which effect is

each time independent of any other observations.

If a model is build that accommodates these three random effects, the variance

structure of each of the effects needs to be described. Diggle et al (1990) give a

general formula for the variance  of observations on one experimental unit as

var( )ε σ τ= + +v J H I2 2 2 [2.1]

where v 2 2,σ andτ 2  are variance components for the three random effects, J is  a

matrix with ones, and H is specified by a correlation function.

This model given in [2.1] often used in analysis of longitudinal data. In fact,

model [2.1] is not at all general. The random effects are assumed to be constant over

all measurements within a unit. If we think of this effect as a the genetic effect of an

animal we can imagine very well these to vary between ages (over time), and this may

even bear our special interest. Therefore, J should be replaced by a correlation

function. The serial correlation effect may be seen as the temporary environmental

effects often used in animal breeding data. For both the random and the serial

correlation effect, the question is how the correlation (c.q. covariance-) function

should be defined.

The patterns as described in this section, and as often use in the statistical

literature, show smooth functions that seem natural for many stochastic processes.

However, the additive genetic effect on a trait over time maybe more irregular. For

example, some genes could be mainly active during the first 4 months of growth of a

pig, with high correlations between measurements within this period, but other genes

may take over during the last month. Also the permanent environmental effect does
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not necessarily follow the pattern of the correlation structures shown in this section.

In dairy cattle, the permanent environmental effect might be explained by differences

between raising of animals before first calving, possibly having a large effect on the

first part of lactation, and only then gradually decreasing. We could therefore require a

method used to describe the change of covariances over time to be flexible, and not

relying on predefined structures.

A flexible approach is to define a function for the covariance structure that is

based on regression. The next section will describe the development of covariance

functions based on regression on orthogonal polynomials. Like polynomial regression

is suitable and flexible for fitting linear function of the means, it can be used to fit

covariance structures. Alternatively, models to fit covariance structures over time

could be based on time variables defined based upon a biological model (e.g. growth

and lactation curves). Such models will be presented in a later section, when random

regression will we discussed.
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3 Covariance Functions

3-1 The use of Covariance Functions

An individual’s phenotype changes with age. Traits that change with age can

be represented as a trajectory, that is, as a function of time. Because each character

takes on a value at each of an infinite number of ages, and its value of each age can be

considered as a distinct trait, such trajectories are referred to as ‘infinite-dimensional ‘

characters (Kirkpatrick et al., 1994).

When a phenotypical expression is repeatedly measured over a certain time

frame, we can model those a repeated measurements of genetically the same trait (rg

between measurements =1), but often it is more accurate to consider these as

expressions of genetically different, but correlated characters. Correlations can be both

through genetic and environmental causes.

Multiple measurements on a given time frame can therefore be considered as

multiple traits. However, when measurements can be randomly scattered over the time

frame, a multiple trait approach would  theoretically involve an infinite number of

traits, or practically very many traits and many animals would have missing data for

most of the traits (unless they are continuously measured). A simplification is then to

limit the number of traits by defining the expression in certain periods of time as

separate traits (e.g. years or months). Such an approach has disadvantages. The first is

that we fit the covariance structure as discontinuous whereas it really is continuous.

Two measurements close to each other but in different months would have lower

correlation than two other measurements, further apart but measured in the same

month.

The second disadvantage is that it would be more tedious to account correctly

for having more measurements in the same time period. For example, milk production

in dairy is most often measured once in each lactation month. Some animals may have

two records per month by chance, and some herds may have more frequent sampling

schemes, e.g.  automated daily recording. Accounting for repeated  measurements per

time period requires an additional variable for the permanent environmental effects. 
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The third disadvantage of a multiple trait model for traits at many different

ages is that the correlation matrix is not structured. For measurements taken along a

trajectory, the covariance structure should  take account of a certain ordering of the

measurements in time. In other words, the correlation between measurements should

somehow be related to the time that lies between the measurements.

Rather than applying models with a finite number of traits, an infinite-

dimensional approach can be followed. In a infinite-dimensional approach, the

covariance structure is modeled as a covariance function, being a function of the

covariance between times ti and tj, where the times should be points along a defined

trajectory. A covariance function  allows

! a gradual change of covariances over time

! a relationship between the covariance and time differences

! predicting variances and covariances for points along the trajectory, even though

no, or few observations have been made for these points, but using information

from all other measurements

The advantages of using a covariance function are analogous to the advantage of using

regression. The purpose of estimating a regression model y= xβ+ e, is to predict  y-

values for given x-values. For x-values that had never observations attached to them,

we can still predict y-values. This may seem obvious when we model observations on

animals (i.e. fitting means). However, the same principles apply when we fit

variances. Yet, it is common in animal breeding that we use for the best prediction of

a trait at a certain time ti only the value of a variance close to ti, rather than  making

use of information on variance at all points measured. A covariance function would

use such information by regressing covariance on time. Furthermore, it predicts

covariances between traits at the full trajectory, rather than at some points that we

have measurements on.

The interest in traits that change over time is often in parameters that describe

that change, and particularly, in animal breeding, genetic parameters. Such parameters

might give  information on whether and how we can manipulate such changes, i.e.

how we manipulate growth or lactation curves. Covariance functions provide a

method for analyzing independent components of variation that reveal specific
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patterns of change of the character over time. For example, components of variance

might be mostly associated with traits values in particular parts of  the trajectory, e.g.

milk in later lactation, or growth early in life. Techniques for finding such components

will be presented in this chapter 6.

In summary, covariance functions can be used for traits that 1) (gradually)

change over time, 2) are measured on trajectories, and 3) can be called 'infinite

dimensional'. Examples are: growth, lactation, survival. Covariance functions are

applied because it allows  1) accurate modeling of  the variance-covariance structure

of the traits described, 2) it is able to predict covariance structures at any point along a

continuous (time) scale 3) it gives more flexibility in using measurements taken on

any moment along the trajectory without having to correct them to certain landmark

ages, 4) it provides a methodology to analyse patterns of covariance that are associated

with particular changes of the trait along the trajectory.

3-2 Estimating covariance functions

A covariance function can be defined as “ a continuous function to give the variance

and covariance of traits measured at different points on a trajectory”. Covariance

function can be used to describe the phenotypic covariance structure, but in principle

it is appropriate to define a covariance function for each of the random effects that

explain variation. In an animal breeding context, it may be most common to use a

covariance function to describe the genetic covariance structure, and we will use that

mostly in the examples.

Covariance functions can be defined based on many regression models. We

will choose Kirkpatrick et al (1990) by using a regression on Legendre polynomials.

This method provide a smooth fit to orthogonal functions of the data.  In mathematical

terms, a covariance function (CF), e.g.  for the covariance between breeding values ul

and um on an animal for traits measured  at ages xl and xm is:

cov(ul,um)= (ƒ(xl,xm)= 
i

k

j

k

=

−

=

−

∑ ∑
0

1

0

1

φi(xl)φj(xm)kij [3-1]

where φi  is the ith (i=0,..,k-1) polynomial for a k-order of fit, x is a standardized  age
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(-1 ≤ x ≤ 1) and kij  are the coefficients of the CF. The ages can be standardized by

defining amin and amax as the first and the latest time point on the trajectory considered,

and standardizing age ai to xi= [2( ai-amin) /( amax-amin)]-1.

 The CF can be written in matrix notation as

!G = ΦΦΦΦKΦΦΦΦ'

where !G  is the genetic covariance matrix of order t for breeding values at t given

ages,   ΦΦΦΦ is a t by k matrix with orthogonal polynomials The matrix  ΦΦΦΦ can also be

written as MΛΛΛΛ, with M being a t by k matrix with elements mij= ai
(j-1) (i=1,..t; j=1,..k),

and  ΛΛΛΛ being a matrix of order k with polynomial coefficients.

We follow here (partly) the example given by  Kirkpatrick et al., 1990.

Consider having a genetic covariance matrix for weight measurements of mice at 2,3,

and 4 weeks of age. The standardized age vector is: a= [-1, 0 1]. A covariance

functions can be estimated based on a variance covariance matrix of observations on a

number of age points. For example, and additive genetic covariance matrix that was

previously estimated:

~
. .

. .

. .

G =
436 522 3 424 2

522 3 808 664 7

424 2 664 7 558

The jth normalized Legendre polynomial is given by the formula

φj j

m

m

j
j mx

j j

m

j m

j
x( ) ( )

/

= + −






−



=

−∑1

2

2 1

2
1

2 2

0

2
2

The matrix with CF coefficients can be estimated with the first three polynomials (a 3-

order fit). The matrix ΛΛΛΛ for the first 3 Legendre polynomials is a 3 by 3 matrix:

Λ =
−0 7071 0 0 7906

0 122 0

0 0 2 3717

. .

.

.
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The matrix  M has t rows (t=3), one for each age measured,  and k columns (k=3), for

the mean, linear and quadratic fit, respectively:

M =
−1 1 1

1 0 0

1 1 1

The resulting matrix ΦΦΦΦ is constructed as  MΛΛΛΛ, i.e. ΦΦΦΦ is:

      Φ =
−

−
0 7071 12247 15811

0 7071 0 0 7906

0 7071 12247 15811

. . .

. .

. . .

and the coefficient matrix K is estimated as !
~K G t= − −Φ Φ1 , where the -t superscript

refers to the inverse of the transpose. The estimated coefficient matrix becomes:

    !
. .

. . .

. . .

K =
−
−

− −

1348 665 1117

665 24 3 14 0

1117 14 0 14 5

the coefficient of the covariance function are obtained in  C K= Λ Λ' :

    !
. . .

. . .

. . .

C =
−
−

− −

808 0 712 214 5

7120 36 4 40 7

214 5 40 7 816

and in terms of equation [3-1], the covariance function is

ƒ(x1,xm)=

808+ 71.2(x1+xm) +36.4xl xm -40.7(x1 
2xm + x1xm 2) - 214.5(x1

2+xm
2) +81.6( x1 

2xm
2).
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Using this function we can estimate the covariance between the age combinations

represented in !G , but by interpolation we can also estimate covariance between ages that

were never measured. For example, the covariance between weight at 3 (x1=0) and 3.5

(x2=0.5) weeks of age is    ƒ(0,  0.5) =   808+ 71.2*(0.5)  - 214.5*(0.52) =789.9.

Notice that in this example we had a full fit of 
~
G . In that case, the matrix ΦΦΦΦ has an

inverse, and estimation of the coefficient matrix K is straightforward. Also, the matrix  
~G

is fully obtained by ΦΦΦΦ !K ΦΦΦΦ', i.e. we basically have drawn a regression line through all

the observed points. However, we are most often interested in a reduced fit where k < t.

This is especially important for larger t.

In a reduced fit, we try to estimate the coefficients for K so that the fit is optimal.

For this purpose, we can use least squares techniques. We can consider the model

~
G = ΦΦΦΦKΦΦΦΦ' +ϑ [3-2]

where  
~
G  is the observed genetic covariance matrix for the ages defined in ΦΦΦΦ, and ϑ

is a matrix with sampling errors, i.e. differences between the covariances predicted by

the covariance function and the observed covariances. The purpose is to estimate K

such that these differences are minimal. We can write [3-2] as a linear model by

stacking the observed covariances in the matrix 
~
G  into a vector ~g . We obtain the

equations:

~g Xk e= + [3-3]

where  X is the coefficient matrix and k is the solution vector with the elements of K

stacked into a vector. Hence, ~g ’=[ 
~

( , ),...
~

( , ),
~

( , ),...
~

( , ),...
~

( , )G G t G G n G t t11 1 1 2 2  ]

The residuals e are stacked columns from the matrix ϑϑϑϑ. The coefficient matrix is

constructed from the elements in ΦΦΦΦ by taking its direct product: X= ΦΦΦΦ⊗ΦΦΦΦ. The vectors

~g and  k  have length t2 and  k2, respectively, and the matrix X has dimensions t2 by k2.

For a 2-order fit we have:
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Φ =
−















0 7071 12247

0 7071 0

0 7071 12247

. .

.

. .

and X =

− −
−
− −

−

− −



































05 087 087 15

05 0 087 0

05 0 87 087 15

05 087 0 0

05 0 0 0

05 0 87 0 0

05 087 087 15

05 0 087 0

05 0 87 087 15

. . . .

. .

. . . .

. .

.

. .

. . . .

. .

. . . .

Notice that since 
~
G  is a symmetric matrix, the equations in [3-3] have a redundancy  in

that there are many double elements. The equations in [4] can therefore be rewritten

by redefining ~g and  k  to vectors of length t(t+1)/2 and  k(k+1)/2, containing only the

lower half of the matrix elements of 
~
G  and K, respectively. The rows in X

corresponding to 
~
G (i,j), for i<j need to be deleted. Furthermore, the columns

corresponding to K(i,j), for i<j need to be added to the columns corresponding to

K(j,i), and the columns for K(i,j) needs to be deleted. Following these steps, the matrix

X has dimensions t(t+1)/2 and  k(k+1)/2:

X =

−
−

−

























05 1732 15

05 0 866 0

05 0 15

05 0 0

05 0 866 0

05 1732 15

. . .

. .

. .

.

. .

. . .

The coefficients are then estimated by least squares as

! ( ' ) ' ~k X X X g= −1 [3-4]

and the matrix with CF coefficients !K  is then created by unstacking !k .

Least squares estimation is appropriate if the error variance structure of the

observations is is a multiple of the identity matrix, in this case: V= var( ~g ) = var(e)  = Iσ2.

However, for an estimated variance-covariance matrix this is usually not the case. The
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elements in V contain sampling variances for the estimated (co)variance components in

~
G . The sampling variance depends on the mean of  the estimated variance component,

and might be very different for variances than for covariances. The diagonal elements of

V, should therefore not be expected to be the same for all the estimated variances and

covariances. Furthermore, off diagonal elements of V contain sampling covariances which

are generally not zero. A more accurate estimation of the CF coefficients would be

obtained if we apply a Generalized Least Squares procedure, i.e.

! ( ' ) ' ~k X V X X V g= − − −1 1 1 [3-5]

For a GLS estimate, sampling variances and covariances of the estimated variance

components in 
~
G  are needed. When those components are estimated with REML,

approximate sampling (co)variances can be given, the approximation being better when

there is more data. Kirkpatrick et al (1990) presented a method to estimate elements of V

based on the particular design that is used to estimate the genetic variance components.

They distinguish half- and full sib designs and parent-offspring designs. In animal

breeding, we use often field data and an animal model to estimate covariance matrices.

Depending on the data structure, an animal model could amalgamate information from all

these designs. When approximate sampling variances are not available, a rough estimate

could be based on assuming a design that is closest to the data. For example, REML

estimates from data on dairy cattle are generally close to half sib designs, and we could

approximate the number of half sib families (s), and the number of individuals per family

(n). An approximation of the sampling covariance between 
~
G (i,j) and  

~
G (k,l) from a half

sib design is

! [ ( ! , ! ) ( ! , ! )], , , , ,V
n

Cov M M Cov M Mij kl a ij a kl e ij e kl= +
16

2 [3-6]

where !Ma  and  !Me  are the estimated mean cross products among sires and residuals,

respectively, and those crossproducts can be derived from the estimated of phenotypic and

genetic covariances, in 
~
P  and 

~
G , respectively as
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! ~ ~
,M P Ge ij ij ij= − 1

4 and
~ ~ ~

,M
n

G Pa ij ij ij=
−

+
1

4
[3-7]

The covariance between cross products is,

Cov M M M M M M fij kl ik jl il jk( , ) ( ) /= + [3-8]

f is the number of degrees of freedom  for the mean cross product. We can estimate this

covariance unbiasedly by replacing the M’s by their estimates from [3-7] and dividing  in

[3-8] by f +2 rather than by f .

When attempting to fit a lower order of fit for a covariance function, we need test statistics

to be able to determine whether the order fitted is sufficient. Kirkpatrick et al. (1990)

suggest to use the weighted residual sums of squares:

wSSE= (~ !)' ! (~ !)g Xk V g Xk− −−1 [3-9]

as a test statistic for the goodness of fit for a particular model. The test statistic in [3-9]  has

a χm p−
2 - distribution, where m =  t(t+1)/2 and p =  k(k+1)/2, i.e. (m-p) is the degrees of

freedom for the residual sums of squares. Since the weighted sums of squares in [10]

depend on the the values estimated in !V , inferences on the model depend the the accuracy

of these estimates. For example, if values in !V  are underestimated (i.e. it is assumed that

the covariances in 
~
G  are more accurate than they actually are), the test statistic defined in

[3-9] will be overestimated, and it ill be more difficult to find a particular order of fit

sufficient.   An alternative statistic for fitting covariance functions could be and F-test. The

significance of adding additional parameters to the model with k increased to k+1 (H1-

model) over a simpler model (H0 model) is tested  with an Fp,dfe-test using the test

statistic

[(wSSEH0-wSSEH1)/p]/[wSSEH1/dfe] [3-10]

where dfe is equal to the degrees of freedom for the residual sums of squares for the

H0 model, and p = [(k+1)(k+2)/2]-[(k+1)k/2] =  k+1.
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Kirkpatrick et al (1990) found for the example as described in this section, and using [3-9]

that only a full order of fit would be sufficient. For k=1, they found for the test statistic

according to [10] a value of 57.3, and for k=2 they found 38.7, which are both very

significant for χ5
2  and χ3

2 .

However, an F-test as in [3-10] for a model with k=2 over k=1 is F2
3= 1.44, which is not

significant. An F-test is more sensitive to low degrees of  freedom, and the Kirkpatrick

example may therefore be not ideal to compare these test statistics. The F-test is not able to

test a particular model versus the model with full fit, since wSSEH1= 0.

Table 1 shows testing of different orders of fit for a genetic covariance matrix

between six 50-day periods of first lactation records in Holsteins (Van der Werf et al.,

1997). The F-test shows that a 3-order fit was sufficient to fit the data. The wSSE

values were not significant for any of the models, although for lower orders of fit were

consistently higher than the expected value, which was df. In this example, the wSSE

values might have been underestimated because of  too high value assumed for the

sampling covariances.

TABLE 3-1 Testing different orders of fit (k) for the additive genetic covariance
matrix1 using covariance functions with Legendre polynomials.

k   wSSE                    σe
2       df                   F        

1    24.66    1.23    20         -             
2    18.69 1.04    18     2.87*

3    12.80    0.85    15     2.30*

4      9.93     0.90    11     0.79
5      7.84     1.31     6     0.32

1 The covariance matrix was of order six with covariances between six 50-day 
periods of milk production in firs parity Holsteins.

Like in regression analysis, we can test the Goodness of Fit of different

combinations of polynomials. For example, we can also test the fit of the first and the 3rd

order polynomial. For the Kirkpatrick example this gave a wSSE of 36.7, which is a better

fit than the first two polynomials. Notice therefore that the analysis just described are

mainly testing whether a particular polynomial explains additional variation in the fit

of 
~
G . It does not tell us how many regression coefficients are needed to fit the covariance
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function. A linear combination of more polynomials could be sufficient to explain a large

part of the variance in 
~
G . We can evaluate this by testing the eigenvalues in K. In a later

section, we will explain in the use of eigenvalue decomposition in covariance functions,

and come back to this point in more detail.

Kirkpatrick et al. (1994) suggested also methods to estimate CF with ‘the

method of asymmetric coefficients’, where they estimated an asymmetric CF

coefficient matrix K.  Their main reasons were 1) to allow the first derivative of the

CF to be discontinuous along the diagonal to allow for increases do to measurement

error,

and 2) asymmetric CF have no products of highest order terms and tend to behave

better than methods with symmetric coefficients.  However, asymmetric matrices are

not very easy to use in an animal breeding context. Moreover, higher variances at the

diagonal could be taken care of by including in the model an explicit effect of

measurement error, assuming the covariances for other random effects are smooth

near the diagonal.

3-3 Estimation of Covariance Functions with REML

The previous section described estimation of a k-order fit of a CF from

estimates of the covariance matrix among records at t observed ages, with t ≥ k. In

practice, it would be preferable to estimate reduced rank covariance matrices directly

from the data.  Meyer and Hill (1997) have proposed a method to estimate covariance

functions in a Restricted Maximum Likelihood (REML) estimation framework. The

major advantage of using maximum likelihood is that  it ensures the estimated

coefficient matrix K to be positive definite, which is not the case using  Kirkpatrick et

al.’s Generalized Least Squares method.  Furthermore, a REML procedure can use

likelihood ratio tests for statistical inference, and testing does not rely on estimated

matrices with sampling variances. The method of Meyer and Hill (1997) is an

adaptation of the multivariate DFREML procedure, described by Meyer (1991)

Consider first the multiple trait model, with animals having measurements on

all of  t traits:  y= Xb + Zu+e. with var(y)= ZGZ'+ R, u is a vector of additive genetic

animal effects with var(u)=G, with G= A⊗ G0,  A is the numerator relationships
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matrix between animals and G0 a matrix of order t with genetic variances and

covariances between t traits, and ⊗  the Kronecker product. Further, if there are no

missing values and incidence matrices are equal for each of the traits, we have

var(e)= R= I⊗ R0. The Restricted log likelihood is then

ln£ = -½ [ const + N ln|R0| + Na ln|G0| + t ln|A| + ln|C| + y’Py

where Na is the number of animals in the analysis, C is the coefficient matrix for the

mixed model equations and y’Py are residual sums of squares. This likelihood can be

maximized by either derivative free, or derivative intensive algorithms. Hill and

Meyer suggest for estimating covariance functions to use a parameterization by

rewriting the log likelihood to

ln£ = -½ [ const + N ln|Ke| + Na ln|Ka| + (N+Na)ln|ΦΦ’|+ t ln|A| + ln|C| + y’Py

where ΦKaΦ’ and ΦKeΦ’ are covariance functions for G0 and R0, respectively. For

calculating Y’Py and ln|C|, Meyer and Hill use the multiple trait mixed model

equations. An improvement was suggested by fitting explicitly measurement errors, to

account for  higher variances and a non-smooth function at the diagonal of R0

ln£ = -½ [ const + N ln|ΦKEΦ’+Iσε
2| + Na ln|Ka| + (Na)ln|ΦΦ’|+ t ln|A| + ln|C| + y’Py

The advantage of this procedure over a multivariate procedure with t traits is that the

dimension of the parameter space is reduced, e.g. there are only k(k+1)2 genetic

parameters to estimate rather than t(t+1)/2, i.e.  the maximum of the likelihood should

be found with less computational effort. The time for each likelihood is not reduced,

however, because the size of the mixed model equations is still equal to those of a t-

trait model. Therefore, this approach is not very practical if data are measured

irregularly at many different ages, since the computing time (per likelihood

evaluation) goes up with the number of ages considered and not with the order of fit of

the covariance functions. In the following chapter we will see how REML can also be
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used in a random regression model to estimate covariance functions, which will

eliminate this problem.
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4 Application of Covariance Functions in mixed models

4-1 Modeling covariance functions

If we were going to use the concept of covariance functions for genetic evaluation

purposes, we need to work out how CF can be implemented in mixed model

equations. In models for genetic evaluation based on repeated measurements we

usually have at least 3 random components (see equation [2-1]), being additive

genetic, permanent environmental and temporary environmental effects, the last also

indicated as measurement error. Each of these components has a different covariance

structure. We therefore can write a model where not the observations, but the

underlying random effects are replaced by a covariance function. Covariance functions

are additive, i.e. like the corresponding covariance matrices they add up to the

phenotypic CF assuming random effects are uncorrelated. Consider the model

y u pmi i i i= + + +µ ε  [4-1]

where ui  is vector with additive genetic effects for the observations measured on

animal i, and pmi and ε i  are vectors with permanent and temporary environmental

effects. We have

var( )u Gi = 0

var( )pm Ci = 0

var( )ε σεi I= 2

If all animals have measurements at the same ages, G0  and  C0  are equal for each

animal. We can see [4-1] as a multiple trait model, where the residual covariance

matrix is
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var( ) var( )e pm C I Ri i e= + = + =ε σ0

2

0 . [4-2]

Since the measurement errors are independent between ages, we only write a

covariance function for the additive genetic and for the permanent environmental

effect. Assuming a CF fit by Legendre polynomials for each of these random effects,

and with the same order of fit (to simplify notation) :

G Ka0 = Φ Φ'

C Kp0 = Φ Φ'

and we can write the model [4-1] as

y a pi i i i i i= + + +µ εΦ Φ [4-3]

hence we have replaced ui  by Φi ia  and pmi by Φi ip . If we have estimated the CF

by a full fit,  models [4-1] and [4-3] are equivalent, since they we have the same

expectation and variance:

var( ) var( ) var( )Φ Φ Φ Φ Φi i i i i i a i ia a K G u= = = =0 [4-4]

var( ) var( ) var( )Φ Φ Φ Φ Φi i i i i i p i ip p K C pm= = = =0 [4-5]

If animals would have records at (many) different ages, the equivalence would not be

exact, since we would have a reduced order fit of the covariance function. Notice, that

the CF model only requires a different Φi  matrix for each different set of ages, but the

regression coefficients have the same covariance structure (Ka  and Kp) for each

animal, independent of the set of ages it has measurements on. The number of random

effects to estimate for each animal in model [4-1] is equal to the number of ages that

animals have measurements on.  The permanent environmental effects is usually not

separated from measurement error in multiple trait models. In model [4-3] the number
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of additive genetic effects is equal to the order of fit for the additive genetic

covariance function, i.e. the order of Ka, and likewise the number of permanent

environmental effects is equal to the order of Kp.

4-2 Equivalence Covariance Functions and Random Regression

Notice that in model [4-3] we have a regression model where the data is

regressed on Legendre polynomials with the regression variables in Φ and the

regression coefficients in a and p, respectively. The regression coefficients are not the

same for each animal, but they are  drawn from a population of regression coefficients.

In other words, regression coefficients in a and p are random regression coefficients

with var(a)= Ka and var(p)= Kp.

In fact, we have rewritten a multivariate mixed model to a mixed model with

covariance functions in a format of a univariate random regression model, with each

random effect having k random regression coefficients. A model for n observations on

q animals can then be written as

y= Xb+ 
j

k

=

−

∑
0

1

 Zjaj +  
i

k

=

−

∑
0

1

Zjpj + εεεε, [4-6]

where Zj are n by q matrices for the ith polynomial, and aj and pj are vectors with

random regression coefficients for all animals for additive genetic and permanent

environmental effects. The matrix Z contains the regression variables, i.e. the

coefficients are those of the polynomials in ΦΦΦΦ. We can order the data vector by sorting

records by animal, and we can stack the aj and pj vectors and sort them by animal,

each animal having k coefficients in a and k coefficients in p (to simplify notation, we

assume equal order of  fit for CF’s for both random effects, therefore having equal

incidence matrices). We can then write Z* as a block diagonal matrix of order n by

k*q, with for each animal i  block Zi
*= ΦΦΦΦi= Mi.ΛΛΛΛ

The mixed model can be written as

y= Xb+ Z*a + Z*p + εεεε,
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with a'= {a1' ,...aq'} and p'= {p1' ,...pq'}, with ai and pi being the sets of random

regression coefficients for animal i for the additive genetic and the permanent

environmental effects, respectively. If all animals have measurements on the same age

points, all Zi
* are equal and   Z*= Iq⊗  ΦΦΦΦ;

The variances and covariances of the random effects can be written as:

var (a)= A⊗ Ka

var(p)= I⊗  Kp

and cov(a,p)=0.

where Ka and Kp are the coefficients for the CF for a additive genetic and permanent

environmental effects, respectively. The mixed model equations for the random

regression model with covariance functions (RR-CF-model) have a similar structure

as a repeatability model, except that more coefficients are generated through the

polynomic regression variables from Φ which are incorporated in Z. In the additive

genetic effects part of te equations there is for each animal a diagonal block Φi’Φi +

aiiσε
2Ka

-1, and there are off diagonal blocks   aijσε
2Ka

-1  with aij the (i,j)th element of the

inverse of the numerator relationships matrix (A-1). The part for the permanent

environmental effects is block diagonal with diagonal blocks equal to  Φi’Φi + σε
2Kp

-1

. Schematically, the mixed model equations will be like
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where the subscript i refers to those part of the equations for animal i. For the earlier

example, we a 3-order CF with measurements at standardized ages [-1 0 1], Φ’Φ is

Φ Φ'
. . .

. . .

. . .

=
−

−
















150 0 26 0 62

0 26 2 06 0 21

0 62 0 21 139

The polynomial coefficients generate therefore in the mixed model equations a rather

dense coefficient matrix. However, the number of non-zero coefficients in the random

by random part of the equations are not larger than in a multiple trait model with k

traits, since in the latter model each diagonal block is R0
-1 + G0

-1, which is also fully

dense. Note that in a reduced fit k < t. In a multiple trait model we would estimate t

breeding values per animal (one for each trait). In a RR-CF model we have 2k random

regression coefficients to estimate for each animal. Notice that the permanent

environmental effects can be easily absorbed into the remaining part of the equations.

For each animal we would construct the matrix Q I K p= − + − −Φ Φ Φ Φ( ' ) 'σε
2 1 1 , and

replace in the random part of the MME Φ by Φ* = Q½Φ where  Q½ is a Cholesky

decomposition of Q. In the fixed effects part we would add Xi’QXi  and   Xi’Qyi

rather than Xi’Xi  and   Xi’yi . In a later section we will discuss a transformation of the

RR-CF equations for the purpose of large scale application.

In [4-1] the multiple trait model was presented as with three random effects.

The similarity between a RR-CF model with the usual multiple trait mixed model can

be shown as follows. The multivariate mixed model for t traits:

y= Xb + Zu+e.

with var(y)= ZGZ'+ R

and u is a vector of additive genetic animal effects with var(u)=G.  If u as well as y

are ordered by animal and traits within animals, Z is a block diagonal matrix with

diagonal blocks Zj pertaining to each animal, and Zj is a nj by t matrix with nj the

number of traits measured for animal j, and Zj (m,k) is 1 if the mth record is measured
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for trait k, and 0 otherwise. We have defined var(u)= G = A⊗ G0 and var(e)= R=

I⊗ ZiR0Zi'  with G0 and R0 matrices of order t with residual variances and

covariances. If there are no missing values and incidence matrices are equal for each

of the traits, we have Zi =It,  and R=I⊗ R0.

Suppose we have a k- order fit for a CF-RR model (with k≤t), and all animals

have measurements on each of  t ages. We compare this with a multiple model with all

animals having measurements for t traits.  If the CF are defined such that Ka and Kp

are estimated from G0 and (R0 -var(εεεε)), respectively, where var(εεεε)=Iσε
2  is the

variance of the temporary environmental effect,  then

 var(Z*a) = A⊗ΦΦΦΦKaΦΦΦΦ' ≅  A⊗ G0= var(Zu ),

and var(Z*p + εεεε ) =  Iq⊗ΦΦΦΦKpΦΦΦΦ + Iσε
2 ≅  Iq⊗ R0 = var(e).

The vector of multivariate additive genetic values for an animal i, ui , can therefore

also be written as ΦΦΦΦai, i.e. the random regression coefficients are premultiplied by ΦΦΦΦ.

With a full order fit (k=t), the MV model is exactly equivalent to the CF-RR model.

The order of the CF usually will be chosen so that the fit of the observed variance-

covariance structure is optimal. If k is much smaller than t (i.e. when the t different

traits measured are highly correlated), the covariance structure described by the CF

will be more smooth and probably more correct than the covariance structure for a t-

trait model with t(t+1)/2 estimated covariances. Note that a multivariate model for

many traits is numerically not very stable if the variance-covariance matrices have

many eigenvalues close to zero, i.e. if the rank is in fact smaller than t. Inverses of

such matrices may be very inaccurate.

When different animals have measurements on different sets of  age points, the

diagonal blocks in the incidence matrix Z are no longer all equal. The variance of the

subset of observations on each animal is

var(yi)= ΦΦΦΦiKaΦΦΦΦi' + ΦΦΦΦiKpΦΦΦΦi' + Iσe
2 = G0i + R0i

where G0i and R0i  are the genetic and environmental covariances for the traits

measured at the age points for animal i. In a multiple trait animal model with missing
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traits, we usually have equations for all traits and solutions for traits on animals which

have no records for that trait are derived either from regression on correlated traits that

were recorded, or from information on the same trait on related animals, or both. In

the CF model, the information for each animal for each random effect is collapsed into

k regression coefficients, and solutions for EBV's at each set of age points desired can

be  generated from ui= ΦΦΦΦiai= MiΛΛΛΛai, where the ages are in Mi.  For one particular age,

say milk production at day 260, Mi is a vector of length k, e.g. for k=3,

Mi = [1 .705 .497] where .705 is the standardized age at a scale 0-305. The RR-CF

model is therefore more flexible than a multiple trait model, as it can handle

measurements at any stage defined as different traits, and the solutions are

approximately equivalent to a t-variate model (with t possibly very large), the

approximation depending on the accuracy of the kth order fit of the CF on the t-

dimensional covariance matrix.

4-3 Estimating CF coefficients with the random regression model

In Chapter 3 we discussed estimation of covariance function from a pre-estimated

covariance matrix. When we have data from animals measured on different ages along

a trajectory, and we want to estimate a CF, this either requires that all animals are

measured on a limited number of fixed ages, or that we ignore data from animals that

not near such landmark ages, or, when data is really spread over the trajectory, that we

assume that data nearby landmark ages can be considered as the same trait. Therefore,

we might be able to fit accurately a CF to a given 
~
G , but for estimating 

~
G , in most

cases, we either used only part of the data, or we have to make some rigid

assumptions.

In the previous section we saw that a CF could be written in mixed model

terminology in terms of a random regression model. Following this through, we are

also able to estimate the CF coefficient directly from this random regression model,

e.g. by REML. This would avoid having to loose data, and we could make fully use of

the ordering of data with ages, and continuous covariances along the trajectory. Notice

that REML estimates from a RR model is different than estimation of CF functions as

described in the previous section (based on Meyer and Hill, 1997). The latter method
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used a transformed multiple trait model, and basically assumed all animals having

data on a limited number of ages.

Estimating CF coefficients for a random regression model could be by REML,

or alternatively by Gibbs sampling. The latter method  was used by Jamrozik et al.

(1997). REML estimation for RR-CF models has been implemented in the DFREML

package of Karin Meyer.

The ASREML package by Arthur Gilmour can also be used. The latter

package requires the user to define a regression model (e.g. a 3rd order polynomial

regression on ‘days in milk’, and random regression is achieved by defining a random

interaction term between animal and this polynomial regression term.

milk = herd poly(dim,2) !r poly(dim,3).animal

The first term is a polynomial regression of milk on days in milk (dim) as a fixed

effect. This basically fits an average lactation curve equal for all animals. The random

term indicates individual animal variation around this mean curve.

Alternatively, in ASREML, the regression coefficients (e.g. the Legendre regression

on age as in the ΦΦΦΦ matrix for each animal) can be constructed 'by hand' based on the

age of the measurement and provided in a data file. ASREML allows estimation of

variances and covariance components between these regression coefficients when they

are taken as random. This covariance matrix should be equal to the K-matrix.

Example of a RR analysis

We will consider here an example of CF parameter estimates from a random

regression model with REML for test day yields (van der Werf et al, 1998, JDS

81:3300). Estimates were obtained with the DFREML package, using from a ‘CC-RR

model ‘option. These estimates will be compared with CF parameter estimates from a

pre-estimated covariance matrix according to Kirkpatrick et al’s method. We will also

compare two different types of random regression models that can be applied to test

day yields in dairy. The first model is a regression on  Legendre polynomials, the other

is the regression model proposed for test day yields by Jamrozik et al. (1997).  In the

latter model, regression coefficients are based on fitting a lactation curve.
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Test day records were available from the period July 1986-July 1996 from all

production recorded herds in Australia. A data set was created by  milk production

records from 30 randomly selected herds in New South Wales, using only milk yield

data from Friesian cows in their first parity, and only records made before the 300th

day after calving. The data set contained 13,109 records from 1903 cows, and together

with pedigree a total of 3451 animals for analysis, with 460 sires having progeny with

records.

Covariance functions were estimated from this data set  as follows:

1) from a covariance matrix estimated from records in different lactation periods, and

2)  from a random regression model using all data.

To estimate variances and covariances for milk yield between different parts of

lactation, the lactation period (days 5-300) was divided in one period of 45 days and

five subsequent 50-days periods. For each cow, only the first record within each

period was  taken, so that cows could not have repeated records within periods.

Bivariate analyses were carried out for milk yield between each of the periods. The

model of analysis included a fixed effect of herd-test-day, a 2nd order fixed regression

on age of calving (days), a 4th order  fixed regression on days in milk, a random

additive genetic effect for each animal, and a random residual effect. Variance

components were estimated using Restricted Maximum Likelihood and an Average

Information algorithm (Johnson and Thompson, 1995). The genetic VCV matrix

between traits in six periods appeared to have negative eigenvalues. A positive

definite matrix G was obtained by setting negative eigenvalues to zero, and remaining

values were regressed  towards zero to maintain the original sum of eigenvalues

constant (Hayes and Hill, 1981). Details on data analysis for the six lactation periods
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are given in Table 4-1. Estimates of variance components and genetic and residual

correlations between yield in different periods are given in Table 4-2.

TABLE 4-1. Number of records, nr. of herd-test day effects, raw means and average days in milk
(dim) of data sets for six different lactation stages.

Lactation
period

5-50 51-100 101-150 151-200 201-250 251-300

# records 1715 1769 1691 1593 1403 1127
# htd 576 593 572 536 487 391
mean (kg) 18.44 17.50 15.96 15.03 14.16 13.34
mean dim 25 69 118 168 218 268

TABLE 4-2 Phenotypic variance (Vp), Additive genetic variance (Va), heritability percentage (h2),
residual variance (Ve), and genetic (above diagonal) and residual (below diagonal)
correlations for milk production in 6 different lactation periods

dim1 Vp  Va    h2     Ve correlationmatrix2

 25       8.20 2.76    34     5.39 -   0.93    0.89    0.84    0.73    0.73
 69       7.71    1.74    23     6.09 0.50    -     0.96    0.92    0.79    0.63
118      6.93    2.40    35     4.47 0.37    0.58     -    0.83    0.82    0.71
168      6.17    1.67    27     4.45 0.38    0.47    0.61    -    0.85    0.64
218      6.12    2.46    40     3.68 0.34    0.48    0.56    0.58    -   0.90
268      6.51    2.45    38     4.03 0.25    0.43    0.49    0.55    0.52    -
1 Average days in milk (dim) of records for that period
2   Genetic correlation above, residual correlation below diagonal

Variance-covariance matrices for additive genetic and residual effects were

subsequently used to fit covariance functions using  methods described by Kirkpatrick

et al (1990). The model was

~G =  ΦΦΦΦKaΦΦΦΦ+ ϑϑϑϑa ,

where 
~G  is the estimated genetic covariance matrix between 6 lactation periods,  ϑϑϑϑa

is a random error matrix of order 6. The residual VCV (E) was fitted as the sum of a

covariance function for permanent environment effects and  a constant measurement

error

E
^

= ΦΦΦΦKcΦΦΦΦ + InKe+ϑϑϑϑe,

where ϑe is a matrix with random estimation errors.
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The matrix ΦΦΦΦ contained age regression coefficients, based on the average days

in milk for each period (Table 1) and Legendre polynomial coefficients. Alternatively,

Φ was constructed based on the model described by Jamrozik et al. (1997), i.e. Φ was

a 6 by 5 matrix with rows referring to lactation stage ai and columns being 1, c, c2,

ln(1/c) and [ln(1/c)]2, where c= ai/305 .

Generalized Least Squares estimates for the coefficients of the covariance

function were obtained from a linear model following Kirkpatrick et al  (1990,

Appendix 1). A variance-covariance matrix for the estimated (co-)variance

components  was constructed following Appendix 2 of Kirkpatrick et al. (1990), and

assuming data  had been estimated from a half-sib analysis with 400 sires, each having

4 progeny. This method gave (co-)variances for additive genetic variance component

estimates which were reasonably close (within a 30% range) of the approximated

sampling variances given by DFREML.

Goodness of fit of different models was tested using a χ2 - test for the

weighted residual sums of squares: wSSE g E g V g E g= − −−[ ~ ( )]' [ ~ ( )]1 , where ~g  is a

vector with n(n+1)/2 estimated (co-)variance components and E(g) is the expected

value based on the CF fitted (Kirkpatrick et al., 1990). In addition, the significance of

a model with more parameters (H1-model) over a simpler model (H0 model) was

tested   with an F1,dfe-test using the test statistic (SSEH0-SSEH1)/SSEH1, where dfe is

equal to the degrees of freedom for the residual sums of squares for the H0 model.

REML with a random regression model was used for the total data set. The

model included the same fixed effects as bivariate analysis, and  further, random

regression coefficients were included for additive genetic and for permanent

environmental effects , and a residual variance was assumed constant throughout
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lactation. Regression coefficients were constructed from a 2nd and 3rd  order Legendre

polynomials for days in milk, and from random regression coefficients as described in

the model proposed by Jamrozik et  al (1997).

CF parameters estimated from 
~
G and

~
E were compared with variance

components for the random regression model. Goodness of fit for the CF estimated

from the random regression models was tested against 
~
G and

~
E . Similarly, the log

likelihood of the full data conditional on the CF parameters estimated from
~
G and

~
E

was compared with the maximum likelihood of the same random regression model.

Results from this analysis showed that fitting a CF model for G
^

 based on the

Jamrozik et al’s lactation curve  model gave a slightly better fit of  G
^

 than regression

based on an equal amount of regression variables from Legendre polynomials (i.e.

with k-=4). The weighted sums of squares of residuals for the two models were 7.14

and 7.84, respectively. In the CF coefficient matrix for Jamrozik et al’s model, only 3

eigenvalues were significantly different from zero.

Covariance function estimated from 
~
G , 

~
E  and 

~ ~ ~P G E= +  were compared with CF

estimated from the random regression model on the full data. We compared with

random regression models with a 2-order fit for additive genetic and permanent

environmental covariances, a 3-order fit for both random effects, and Jamrozik et al’s

model (a 5 order fit for the additive genetic effects and a constant for permanent

environmental effects). Temporary environmental effects were assumed constant in all

models. Table 4 shows test statistics for the estimated sets of parameters for the two

procedures

Estimated CF coefficients from the random regression models gave not as

good fits of pre-estimated covariance matrices as CF-parameters directly estimated
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from those matrices. Likewise, the log likelihood of  a model using REML estimates

for CF-coefficients were higher than CF estimates obtained in the two-step procedure.

This could be expected when comparing ‘best fitting’ estimates with those obtained

otherwise. However, regression parameters gave a particularly bad fit of the pre-

estimated additive genetic covariance matrix G
^

.
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TABLE 4-3. Sums of squares of  residuals in fitting genetic, environmental and phenotypic covariance

matrix (SSE_
~
G , SSSE_

~
E , SSE_ P

^

) and log likelihood value for full data set

given different sets of CF-parameters

SSE_ G
^

SSE_ E
^

  SSE_ P
^

Likelihood

LG2 2.34   4.51  3.13 -16709.41

LG3 1.89 3.32  1.92 -15853.41

LRS.  1.35  8.40  9.27 -

RR_LG2 48.74 7.08 33.45 -15547.82

RR_LG3 32.32 4.70 30.66 -15370.26

RR_LRS 21.66 108.6 131.23 -14918.48

LG2, LG3= Legendre polynomials, order 2 and 3, LRS= Jamrozik et al’s regression model, first three

lines show CF parameters estimated from pre-estimated covariance matrices using Kirkpatrick et al’s

method , RR_   refers to REML estimates from random regression model,

TABLE 4-4 Pre-estimated genetic covariance matrix (
~G ) and fitted matrices using CF coefficient

from REML in a random regression model, and from fitting 
~G

(variances on diagonal, correlations on off-diagonals)

 ~G  :  pre-estimated covariance matrix
2.7576    0.9250    0.8940    0.8419    0.7318    0.7290

    0.9250    1.7367    0.9634    0.9240    0.7905    0.6268
    0.8940    0.9634    2.4029    0.8250    0.8160    0.7074
    0.8419    0.9240    0.8250    1.6709    0.8512    0.6395
    0.7318    0.7905    0.8160    0.8512    2.4600    0.8951
    0.7290    0.6268    0.7074    0.6395    0.8951    2.4519

G estimated from CF from REML random regression model
5.4653    0.9522    0.7786    0.4982    0.1795   -0.0759

    0.9522    3.7534    0.9306    0.7198    0.4041    0.0877
    0.7786    0.9306    2.8598    0.9181    0.6745    0.3501
    0.4982    0.7198    0.9181    2.5851    0.9051    0.6600
    0.1795    0.4041    0.6745    0.9051    2.9545    0.9128
   - 0.0759    0.0877    0.3501    0.6600    0.9128    4.4768

G estimated from 
~
G  (3-order fit Legendre polynomials

2.4413    0.9643    0.8962    0.8528    0.8110    0.6856
    0.9643    2.0702    0.9799    0.9444    0.8612    0.6526
    0.8962    0.9799    1.8981    0.9843    0.8955    0.6553
    0.8528    0.9444    0.9843    1.7387    0.9528    0.7483
    0.8110    0.8612    0.8955    0.9528    1.7097    0.9121
    0.6856    0.6526    0.6553    0.7483    0.9121    2.3127

Figure 4-1 shows that for a 3 order fit genetic variances estimated from

random regression were higher at the periphery of the trajectory. Also covariances
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between ages most far apart were more extreme in the CF estimated from RR model.

Genetic correlation between the first and the last month of lactation was near zero

with the CF from the RR model, whereas it was near 0.7 in a bivariate analysis (Table

4-4).

From this comparison, it appears that estimating CF parameters from a random

regression model may not always give reliable parameters. In our example,

particularly genetic variance was overpredicted near the edges. From this analysis it is

hard to generalize this as being a  property of  random regression models, and more

work is needed in this area. For example, the REML program may have had problems

in finding a global maximum. The problem appeared to be worse for models with

regression on Legendre polynomials, and it is known that polynomial regression can

behave suboptimal near the edges (K. Meyer, pers. comm.). Figure 4-2 shows that

Jamrozik et al’s lactation curve model did not have this problem to the same extent.

For this reason, polynomial regression may be less  suitable for estimating CF .

However, also the latter model deviated more from 
~G  than expected and correlation

between first and last lactation periods were also near zero.

An argument against estimating CF parameters from RR models is that

estimation of the CF for one random effect depends on the order of fit for other

random effects, since the likelihood of the data is maximized given one particular

model for all random effects. For example, Jamrozik et al’s model estimated with the

RR procedure was fitted with a constant permanent environmental variance (order of

fit=1), whereas fitting 
~
G  with Kirkpatrick et al’s method basically assumed a high

dimensional fit (order = 6) for the environmental variances.

The conclusion is that although it is theoretically most appealing to

estimate CF parameters directly from a random regression model, this method may not

always give the most reliable estimates. More work needs to be done in this area,

including testing of other estimation methods (e.g. Gibbs sampling), other regression
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techniques (e.g. the use of splines), and other statistical models (e.g. varying the

temporary environmental variance along the trajectory). The method of Kirkpatrick et

al involves much less computational effort than fitting a random regression model

(unless 
~
G and 

~
P  are estimated between many ages), particularly when comparing

several order’s of fit for several random effects. Furthermore, it is easier to test more

complex covariance functions, like Veerkamp et al (1997) who tested a two

dimensional CF with the variance being a function of lactation stage as well as from

production level (see Chapter 5).
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Figure 4-1  Phenotypic, additive genetic and permanent environmental variances over lactation

estimated by covariance function (3-order Legendre polynomials) from multiple trait variance-

covariance matrices (CF) and by REML directly from data (RR)
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polynomials) from multiple trait variance-covariance matrices (Va-CF) and by REML directly

from data (Va-RR) and with the Jamrozik et al’s model (Va-RRLrs)
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6 Analyzing patterns of variation

Kirkpatrick and Heckman (1989) and Kirkpatrick et al (1990) show that covariance

functions can be used to analyze ‘patterns of inheritance’ in the covariance matrix ~
G .

For this purpose they determined eigenvalues and eigenfunctions from the coefficient

matrix for a given covariance function.

In a way, this is a similar approach as principal component analysis. If we

consider the covariance structure among 25 type traits in dairy, we might be able to

say that one main eigenvalue is due to some kind of linear combination of all type

traits related to udder scores. We would find this if this is a group of traits highly

correlated among each other, but not highly correlated to other traits. In the canonical

decomposition of covariance functions, determining such major components has an

special meaning, because it shows at which ages the observed variables are correlated,

and where they are not. In other words, it shows how independent variables act on the

trait along the trajectory.  For example we may determine that a first major eigenvalue

is related to a linear combination of test days in the first part of lactation (the

combination being defined by the eigenvector attached to that eigenvalue), whereas

another eigenvalue may be a combination of test day variables in later lactation. If this

was found for the genetic covariance matrix, the interpretation could be that two main

and independent  components could be distinguished in milk  production, each acting

on different parts of lactation, and those two components could be related to different

genes, possible on two different parts of the genome. The last would be of interest in

QTL analysis: one canonical variable could be linked to one marker, whereas another

is linked to another marker.

In contrast to multiple traits, the variables in repeated measurement can be

ordered along a trajectory. In that case, The transformation of variables described by

each eigenvector can be written as a continuous function of age. This is indicated as

eigenfunction (Kirkpatrick and Heckman, 1989). Eigenfunctions are calculated as

follows:

Consider the covariance function
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!G = ΦΦΦΦKΦΦΦΦ'

for a set of ages in age vector a, where the age coefficients are build in the regression

coefficient in ΦΦΦΦ. The matrix K is decomposed into eigenvalues D and eigenvectors E

as  K =EDE’, and we can then evaluate eigenfunctions for a give set of ages as ΦΦΦΦE

Taking the earlier example:

    !
. .

. . .

. . .

K =
−
−

− −

1348 665 1117

665 24 3 14 0

1117 14 0 14 5

    D =
1361 0 0

0 24 5 0

0 0 15

.

.

    E =
− −
−

−

0 995 0 079 0 056

0 050 0 915 0 400

0 083 0 395 0 915

. . .

. . .

. . .

and     ΦE =
− −
− −
−

0511 1802 0 997

0 769 0 256 0 684

0 634 0 441 1976

. . .

. . .

. . .

The columns of ΦΦΦΦE represent eigenfunctions, and each has an eigenvalue attached to

it. The rows refer to each of the ages, i.e. -1, 0 and 1 for row 1,2 and 3, respectively.

To obtain the eigenfunction coefficients, we have to use ΛΛΛΛE which is:

    ΛE =
− −
−

−

0 769 0 256 0 684

0 062 1121 0 489

01971 0 937 2170

. . .

. . .

. . .

And the first eigenfunction could be written as
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ψ1

20 769 0 062 0197( ) . . .x x x= − − +

Figure 4 shows the three eigenfunction plotted for the example of Kirkpatrick et al.

(1990). It should be noticed that the sign a the evaluated values between

eigenfunctions is irrelevant (for example, the firs eigenfunction has only positive

values in the Genetics paper of  Kirkpatrick et al. What matter is how the values of the

eigenfunctions change over the trajectory. In this example, the main eigenfunction is

almost constant for all ages. Since it has the largest eigenvalues attached to it, the

interpretation is that the major part of the genetic variance is explained by a factor that

is constant for all ages. Selection on this factor will increase weight for all ages. Since

this eigenvalue is very dominant, selection for weight at any age will improve weight

on all ages. In multiple trait terms, weight at different ages is highly correlated (from

the G used in the example, we can calculate correlations of 0.88 between weight at 2

and 3 weeks; o.86 between weight at  2 and 4 weeks ,and 0.99 between weight at 3

and 4 weeks.
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Figure 4 Eigenfunctions for the example of Kirkpatrick et al (1990)

A very interesting pattern is shown by the second eigenfunction. Selection on this

variable decreases weight at early age and increases weight at later ages. Selection on

the variable represented by this eigenfunction could therefore be used to change the

growth curve, e.g. select for lower weight at start and higher weight at the end of a

trajectory considered. In this example, the 2nd and 3rd eigenvalues are not very large
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(relative the first eigenvalue, and the possibilities to change the growth curve may be

limited.

Notice that we could have drawn the same conclusion from inspection of the

high genetic correlations represented in G. However, with considering more ages

along the trajectory would make such interpretations more difficult. We could also

have calculated eigenvalues of G directly, being 1714, 82 and 6, i.e. not a very

different pattern than the eigenvalues from K.  However, it is important to see that the

ages used in this example were symmetrically chosen. In multiple trait evaluation this

is not necessarily the case. Therefore, the most important difference between

eigenvalue decomposition of a multivariate covariance matrix and a eigenvalue

decomposition of a covariance function is that the last takes the ordering measurement

along a trajectory into account.

In the previous section, we tested the goodness of fit of reduced models, i.e.

models with k<t. In principle, the number of eigenvalues is also a measure for how

many variables are needed to span the total variation. Kirkpatrick et al (1990) describe

a procedure to test the significance of eigenvalues. If we write the CF coefficient

matrix as  ! 'K EDE= , we can create an approximate coefficient matrix by setting q

eigenvalues in D to zero, to obtain D*. The accuracy of the approximation depends on

the size of the eigenvalues and can be tested by the following χ2 test statistic with

q(q+1)/2 degrees of freedom:

χ 2 1= − −−( ! *)' ! ( ! *)g g V g g

where !g and g * are estimated from covariance functions using !K and

K ED E* * '= , respectively. The test statistic for our example is 69.2, 39.3, and 0.65

for  d1= 1361, d2= 24.5, and d3= 1.5, respectively. This indicates that the last

eigenvalue is not significant. Combining this with the  earlier finding that all three

polynomials are needed in this covariance function, we can conclude that the CF can

be described with two variables, each being a linear combination of the first three

polynomials.



46

7 Summarizing Discussion

We have presented various ways to analyze repeated measurements where interest is

in a model that uses correct variance covariance structures between the observations,

and that can make use and enable inferences on the gradual change of the

measurements over time. A random regression model seems the most appropriate for

modeling such data, and such models more or less implicitly use covariance functions.

Canonical transformation can be used to simplify large scale genetic evaluations, and

to reduce the rank of the covariance matrices used for each random effect. Eigenvalue

decomposition possibly reveal patterns in the covariance structure, and might be of

help to implement selection rules that aim for a change of the curves. Such analysis

might also be useful when detecting more specifically the mode of action of

Quantitative Trait Loci in specific parts of the genome, determined by genetic

markers, or to identify parts of genetic variation that are specifically correlated with

third traits of interest. Such analysis has similarities with principal component

analysis, but the extra dimension is added by considering principal components as a

function of time (eigenfunctions).

In the previous chapters the use of covariance functions was discussed in a

general sense, and with particular emphasis on application to analysis of test day

models. Another area where covariance functions and random regression models can

be applied to is the analysis of weight and growth data, feed intake, etc. Trait

measurements can e modeled as a function of time,  but also as a function of a

continuous environmental variable (herd production level, ambient temperature, etc).

For example genetic variation in susceptibility to heat can be modeled by regression

production on a heat stress index (a function of temperature and humidity). Variation

in susceptibility to disease can be measures as a regression of parasite infection level

on an environmental variable that measures environmental risk to disease.

Many studies have considered genetic aspects of growth by first estimating parameters

for growth curves, and subsequently estimating variance components for the growth

curve parameters. Such analysis could be improved upon by the use of random

regression models. Main differences between these approaches is that the first (two-
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step) approach maybe less able to estimate curves for animals with missing data, and

more general, does not use information from relatives. The values of such information

is well known to animal breeders, not only in gaining accuracy, but also to account for

directional selection. Varona et al (1997) presented random regression models in a

Bayesian manner, and give a good discussion on the merits of such models over the

two-step procedure with first estimating curve parameters and subsequently estimating

their variance components.

It is often of interest not only to analyze the behavior of a repeatedly measured

trait over time as such, but also to study correlations of certain curve parameters with

‘third’ traits. An example is to study growth curves by random regression models for

weight data, and to correlate CF parameters with meat quality traits such as fat and

muscle. Animals that tend to grow faster in the last phase before slaughter may have

also a different pattern for onset of body fat, different mature weight and a different

maturity rate (age at first calving!). Multivariate random regression analyses are

required here. Such analyses will form a computational challenge (with a need to

explore robustness of the estimation) but will be the basis of a very interesting

biological debate on how to improve such dynamic traits of growth and development

such that animals will have improved prformance in the prevailing production system.

Remaining points of debate on the use of random regression models, and

further research will be predominantly focused on the specific regression models used

for fitting covariance structures. Two approaches are to choose a regression equation

that was developed to model the mean curve (growth curve, lactation cure) and take

regression coefficients random . The other approach is to fit the covariance structure

by polynomial regression, or alternatively by splines. Fitting a curve with many

parameters will generally give an accurate fit of the covariance structure. However,

there is often an interest in fewer numbers of parameters. Models based on ‘biological

curves’ may appeal because certain parameters have a ‘biological meaning’. However,

the biological meaning from polynomials can be determined by plotting

eigenfunctions from polynomials. Lindsey (1993) argues that it is generally preferable

to choose a model that describes the mechanism that generates the data. Herewith, we

can refer to modeling certain residual covariance matrices, which may have

autocorrelation structures. Lindsey also discusses growth  curves  and refer to
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Sandland and McGilchrist (1979)  who provide a number of reasons why polynomials

are unattractive for growth models:

1)  growth processes can undergo changes of phase which cannot be accommodated

by polynomials

2)   the stochastic structure of the model will be distorted if the polynomial is

inappropriate

3)   polynomials cannot easily represent asymptotic behavior of a growth curve.

Anderson and Pedersen (1996) argue that many growth curves are non-linear

functions (e.g. Gompertz, logistic regression) for which is more difficult to introduce

random effects. They also argue that average curves of the exponential form (e.g. y= a

exp(-bx-c/x) are not of the same form if the parameters a, b and c vary from animal to

animal.  Sometimes, transformations to linear models are possible, although

transformations to stabilize between animal variation may destabilize within animal

variation (see Anderson and Pedersen (1997) for an example).

The need to avoid polynomials depends on the trajectory considered. In certain

instances, it may be more important to accurately account for asymptotes, in which

case polynomials are less appropriate. The use of splines is often advocated as being a

robust technique in regression analysis and should probably be considered as very

useful in random regression analysis as well. Also, the behavior of different random

regression models in relation to data structure needs more study. For some traits, there

may be many more data point at the younger ages, and there may be sequential

selection. In general, estimating covariance matrices between certain ages of the

trajectory can be useful as a reference for checking parameter estimates for covariance

functions, as was also demonstrated in these notes.

In general, arguments for fitting mean growth curves for populations, or

subpopulations, can also be used for random regression models. The same holds true

for the number of parameters that should be used to fit regression models. However, a

practical argument for analyzing (large size) animal breeding data is that more random

regression coefficients rapidly increase computing demands, and that for predicting

breeding values, accurately fitting first moments (means) is usually more important

than accurately fitting second moments (variances)
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