
  Multiple Trait Selection 
 

Armidale Animal Breeding Summer Course  2005 25 

2 Genetic change of multiple traits 
Julius van der Werf 

 
In the previous lecture we discussed breeding objectives and the derivation of the relative economic 
value of traits. In this lecture we consider the genetic change of multiple traits in more detail. 
 

- How to derive selection criteria for multiple traits 
- How to predict multiple trait selection response 
- How to manipulate multiple trait selection response 
- Considerations in order to make optimal genetic change 

 
 

2.1 Introduction 
 
Improvement of efficiency and quality of animal production can be achieved by improving several 
characteristics simultaneously. For example, we may want to breed the ideal dairy cow that 
produces not only a lot of milk, but also with a high percentage of components like fat and 
especially protein. In addition, such high producing animals should preferably have no fertility 
problems, not suffer from diseases, and have a high roughage intake capacity. We would like pigs 
that grow fast but do not become too fat, with no leg problems and producing many piglets per litter. 
In beef cattle we want fast growing animals, but we don’t want a too large mature size. We would 
like merino sheep with very fine wool, yet yielding a lot of it.  
 
Questions to be addressed: 
 

- Is it possible to change animals in any direction we want, and, can different characters be 
improved simultaneously?  

- How does change for each trait depend on economic weights, on correlations and 
heritabilities 

- how can we predict response to multiple trait selection? 
- how can we manipulate change in the construction of selection criteria (indexes)? 
- What is the most desirable change and how can we achieve this change? 

  
 
Genetic change takes place through selection. Selection criteria can be derived from information on 
animals’ phenotypes and their relatives. Phenotypic information is generally based on objective 
measurement of animals’ characteristics, but it can also include subjective scoring. Even genotype  
information about DNA-markers can be put in this category as it contributes to predicting an 
animals breeding value. Figure 2.1  puts this all in perspective. Information on phenotypes combined 
with pedigree information allows estimation of BLUP EBV on all animals for all traits. Breeding 
values can be combined in selection criteria (often a ‘selection index’) by using the economic 
weights. Then selection decisions are based on selection criteria, but not necessarily by truncation 
selection on index values, as we want to keep some genetic diversity. That’s why pedigree 
information comes in again. 
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Multiple trait selection index theory deals with combining information on phenotypes and pedigree 
as well as economic weights into one index value, which is the best estimate of the aggregate 
genotype. However, it is also convenient to see this as a two step process, where first we derive 
and EBV for each trait separately, but using information on all traits. Subsequently these multi trait 
EBV are combined into an index. It will be shown that the weights in that case are simply the 
economic values as defined in the breeding objective. 
 

 
 
When explaining multiple trait selection to the industry, the Multi-trait EBV concept is much easier 
to grasp and relates to the general practice of genetic evaluation systems presenting EBVs for each 
trait. For example, an index might to select on body weight and feed intake might look like 
 
   Index = v1EBVBW + v2EBVFI  
 
However, with this approach it is more difficult to predict response, or even to see why certain traits 
would be more difficult to change. A trait such as feed intake is difficult to measure. It might have a 
high economic value, but with a lack of phenotypic information, it would be changed only slowly. 
The fact is that such traits will have lowly accurate EBV, and therefore, the variation in these EBV is 
small. Such traits will therefore contribute less to the overall index ranking of individuals. A section 
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on ‘properties of EBV’ is presented to make you more familiar with some of those basic concepts 
about EBV. 

 
The selection index approach is useful for more theoretical analyses. It allows predicting overall 
selection response as well as responses for each of the individual traits. In this Chapter we will 
therefore in some detail go through selection index theory. 
 
When genetic change is (to be) achieved for a certain trait, it is important to consider possible 
genetic changes for other traits since traits can be phenotypically or genetically correlated. Some of 
these changes may be desired. For example, dairy cows selected for milk production capacity are 
able to eat more roughage. Pigs that grow faster have also a better feed conversion. However, other 
changes may be undesirable, e.g. fast growing pigs have smaller litter sizes, cows with high milk 
yield have lower fat content and Merino’s with more wool will have higher fibre diameter. Hence, 
traits correlations can be favourable or unfavourable. We will see that situations with unfavourable 
correlations are difficult to deal with because 1) it harder to make genetic change to each of the 
traits and 2) the optimal genetic change is much more sensitive to economic weights that are used. 
These issues in multiple trait selection will be discussed in this chapter. 
  
From an economic viewpoint it is important to predict how correlated characters change when 
animals are selected for a certain characteristic. Also from a more biological viewpoint it is 
important to know how animals change after selection. Did they ‘overall’ become more efficient? 
How did the higher production change the animals’ physiology? Is the higher production also more 
efficient from a biological point of view. Are there any side effects from long selection for a certain 
selection index? Optimal selection strategies need to deal with a reality that often involves non-
linear profit functions. Discussion about optimal change often results in a ‘desired gains approach’ 
where not (only) the economic weight of traits, but also the resulting response determines the most 
desirable selection outcome. Such approaches and debates will conclude this chapter and be dealt 
with further in the next. 
 
  
2.2 Properties of Estimating Breeding Values  
 
Accuracy of EBV 
 
The accuracy is defined as the correlation between true and estimated breeding value. The symbol 
for accuracy is  rIA 
 
Since the EBV is often indicated as an Index (I), - the true breeding value has symbol A and r is a common symbol for 
correlation. 
 
The accuracy is between 0 and 1 (or 0% and 100%). In the extreme case of no information, the 
accuracy of a breeding value is 0, and with a very large amount of information, the accuracy will 
approach 1. The following Table shows examples of accuracy. It illustrates that 
 

• Accuracy is higher when more information is used, e.g. on relatives and progeny 
• The accuracy is higher for traits with a higher heritability, but the effect of heritability 

becomes smaller with more information used 
• The accuracy of parent average depends on the parent EBV accuracy and not on heritability 

(but note that with low heritability it will be harder for a parent to achieve a certain accuracy) 
• The accuracy of information from collateral relatives (i.e. siblings) is limited to 0.5 for HS and 

0.71 for FS. A progeny test is required to obtain higher accuracies 
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Table 2.1. Accuracies of EBV depending on source of information used 
Information used                  h2 = 0.10        h2 = 0.30 
 
Sire EBV (rIA=0.5)    0.25   0.25 
Sire EBV (rIA=0.9)    0.45   0.45 
Sire EBV (rIA=0.5) + Dam EBV (rIA=0.5) 0.35   0.35 
Sire EBV (rIA=0.9) + Dam EBV (rIA=0.5) 0.51   0.51 
 
Own Performance only   0.32   0.55 
OP+ Sire EBV (rIA=0.9)+ Dam EBV (rIA=0.5) 0.57   0.66 
 
Mean of 5 full sibs    0.32   0.48 
Mean of 10 half sibs    0.23   0.33 
OP + 5 FS + 10 HS    0.43   0.65 
 
Mean of 1000 half sibs   0.49   0.50 
Mean of 1000 full sibs   0.70   0.71 
Mean of 20 progeny    0.58   0.79 
Mean of 100 progeny   0.85   0.94 
Mean of 1000 progeny   0.98   0.99 

 
Accuracies can be derived using selection index theory. Here we only give a simple example for the derivation of 
accuracy of an EBV based own performance 
 
  EBV = I = h²P     giving  rIA =  rh2P,A 
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V h P VA
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If the heritability is higher, EBV’s based on own performance records become more accurate.  

 
 
Variance among EBV 

 
The variance among EBVs is of practical value because  

• it can give us an indication of the difference in EBV between the highest and lowest animals 
• It is used to predict selection differential, e.g. the average EBV of the best 10% of animals 
• An traits will be more impacted by selection on an multiple trait index if that index trait has 

more variation. 
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Example: Assume EBV’s of three rams 
: 
case A    carcass weight (kg)  IMF (%) 
            Ram A  +10   +2 

Ram B  +5   -1 
Ram C  -2   -4 

    
Case B     carcass weight (kg)  IMF (%) 
            Ram A   +10   +0.5 

Ram B  +5   -0.25 
Ram C  -2   -1 

 
 
 For a given set of economic weights, IMF will be less impacted by index selection in the 
 second case 
In general, the variation among EBV can be predicted from accuracy and genetic variance 
 
  Var(EBV) = rIA²VA   and  σEBV = rIA σA 

 
where rIA is the accuracy of the EBV. Hence, the variance of the EBV’s is equal to the accuracy-
squared multiplied by the variance of the true breeding values (additive genetic variance).  
 
It is useful to consider the following 
 
   If rIA = 0 then var(EBV) = 0 :  all EBVs have the same value (=0) 
 
   If rIA = 1 then var(EBV) = 1 :  the variance of EBV is equal to the 
        variance of breeding values. All EBV 
        should be equal to the true BV with 
        this accuracy, and there is no 
         prediction error. 
 
 Var(EBV) is generally smaller than VA  
 
 Var(EBV) becomes larger when accuracy is higher. i.e. the EBV of older 
      animals will be more apart than those 
      of you animals. The same holds for    
  EBV of intensely measured nucleus 
      animals compared to the EBV of base    
  animals that have less information and     
 therefore EBVs closer to each other. 
 
 

Example:  Single trait/own performance case: 
 

Var(EBV)= Var(h²P) = h
4
VP= h²VA 
  
[ ... as  h² = VA / VP   VP= VA/h² ] 
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Response to Selection (single trait EBV) 
 
The expected value of a selected group of animals - when selecting on EBV: 
 
Expected average EBV:  i.σEBV 
 
Expected average true BV i.σEBV = i.rIA.σA 
 
    Because the expected value of an EBV is 
     equal to the true BV, see Fig. 2.2. 
 
The expected breeding value of a selected group is equal to selection response. 
 
Note that selection response depends directly (linearly) on accuracy 
 
The response is equal to the selection intensity multiplied by the SD of the EBV. 
  
 R =   i.σEBV 

 
 
More generally: 
 

Response =  i   rIA   σA 

 
      Intensity              *            Accuracy               *      Genetic SD 

 
Often there is more information available on the selection candidates of one sex, and the accuracy 
of EBV’s may differ between sexes. Also, the selection intensity will differ. Furthermore, we are 
interested in a response per year rather than per generation. A more appropriate formula to predict 
selection response is therefore:  
 

  
fm
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+
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Note that with a lot of information on each animal, σEBV increases and so response increases. In 
other words, the response to selection is directly linked to the accuracy of EBV. It makes sense 
therefore, to increase the accuracy of EBV by including relatives’ information. This is particularly 
important if we select on traits with low heritability, since selection on own phenotype only (mass 
selection) is not very accurate in that case. Also, the use of family information can be very useful for 
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traits which can be measured on one sex only, or they are measured very late in (or even after!) life 
(e.g. longevity, carcass traits). 
 
 
 
Predicted progeny performance based on parental EBV 
 
Expected breeding value of offspring: EBVoffspring = ½EBVsire + ½EBVdam 

 

Note that P̂ and  Ĝ are equal to EBVoffspring , as progeny dominance deviation and 
environmental deviation are unknown and have 'expectation' zero.  

 
Sometimes it is stated that the heritability of an EBV is equal to 1.  
This depends on the definition of heritability. The relevant definition in the  
context of selection response is: 
 
 "Proportion of parental superiority (in EBV) transmitted to progeny" 
 
This is equal to the regression of true breeding value on EBV (how much difference do we expect 
between progeny for a certain difference of EBV) 
 

bA,EBV =   
cov( , )

1
var( )

IA

IA

r VAA EBV
EBV r VA

= =  

  

A selected animal is expected to pass half of this EBV superiority on to its progeny 
independent of the accuracy of that EBV.  

 
Note that bA,EBV (is the slope) is the same for high accuracy (left graph) and low accuracy 
(right graph). The variance of inaccurate EBV’s is very low, and therefore the selection 
superiority based on inaccurate EBV’s will not be very high. 

 
An interesting problem is the following. Suppose that two bulls have the same EBV, however, bull A 
has an accuracy of 95% (based on a progeny test) whereas bull B has an accuracy of 50% (based 
on parent average). Which bull should be selected? 
 
Most people would vote for animal A. However, both animals have the same expected value for their 
progeny. The range around this expected value is higher for animal B. However, progeny have just 
as much reason to be better than their expected value than to be worse. Therefore, whether you 
choose A or B depends on your attitude towards risk. A breeder that is interested in breeding the 
very best bull might be more interested in animal B, as he has more chance that his best son will 
be high. A commercial producer might be more interested in reducing risk and go for animal A. 
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Table 2.2 Confidence interval of a son’s breeding value and progeny performance of two bulls with equal 
EBV(+4.5) and with different accuracy. 

   Son’s BV                Individual Progeny       Mean of 50 Prog 
 Acc.   LL UL       LL       UL  LL UL 

Bull A 0.50  -11 +15    273      332  294 311 
Bull B 0.95  - 8 +12    276      339  297 307 
LL, UL = lower/ upper limit of 95% confidence interval, σP = 10; σA = 5.7 
 
 
It might seem that EBV are not of much value, as the confidence intervals about any prediction 
based on it seems so large. However, you should be reminded that ultimately, selection response 
depends linearly on selection accuracy. The following table illustrates a small simulation, where 10 
bulls are ranked on their EBV based on parent average. Table 2.4 shows their actual realized 400-d 
weight as well as true BV and EBV based on own performance. For individual cases, there seem to 
be huge discrepancies.  However, when selection the top 50% (best 5), we see indeed that 
selection response depends on selection accuracy, but even inaccurate EBVs provide a worthwhile 
response (Table 2.4). 
 
Table 2.3. EBV based on parent average, realized phenotype, true breeding value and EBV based on own 

performance for 10 bulls for 400-d weight. 
 
 EBV_PA  Phenotype EBV_op  True BV 
 9.7  433  13  34.4 
 5.9  378  -8.7  1.9 
 4.4  423  9  12.2 
 4.2  391  -3.7  0.4 
 4  378  -8.6  -23.5 
 -3.1  395  -2  -6.6 
 -4.8  415  6  17 
 -8.8  345  -22.2  -22.9 
 -9  379  -8.4  21.3 
 -11.5  391  -3.5  1.4 
 
 
Table 2.4. Selection response based on EBV based on parent average (EBV_PA) , EBV based on own 

performance (EBV_OP) or true breeding value (TBV) for top 50% of 10 bulls for 400-d weight (σA = 
19; h2=0.4) 

 
 Selection on accuracy        predicted response1      realized response 
 
 EBV_PA  0.45  +  6.8   + 5 
 EBV_OP 0.63  +  9.5   + 11 
 TBV  1.00  + 15   + 17 
1 Response is calculated as the average TBV of the top 50% when ranking is based on each of the selection criteria. 
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2.3 Selection Index (single trait EBV) 
 
We can write the EBV as an index, weighing different types of information.  
 

EBV = Index = b1X + b2X2 +…… + bnXn 
 
where and b1, b2, …,bn are index weights and X1, X2,….Xn are phenotypic information sources. For 
example, Xi could refer to own performance, performance of the sire, or the mean performance of a 
number of siblings or progeny. P can also refer to an EBV, e.g. the EBV of the sire.  
  
There can be many different information sources, e.g. own performance,  (mean) performance of full sib(s), (mean) 
performance of half sib(s), performance of sire or dam,  (mean) performance of progeny. Even more distant relatives 
provide information (e.g. performance of an aunt), and in principle, different animals may often have different sets of 
information, and therefore different sets of weighting factors (remember that the weight for a particular information 
source depends on all other sources). In practice, this would be quite cumbersome to compute, and distant relatives 
are often ignored in selection index. In fact, selection index weights generally don’t have to be calculated since they are 
automatically derived in the BLUP procedure for estimating breeding values (which we will see later on). Deriving 
selection index weights has therefore become more a theoretical tool to determine relative importance of different 
information sources, and accuracy of EBV, rather than a practical tool to obtain EBV’s (indexes) of actual animals. 
 
The optimal weights in the index to combine information from different sources are obtained by 
multiple regression: each weight indicates what proportion of variation in information sources 
predicts breeding value.  
  
Working out the weights in a selection index requires quantitative genetic theory and some algebra, 
which can in fact become quite tedious. 
 
Generally, regression of y on x is worked out as  
 
   bxy = cov(x,y)/var(x) 
 
In our case we regress breeding value (A) on phenotypic information  
 
   bx,A =  cov(Xi,A)/var(Xi) 
 
Therefore we need   

§ the covariance of each information source with the breeding value: cov(Xi, 
A)  

§  
§ the variance of each information source: var(Xi)   

but also 
§ the covariance between these information sources; cov(Xi, Xj) 

 
because the information sources may not be independent. We have to account for the relationship 
between phenotypic sources, otherwise we tend to ‘double count’ the same information. Therefore, 
when an EBV is predicted from more than one information source, the regression coefficients are 
predicted from multiple regression and we need matrices to work this out.  
 
Matrices denoting variances and covariances are used to calculate selection index weights. The 
index weights are written in a vector. The index is a scalar value, being a product of two vectors:  
 the vector b containing index weights: b’ = [b1, b2,….bn]  
 and vector X containing information sources: X’ = [X1, X2,..Xn] 
 
   EBV = I   = b1X + b2X2 +…… + bnXn  
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     = b’X 
 
The multiple regression coefficients are calculated by regression 
 

( , )/var( )b Cov X A X=  

 

GPb 1−=  
 
This is the basic formula for (single trait) selection index.  
 

• matrix P = var(X) is a matrix denoting the variance (and covariances) of information sources  
(not to be  confused with the symbol P that we used for an individual observation) 

 
• matrix G = cov(X,A) is a vector denoting the covariance between each information source and 

the breeding value (not to be confused with the symbol G that we used for genetic value) 
 
The accuracy of the Index (i.e. of the EBV) is calculated as the correlation between EBV and A: 
 
 rIA = cov(I,A) / sqrt[var(I),var(A)]  
 
  cov(I,A) = cov(b’X, A) = b’cov(X,A) = b’.G 
 
  var(I) = var(b’X) = b’ var(X)b = b’Pb 
 
  Note that since b = P-1G; Pb = G and therefore 
  b’G = b’Pb, in other words, the covariance between I and A is    
  equal to the variance of I: cov(I,A) = var(I) 
 
hence: rIA  = cov(I,A) / sqrt[var(I),var(A)] 
 
  = var(I) / sqrt[var(I),var(A)]  
 
  = sqrt(var(I)) / sqrt(var(A)) 
 
  = σI /σA       
 
i.e. the accuracy is calculated as the SD of the index divided by the genetic SD 
This is a proof of what we had before: var(EBV) = σEBV = rIA.σA 

 

Summarizing again the main steps of single trait selection index: 
 
 Set up variance-covariance matrices P and G 
 
 Calculate Weights: b = P-1G 
 
 Variance of index Var(I) = σ2

I = b’Pb 
 
 And accuracy   rIA = σI /σA 
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The main challenge of selection index theory is to work out P and G matrices. Quantitative 
Genetics theory is needed here and some basic rules will follow. Note that we will now use the term 
σ2 for variance, i.e. σ2

P rather than VP and σ2
A rather than VA 

 
Summarizing the rules for setting up selection index matrices (single trait): 
 
For the P-matrix:  
 
Var( iX ) = σ2

P  

   for the variance of any single measurement 
 

Var( iX ) =  r.σ2
P + (1-r)/n.σ

2
P  

   for the variance of a mean of n records 
where r is the intra-class correlation between the measurements in the 
group, e.g. r = repeatability for the mean of repeated measurements on the 
same animal, and r = ¼ h2 for a half sib or progeny mean 
 

Cov( iX , jX ) = aij.σ
2
A  

for the covariance between two single measurements on 2 different 
individuals, aij is the additive genetic relationship between these individuals. 
In some cases the individuals could share a common environment, in 
which case we add a term c2.σ2

P, where c2 is the proportion of variation due 
to common environment. 

 

 Cov( iX , jX )= aij.σ
2
A  

for the covariance between a single measurements and the mean of 
measurements, aij is the additive genetic relationship between the one 
individual and each of the members that make up the mean.  
 

In working out selection index equations it is convenient to take a mean of a group of individuals, 
which is allowed if all members of that group have the same relationship with each other, as well as 
the same relationship with the animal we calculate an EBV for. Hence, the group needs to be 
‘homogeneous’. 

 
And for the G-vector 
 
Cov( iX , A ) = aij.σ

2
A  

for the covariance between a single measurements and the breeding value 
of the EBV-animal. 

 
 Cov( iX , A )= aij.σ

2
A  

for the covariance between a a mean of measurements and the breeding 
value of the EBV-animal, aij is the additive genetic relationship between the 
EBV-animal and each of the members that make up the mean.  
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Selection Index Examples (single trait) 
 
Example 1: 
 
Information sources: X1 = own performance 
   X2 = performance of sire   
 
• variance and covariance of information sources: 
 

  1 1 1 2

2 2 1 2

var( ) cov( , )
var

cov( , ) var( )
X X X X

P
X X X X

   
= =   

   
  

 
 
 
The individual elements of the matrices can be worked out using quantitative genetic theory: 
 
var(X1) =  σ2

P  is the phenotypic variance 
 
var(X2) =   σ2

P  is the phenotypic variance 
 
Cov(X1,X2)  =  Cov(A+E, As +Es)  
 
  = Cov(A, As) + cov(A,Es) + cov(E,As) +cov(E,Es) 
 
        = ½σ2

A+ 0 + 0 + 0. 
 
• covariance between information sources and the animal’s breeding value  
 

  1 1

2 2

cov( , )
cov( ,

cov( , )
X X A

A G
X X A

   
= =   

   
 

 
Cov(X1, A)  =  Cov(A+E, A) = Cov(A , A) +  cov(E,A)   =   σ2

A + 0   
 
Cov(X2, A)  =  Cov(As +Es , A) = Cov(As, A) + cov(Es,A) = ½σ2

A + 0 . 
 
 
such that index weights obtained by  regression = covariance/variance:  
    
      

1 12 2 2 2 21 1
1 2 21

2 2 2 2 21 1 1 1
2 2 2 2 2

1
1

P A A

A P A

b h h
P G

b h h
σ σ σ
σ σ σ

− −

−         
= = =        

        
 

 
We can now plug in any value of h2. Table 2.5 gives the index weights and the accuracy of the EBV 
for different values of heritability.  
 
It shows that 

• The weights generally increase for higher heritability,  
• The weight for the sire’s phenotype is relatively higher for lower heritability.  
• The increase of accuracy from using sire’s information is relatively larger for lower heritability. 

 
Table 2.5  Index weights for information on phenotype of an individual and its sire, accuracy of index 



  Multiple Trait Selection 
 

Armidale Animal Breeding Summer Course  2005 37 

(EBV) and increase in accuracy from using sire’s information in addition to own phenotype for 
different values of heritability 
 

Heritability b1 b2 Accuracy % Increase 
relative to using 

X1 only 

0.10 0.098 0.045 0.347 9.7 

0.30 0.284 0.107 0.581 6.1 

0.50 0.467 0.133 0.730 3.3 

 
 
Example 2: 
 
Information sources: X1 = own performance   
   X2 = mean performance of n full sibs    
 
• variance and covariance of information sources: 
 

  1 1 1 2

2 2 1 2

var( ) cov( , )
var

cov( , ) var( )
X X X X

P
X X X X

   
= =   

   
  

 
 
var(X1) =  σ2

P  is the phenotypic variance 
 
var(X2) =   rσ2

P + ((1-r)/n) σ2
P  where r = ½ h2 + c2   (c2 is proportion of variance due 

       to their common environment) 
 
Cov(X1,X2) = r  
 
• covariance between information sources and the animal’s breeding value  
 

  1 1

2 2

cov( , )
cov( ,

cov( , )
X X A

A G
X X A

   
= =   

   
 

 
Cov(X1, A)  =  σ2

A 
 
Cov(X2, A)  =  ½ σ2

A  
 
 
such that index weights obtained by  regression = covariance/variance:  
    
      

1 12 2 2 2
1 1

2 2 2 21 1
2 2 2

1
[ (1 ) / ][ (1 ) / ]

P P A

P P A

b rr h
P G

b r r r nr r r n h
σ σ σ
σ σ σ

− −

−         
= = =        + −+ −        

 

 
We can plug in values of h2

 and c2. Table 2.6 gives the index weights and the accuracy of the EBV 
for different parameter values.  
 
Table 2.6. Index weights for information on own phenotype of and the mean of n full sibs, accuracy 
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of index (EBV) for different parameter values. 
 

h2          n=3               .        n=10           .   
c2 = 0 b1 b2 b1 b2 

0.10 0.09 0.12 0.08 0.32 
0.30 0.26 0.26 0.22 0.49 
0.50 0.43 0.29 0.38 0.48 
0.70 0.62 0.24 0.57 0.36 
h2          n=3               .        n=10           .   
c2 = .15 b1 b2 b1 b2 

0.10 0.09 0.07 0.08 0.13 
0.30 0.26 0.14 0.24 0.21 
0.50 0.46 0.11 0.43 0.17 
0.70 0.70 0.00 0.70 0.00 

 
Results from the table show that own performance is more important with high heritability and small 
family size whereas otherwise, family information is more important.  
Environmental covariances among full sibs decrease the value of their information, as full sib records 
are more alike, but not due to genetics.  
 
For a heritability above 0.7, and c2 = 0.15, the weight on the FS information become even negative, 
as the FS mean will serve as a correction for common environment 
 
Selection of animals based on a selection index (using relatives’ information, as we see later this is 
the same as BLUP) tends therefore to look more like mass selection for high heritable traits, and 
more like family selection for low heritable traits. The important consequence is that selection 
based on BLUP EBV leads to more inbreeding if heritabilities are low, since we tend to select more 
related animals as parents for the next generation.  
 
Example 3: Progeny Testing  
 
Using information from a group of progeny is a special case because it is potentially the most 
accurate way to determine an animals’ EBV. We already know that the maximum accuracy 
attained by very many full sibs is 0.71 (which is √½, since full sibs have at most 50% of the 
differences in common with an individual). Similarly, the maximum accuracy of very many full sibs is 
0.5 (which is √¼). The only way to obtain an accuracy near 100% is to test progeny.  
 
The index weight for a progeny test is again found by regression: 
 

EBVsire = Index = b1P1    
  

P1 is the mean of n progeny 
b1 is the index weight 
 

 
More detail on the derivation of b1: 
 

b1 is the regression of Asire on the progeny mean.  
Each progeny’s performance can be written as 
 
  Pind. progeny = ½Asire + [other effects] 
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The other effects include the effect of dam, other genetic effects (due to Mendelian segregation and 
dominance) and environmental effects. The ‘other effects’ are different for each progeny of a sire, but 
their sire effects is common to all. 
The mean of  all progeny is 
 
  Pprogeny mean = ½Asire + [other effects]/n 
 
and the variance of the progeny mean is 
 
  1 1

4 4( ) /PM A P AV V V V n= + −  

 
and the covariance between the sire’s breeding value and the progeny mean is 
 

A2
1

sire2
1

siresire2
1

sire V)A,Acov()n/]tsothereffec[A,Acov( ==+  

 
Thus the regression coefficient to determine a sire’s EBV based on its progeny test is 
 

   
n/)V¼V(V¼

VA
V

)A,½A(Covb
ApA

2
1

PM
1 −+

==  

 

... times 
n

¼  VA
  top and bottom gives   b1 =   

an
n2
+

    where    
²h

²h4
a

−
=  

 
 

b1 depends on the number of progeny and the heritability:  

b1 =   
an

n2
+

    where    
²h

²h4
a

−
=  

 
note that   0 < b1 < 2.  

 
 
If a sire has a very large number of progeny who, on average perform 10 units better than the mean, 
we estimate the sire’s EBV as 2 times that deviation (EBV= +20). This makes sense, because we 
know that if a sire has an EBV of +20, we expect his progeny to receive half of that (with average 
dams). 
 
Since          EBVsires    = b1PPM    

 
and the expected performance of future progeny: E(P future progeny) = ½EBVsire 

 
we can predict the performance of future progeny directly from the current progeny mean: 

  E(P future progeny) =  ½ b1PPM  =  PMP
an

n
+

 

We could call the term  ½ b1 =
an

n
+

 = h2
PT  is the ‘heritability’ of the progeny test, it determines 

which part of differences in observed progeny means can be expected back in future progeny.  
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EXAMPLE -  Dairy cattle, mean annual lactation = 5000 Kg. 

h²=0.25 giving a=15.  A bull has 20 daughters with a mean first lactation yield of 5500 Kg. 
 
  1. What is the expected yield of subsequent daughters (True Progeny Mean) ? 
 
 h²pt = n/(n+a) = 20/(20+15) = 0.57 

 
 Observed Progeny Mean (OPM) = +500 
 
 Estimate of sire effect on progeny mean = 0.57 x 500 = +286 Kg 
 
 Expected yield of future progeny = 5000 + 268 = 5286 Kg. 
 
  2. What is the estimate of the sire's breeding value ? 
 
 bBV,OPM x OPM = 2n/(n+a) x +500 = +572 Kg  (which is twice 286 Kg) 

 

 
The accuracy of the progeny test 
 
Like in mass selection, the accuracy rIA  is also the square root of a “heritability” - the heritability of 
the progeny test [h²pt = n/(n+a)].  

i.e.   rIA  = 
n

n + a
      

 
 
This simple formula allows you to determine the accuracy, for a given progeny test based on n 
progeny, for a trait with heritability h2 (where a = (4-h2)/h2). 

 
Example: Accuracy of progeny test 

  
  Nr of progeny     
 
 h2  5      25        50  100  
 0.1  .34     .63       .75  .85  
 0.3  .54     .82       .90  .94  
 0.5  .65     .88       .99  .995  
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2.4 Multiple trait selection 
 
 
Correlated response to selection 
 
Multiple Trait Selection refers to the situation where information from more than one trait is used for 
selection. When selecting, even if it is on only one characteristic, there is likely to be a response in 
other traits not considered. 
 
Direct response for trait 1 when selection is practised on trait 1:  
 

R  =  i.h1 σA1 
 
Correlated response for trait 2 when selection is practised on trait 1 is calculated by regression.  
 

CR  =  i.h1 rg σA2 
 
More detail (for reference) 
 
This can be derived two ways. We can determine the change of the genotypic mean of trait 2 of a 
selected group of animals that are phenotypically S (=i.σP ) units of trait 1 better than their 
population mean. We can also determine how many units the offspring will be better for trait 2 if 
they were genetically improved for trait 1 by R units. Approaches are equivalent, i.e. they lead to the 
same answer and in both cases we need a regression coefficient. We only work out the first 
approach.  
 
Animals  are selected with phenotypic selection superiority S1  = i.σp1 

We are interested in the genetic response of offspring for trait 2.  
We need the regression of phenotypic values on a parent for 1 (P1) on genetic values for offspring 
on 2 (O2).  This regression can be calculated as bP1O2;  
 
bpAoB      = cov(PP1, GO2 )/var(PP1) 

= cov(GP1 + EP1, GoB )/var(PP1) 
= cov(GP1 , GO2 )/var(Pp1) 

 
= ½ rgσA1 σA2/σ

2
P1 

 
and the correlated response in the progeny for trait 2. with phenotypic selection of both parents is 
therefore CR,  
 
CR= 2bP1O2*S1 = (rg. σA1 σA2 / σ

2
P1) .i.σP1  

 
= i. rg ‘σA1 σA2 / σP1 

  
= i.h1 rg σA2 
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Example: 
 
Data was measured on cattle for weight at weaning (Kg) and for feed intake (Kg/day).  
 
Assume  Genetic correlation:  0.50  

     Phenotypic correlation   0.20 
 

     Heritability of Weight  0.40  Phenotypic SD  17 
     Heritability Feed intake  0.25 Phenotypic SD   2.0 
 

 
Selection of parents is on individual phenotype and the selected fraction is 38% for both males and 
females (i =1.0). 
 
Selection on weight:   
  
 
              Direct Response in  Weight: R = i*h2*σp = 1.0*0.4*17 = 6.80 Kg.  
 
            Correlated Response in Feed Intake 
 

              CR  = i. rg hAσgB    = 1.0*0.5*√(.4)*√(0.25*2) = 0.32 Kg.  
 
 
Selection on Feed Intake: 
  
 

Direct Response in Feed Intake R= -1.0*.25*2.0= - 0.50 Kg   
 
Correlated Response in Weight 

 
                       CR= -1.0*0.5*√(0.25)*√(.4)* 17 = - 2.68 Kg.  

 
The results are summarized in the following table: 
 
 
Response to selection per trait for different selection criteria 
 

             Response 
Selection on   Weight    Feed intake   
Weight     6.80   0.32 
Feed Intake   -2.68  -0.50       .       
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Multiple trait selection index 
 
Most selection programs in livestock production aim for the simultaneous improvement of several 
traits. The theory to optimize selection on multiple traits is based on the selection index principle.  
The purpose of the selection index method is to combine information from different sources such 
that an optimal selection criterion is achieved. Information sources can be different measurements 
on different traits on an animal or measurements on related animals.  
 
Combining information on related animals on a single trait is exactly what is done by BLUP, and 
this will not be further discussed here. BLUP can also use information on ‘multiple traits’. However, 
it is useful to be able to do this also in a selection index context, to understand and predict the 
outcome of multiple trait selection. The selection index is not so much used for actual breeding 
value estimation, - we have BLUP for that -, but mainly to derive weights, to understand the relative 
value of different sources of information, and to predict response and selection accuracy for different 
alternatives. For example, selection index theory is used to calculate the additional merit of 
measuring a particular trait. 
 
Optimal is defined as ‘most accurate’, or ‘ giving the highest selection response when selecting on 
it. If we rank the animals on the index, we have the best chance of ranking the animals according to 
their true genetic merit. If we consider only selection for one trait, a selection index is nothing else 
than the best prediction of a breeding value.  
 
In the case of joint selection for more traits it is important to weigh the relative importance of the 
different traits. We use economic values for this purpose (see previous lecture).  The index is than 
the best ranking for genetic merit for an aggregate genotype for the different traits in the breeding 
objective. 
The index I is written as  
 
   I = b,Xl + b2X2 + …. + bnXn 
 
where Xi refers to a measurement  of the phenotypic performance of an animal (or its relative) and b 
refers to the appropriate weight. The information sources X are random deviations from an expected 
mean, caused by random additive genetic and non-genetic effects.  
 
Multiple trait breeding objective 
 
 If there are more traits to improve, the breeding objective is a linear combination of genotypic values 
for each of these traits, and it is defined as an aggregate genotype 
 
  Aggregate genotype= H = v1g1 + v2g2 + …… + vmgm. 
 
In the standard notation of animal breeding literature, the breeding objective (aggregate genotype) is 
usually indicated with the letter H.  
 
With one trait in H, G is a vector. However, with more traits, the G-matrix becomes a matrix with a 
column for each trait in the breeding objective, containing its covariance with each information 
source. The number of rows in G is therefore equal to the number of information sources in X.  
 
The b-values for a multiple trait objective are derived with the selection index equations  

 
The economic weights of objective traits are included in vector v, so that the b values account for the 
relative importance of the breeding goal traits.  

b = P-1Gv 
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Example 1  
 
Information:   individual phenotypic observations for two traits:  
         weight         (X1)  
         feed intake  (X2).  
 
The index for an animal is b1X1 + b2 X2.  
 
Let the breeding objective be to improve the weight of the animal:  
 
                                    H = g1     i.e. a single trait objective 
  
We can construct the matrix P as  
 

P
X
X

X X X
X X X

r
r

p p p p

p p p p

=






 =







 =









var

var( ) cov( , )
cov( , ) var( )

1

2

1 1 2

2 1 2

2

2
1 1 2

1 2 2

σ σ σ
σ σ σ

 

 
With ‘the variance of X1 ‘ we mean the variance of many possible observations like X1. In this case: 
the variance of phenotypic observations for weight, which is equal to the phenotypic variance for 
weight (indicated as σp1

2
 ).  

Likewise, with the covariance between X1 and X2 we need the covariance between animals’ 
phenotypic performances on two traits, which is equal to the phenotypic covariance. 
 
The G-matrix: 
 

G
X
X

g
X g
X g r

g

g g g

=






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


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


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σ
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The covariance between a phenotypic observation and a breeding value contains only genetic 
components: either the genetic variance (if same trait) or the genetic covariance (if a different trait). 
 
and  the solution for optimum weights 
 









=
















==

−
−

692.0
384.0

38.5
6.115

48.6
8.6289 1

1GPb  

 
and the optimal index to select for weight is now : Index = I = 0.38 X1 + 0.69 X2. 
 
Note that the b-value for X1 is not equal to heritability, because there is another sources of 
information which is correlated to X1. If this correlation was zero, or if X1 were the only information 
source, the b-value would be equal to heritability indeed! 
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Example 2 
 
Information:   individual phenotypic observations for two traits:  
         weight         (X1)  
         feed intake  (X2).  
 
The index for an animal is b1X1 + b2 X2.  
 
Breeding goal, with economic weights of 1 for weight and –4.0 for feed intake:  
  

H = g1 –4.g2.  
 
 
The selection index weights are found as  b = P-1Ga. 
 
The P-matrix is the same as before, the G-matrix is 
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And the solutions for b become  
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and the optimal index to select for weight is now : Index = I = 0.331 X1 - 0.218 X2. 
 
Note that the b-value for X2 is now negative, as we don’t want to select animals with high feed 
intake. In Example 1, we were not interested in Feed Intake (no economic value) and we gave it a 
positive weight, as heavy eaters will have a higher weight. Note also that in this example, the 
economic value for feed intake is very highly negative. For more realistic values (like –0.5) the 
weight for feed intake would not even be negative. In that case, the value of weight is so dominant; 
we would even select heavy eaters to increase weight. 
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Accuracy of index selection 
 
The accuracy of the selection index is calculated as the correlation between predicted and true 
breeding value.   It can be calculated as 
 

rIH  = σI/σH  = SD_Index / SD_Breed_Objective 
 
more detail 
To obtain this, we can first calculate the variance of the index as  
 
var(I) = σI = var(b’X) = b’var(X)b = b’Pb 
 
The variance of the breeding objective (‘true breeding values’ is   
 
var(H) = σH = var(a’g) = a’var(g)a = a’Ca 
 
 and in case of a single trait objective:  σH = var(g)  = σg

2. 
 
The covariance between the index and the breeding goal (true breeding value) is  
 
              cov(I,H)= cov(b’X,’v’g)=b’ cov(X,g)v = b’Gv = b’Pb. 
 
Hence, we see that the covariance between the index and the true genotype is equal to the variance 
of the index. The correlation is than 
 

rIH = cov(I,H)/σIσH =σI 
2/σIσH = σI/σH 

 
With high accuracies, the standard deviation of the index is almost equal to the standard deviation 
of the breeding goal, and with low accuracy the ratio is relatively lower - compare VA  vs var(EBV).  
  
 Generally, the more information (index sources) we use, the higher the accuracy. In practice, 
measuring animals is usually related to costs. As the increase of the accuracy is directly related to 
response to selection, the cost of measuring can be contemplated versus the gain from expected 
extra response to selection.  
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Response to selection 
 
Suppose selection has taken place on trait A with genotype gA.  
 
Genetic change for a single trait (direct response):   

 
R. =  i.h2.σP   for selection on individual phenotype  

=  i.hA σA 
 
R. =  i.rIHσA   in case of index or BLUP selection  

 
(in both cases males and females are assumed to be selected with equal accuracy and selection 
intensity).  
 
If selection is on a multiple trait selection index, the average index value of selected parents is 
 

S = i.σI  
 = i.rIH.σH 

 
The index is an EBV, and as the ‘heritability of an EBV is equal to 1, the index superiority in 
parents will be fully passed on to progeny. Hence, the average value of progeny is expected to equal 
the average index value of parents: 
  

R = i.σI  
 = i.rIH.σH 

 
Response for trait i becomes i.b’Gi/σI   which is a vector (see next page for detail) 
 
These responses are ‘per round of selection’ and ‘per unit of selection intensity’. To obtain the 
actual genetic change per year, we have to multiply by the selection intensity and the inverse of the 
generation interval. Also, the index and index accuracy can be different for males and females, as 
there may be more information measured on one of the sexes. 
 

Response per year (in dollars): 
_ _m Im f If m IH m f IH f

H
m f m f

i i i r i r
L L L L

σ σ
σ

+ +
=

+ +
 

 
 

Response per year (for each trait – a vector): 
_ _' / ' /m m m i Im f f f i If

m f m f

i b G i b G
L L L L

σ σ
+

+ +
 

 

where m and f refer to male and female index, and Gm- i is the ith column of the G matrix for the male 

selection index. 
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Response in example 1: 
 
Selection for weight (= “aggregate” genotype), using phenotypes of weight and feed intake: 
 
 
  The index was I = 0.38 X1 + 0.69 X2. 
 

The variance of the index is b’Pb =  ( )
0.384

' 115.6 5.38
0.692

b G
 

=  
 

 = 48.08à SDindex = 6.93 

 
and the response to selection (per selection round, with i = 1.0) is R = i.σI   = 6.93 Kg (weight). 
 
There is a correlated response for feed intake. 
 
More Detail 
The correlated response for trait 1 depends on the regression of index values (I) on genetic values 
for trait 2 (g2 ). This regression can be calculated as bIg ;  
 
big = cov(I,g2 )/var(I) = cov(b’X, g2 )/var(I) = b’cov(X, g2 )/var(I) 
 
the term cov(X, g2 ) is a vector with covariances of each index information source with the genotype 
for trait 2, like G, but than for trait 2. The denominator of the regression coefficient is equal to the 
variance of the index. Hence,  
 
bIg= [0.384   0.692]  [      5.68  ] / 6.93 = 0.41 Kg (for Feed Intake) 
                1 
 
Response in Example 2 
 
Variance of index:   σI

2 = b’Pb = 30.82 SDindex = 5.55 
 
Variance of the breeding obj.   σH

2 = v’Cv = 88.59 SDbreeding objective = 9.41 
 
Notice that in this example the C-matrix is identical to the G matrix. 
  

 The accuracy is 59.0
),cov( 2

====
H

I

HI

I

HI
IH

HI
r

σ
σ

σσ
σ

σσ
  

Response to Index selection is equal to R = i.σI = i.rIH.σH  = 1.0*0.59*9.41= $5.55 

The unit of this response is in the units of the economic weights, e.g. in dollars.  
 
Response for trait i becomes i.b’Gi/σI. 
 
Response for weight in the last example: 
 

( ) ( ) 68.655.5/
68.5

6.115
218.0331.0.0.1/

,cov(
,cov(

.
22

11
211 =







−=







= IgX

gX
bbig σδ  Kg 

 
and similarly the correlated response for feed intake is equal to  0.28 Kg. 
(note: in spite of a negative weight still a slight increase of feed intake) 
Confirm the total response using economic weights:   R.= 1. (6.68) + (-4). (0.28) = 5.55 $ 
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More detail (for reference)  
 
Response for each trait is determined with the regression of each trait on the index  
(i.e. how much does a trait increase for one unit of increase of the index).  
 
This response for trait i is  δgi = bgi,I R = [cov(I,gi)/σI

2 ].i.σI [1] 

 
Notice that cov(I , gi) = cov(bX , gi) = b. cov(X,gi) = b. Gi [2] 
 
Where Gi is the i-th column of the G matrix.  
 
and substituting  [2] in [1] gives the response for trait i becomes i.b’Gi/σI. 
 
  
 
 
Manipulating multiple trait response 
 
The response for multiple traits depends on the economic weight given to the traits, and on the 
biology of the traits (heritability, correlation structure). These could be referred to as economic and 
genetic (technical) parameters. For a given production system and genetic resource, where the 
biology is defined by these genetic parameters, we can manipulate the response in two ways 
 

1) by manipulating economic weights 
 
2) by varying the information sources used 

. 
The second option is less  powerful than the first. But generally, measuring more information about 
a trait gives more power to change that trait genetically. Below is a Table with response to index 
selection for weight and feed intake for varying economic values. Response is per round of selection 
(i = 1) 
 
 TABLE 2.7 Response (R.) per trait per selection round for different selection index strategies. 

The economic weights in the breeding goal are v1 for weaning weight and v2 for feed 
intake.  

 
Information on  breeding goal R. weight R. feed intake 
 v1 v2   

Weight  1 0 6.80 0.32 
Weight + feed  1 0 6.93 0.40 
Weight + feed  1 -1 6.92 0.38 
Weight + feed  1 -4 6.68 0.28 
Weight + feed  1 -6 6.21 0.19 
Weight + feed  1 -8 5.42 0.08 
Weight + feed  1 -10 4.29 -0.05 
Weight + feed  1 -12 3.00 -0.17 
Weight + feed  1 -16 0.66 -0.34 
Weight + feed  1 -20 -0.93 -0.43 
Weight + feed  0 -1 -5.04 -0.55 
Feed  0 -1 -2.69 -0.50 
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The table shows that index selection (selecting on 2 traits) gives more response than selecting on 
one trait alone. 
 
If the derived economic weights for weaning weight and feed intake were 1 and -4, respectively, and 
we wish a decrease of feed intake, then such a change goes to the expense of weight gain. We 
need a weight for feed intake of -10 or more (negative) to achieve a decrease in Feed Intake. 
Suppose we applied the economic weight 1 for Weight and -20 for Feed Intake. Indeed, a larger 
decrease for feed intake is achieved, but the weight is also decreased. This illustrates that the 
optimal genetic changes that can be made need to be based on economic values, if possible. 
However, sometimes, very drastic economic values are needed in order to achieve a result that 
seems desirable. This is a reason why just going for desired gains approaches can imply quite 
extreme economic weights, and the optimality should always be related to the implicit economic 
weight that makes such a change optimal. In our example: any economic value for feed of more 
than -1$/Kg seems too value feed cost too much and in tis example optimal genetic change should 
increase weight and allow a correlated increase in feed intake. 
  
Favourable versus unfavourable correlations 
 
The results in the previous example show that in spite of a positive correlation between Weight and 
Feed Intake, it is possible to select them in opposite directions. The correlation between these 
traits is positive and unfavourable, if our breeding goal is to increase Weight while decreasing Feed 
Intake. When plotting all possible responses, one would obtain an ellipse as in the figure below. The 
ellipse would be tilting to the right for positive correlations, and to the left if the correlation between 
traits was negative. The higher the correlation, the flatter the ellipse (and for zero correlations, the 
‘ellipse’ would be a circle. The sloped line in the figures represents an iso-economic line, i.e. a line 
of equal profit for the different trait combinations. The optimal selection response is determined by 
the point where the lines touches the ellipse (something that is beautifully and dynamically 
illustrated in the ‘ELLIPSE’  module in GENUP. Now there are 4 possible situations for a 2-trait 
combination, determined by the sign of the correlation (the slope of the ellipse) and whether the 
economic values are of equal or of opposite sign (the slope of the iso-economic line) 

 

D C 

A 
B 



  Multiple Trait Selection 
 

Armidale Animal Breeding Summer Course  2005 51 

 
Correlation Sign of economic weights 
 Equal Opposite 
Positive Favourable (B) Unfavourable (A) 
Negative Unfavourable (C) Favourable (D) 

 
 
Generally, when correlations are unfavourable, it is much harder to improve both traits jointly in the 
same direction, and the direction of selection will be quite sensitive to economic values. For 
example, for fleece weight and fibre diameter (case A), the optimal change can vary from 
emphasising FD versus  emphasizing FD depending on changes in price ratio that are quite 
realistic. Hence, in such cases, it is relatively hard to define an appropriate selection strategy. 
 

 
 

FD 

FW 

Optimal for lower 
FD premiums: 
More wool, same 
FD 

Optimal for higher 
FD premiums: 
Less FD, equal FW 
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Selection Index versus Multiple Trait BLUP 
 
 
Selection index theory deals with combining information and pedigree into one index value. 
However, it is also convenient to see this as a two step process, where first we derive EBV for each 
trait separately, but using information on all traits. Subsequently these EBVs are combined into an 
index. It will be shown that the weights in that case are simply the economic values as defined in 
the breeding objective. 
 
 
In multivariate selection, it is important to distinguish two components, which need to optimized: 
breeding value estimation and weighing of traits. We consider selection index methodology, with 
several traits (say n) included in the index to predict an optimum value for ranking animals with 
respect to a breeding goal, consisting of a weighted aggregate of several (say m) traits. Traits in the 
breeding goal may be different from traits in the index. The selection index method combines the 
information on index traits using genetic and phenotypic parameters to predict a value for an 
aggregate of traits, using both genetic parameters and economic weights. The second component 
assumes knowledge about the (economic) weights of the breeding goal traits and some kind of 
linearity of the profit function. In fact, the last assumption may not always be justified, which could 
be a reason to use some type of independent culling or desired gains approach rather than 
selection index as tool for selection.  
  
The BLUP breeding value estimation method only relates to the first component, i.e. it combines 
optimally the information on animals and their relatives to estimate breeding values for each desired 
trait. Information can be from several traits if a multitrait estimation method is used. The result of 
using the BLUP methodology is not a single index value but a set of m estimated breeding values 
per animal, one for each trait. Multitrait BLUP breeding value estimation is therefore an extension of 
selection index only in the sense of obtaining more accurate breeding values, combining information 
from several relatives on several traits and adjusting appropriately for fixed environmental effects.  
The method, however, is neutral to any procedure of weighing breeding goal traits. It is, therefore, 
useful to assess the relevance of multivariate BLUP in terms of accuracy of individual breeding 
values. In selection index terminology these individual breeding values per trait are known as sub-
indices.  
 

 $-index = ii

traitsofnr

i

vEBVBLUP *_
_.

1
∑

=

   [2-1] 

 
 An optimal index could possibly be produced by weighing the BLUP breeding values by 
their economic weights (vi) as used in selection index, or possibly using other weights. Suppose the 
index is b' ĝ  and the aggregate genotype is v'g, and ĝ  are the estimated breeding values of g. If 

ĝ  is estimated using the true variance-covariance structure, i.e. using a multivariate model, then  

 
var( ĝ ) = cov( ĝ ,g) 

 
b= var( ĝ )-1cov( ĝ ,g)v= v.  

 
Hence the b-values are equal to the economic weights in v when multivariate BLUP values are used 
in an index. Notice that the weight does not depend on the accuracy of each of the EBV’s in ĝ . 

  
Schneeberger et al. (1992) discussed a related problem where breeding values were estimated for a 
set of index traits u whereas the selection criteria existed of a set of other traits in g. They showed 
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that optimal weights for the selection criterion b'u were  b= G11
-1G12v  with G11 = var(u) and G12= 

cov(u,g). Hence, when the estimated breeding values are on traits which are different from those in 
the breeding goal, the weights depend on the genetic regression from breeding goal trait on index 
traits and the economic weights, but not on the accuracy of the estimated breeding values. The 
condition is that estimates have to be available for all index traits.  
 
Notice that in [2.1] no information is needed about family structure or availability of information for 
each animal. All animals have the same index weights although their estimated breeding values 
might have very different accuracy.  
 
This result seems inconsistent from what most people experience when using multiple trait 
selection index (where index weights are different for each animal with different sources of 
information). However, Multiple Trait BLUP already has accounted for differences in information 
when predicting breeding values, i.e. animals with little information will have smaller accuracies and 
therefore will be more regressed towards the mean.  
  
An important condition for [2-1] is often not realised, that is that the estimated breeding values are 
assumed to be estimated by multiple trait techniques. In practice it might seem tempting to simply 
calculate single trait evaluations and use those in the aggregate index. Estimated single trait values 
have to be somehow combined in an aggregate index and in fact this is more difficult than 
combining multi-trait breeding values because the correlation structure of estimated breeding values 
has to be accounted for.  
 
If ˆ ug  were estimated breeding values estimated with univariate analysis, the optimal weighting 

would be b= cov( ˆ ug ,a) (var( ˆ ug ))-1.  Covariances between estimated breeding values from single 

trait analysis are hard to obtain from BLUP analyses. They are not only affected by residual- and 
genetic correlations, but also by different family structures used for each estimated breeding value. 
In selection index one could derive the (co)variance for gi= bixi and gj= bjxj as bi'cov(x i, xj)bj, where 
cov(x i,  xj) relates to the same submatrix as necessary for multiple trait indices. The efficiency of 
combining univariate BLUP breeding values as well as the question whether such an index would be 
more sensitive to the use of incorrect variances and covariances will be discussed in the 
subsequent paragraphs.  
 
 
Increased accuracy from using information on correlated traits 
 
 Accuracy in mixed model terms is usually expressed in terms of Prediction Error Variances 
(PEV's), which is PEV= var( ĝ -g)= (1-rIH

2)σA and rIH is the correlation between true and predicted 

breeding value. The gain to be expected from increased accuracy due to including information on 
correlated traits can in principle be assessed by rIH values using selection index theory (e.g. 
Gjedrem, 1967).  Thompson and Meyer (1986) give an illustrative table on the efficiency of a 
selection index for two sets of correlation values and a range of heritabilities. The example is for 
phenotypic selection (Table 2.8).  
 
The gain in efficiency is mostly dependent on the difference between genetic and environmental 
correlation and the accuracy for a trait with a low heritability could be significantly improved if the 
information from a correlated trait with high heritability is included (Table 2.8). Schaeffer (1984) gives 
examples for more combinations of parameter values with generally the same results. 
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Table 2.8 Effect of genetic and environmental correlations and heritabilities on ratio of 
accuracies of multivariate versus univariate evaluation of trait 1 assuming information on individual 
only (from Thompson and Meyer, 1986)1. 
                                                 

  h2
1                                        

    h2
2  0.1  0.3  0.5 

rg=re= 0.5   0.1   1.00  1.02  1.03  
    0.3   1.09  1.00  1.01  
    0.5   1.25  1.02  1.00  
                                                            
rg=-re= 0.5   0.1  1.40  1.18  1.10  
    0.3  1.59  1.23  1.11  
    0.5  1.70  1.25  1.12  
1 h2

1 is heritability of trait 1 and h2
2 is heritability of correlated trait 2. 

 
It is shown in the table that genetic and residual correlations are equal, and when heritability of the 
two traits is the same, there is no benefit of using a multivariate analysis. In this case the genetic 
regression of one trait on another is equal to the phenotypic regression. The correlated trait does 
not give us any clue in determining which part of an individuals’ phenotypic deviation is due to 
genetic or due to environmental effects.  Suppose that Go and Ro are matrices with residual and 
genetic covariances, respectively. When heritabilities are equal and re = rg (= rp), and when all 
animals have an observation for each trait, Go can be written as a multiple of Ro.  The MT mixed 
model equations can be written as  

     My'ZIAGMZ'ZR 2
111

o ⊗=⊗+⊗ −−−   

and when oo GR λ= , pre-multiplying the MT system by Ro gives two independent single trait 

systems of equations: 

     My'ZIAIMZ'ZI 2
1

22 ⊗=⊗λ+⊗ −  

 
 Table 1 shows that the marginal benefit from including information on a correlated trait 
decreases with higher heritabilities, i.e. when single trait evaluations are relatively accurate. 
Therefore, a table comparable to Table 1 could be presented when each animal has for each trait 
not only an own record, but in addition a record on each parent and a mean of the full- and half-sib 
group (Table 2.9).  
 
Table 2.9 Effect of genetic and environmental correlations and heritabilities on ratio of 
accuracies of multivariate versus univariate evaluation of trait 1 assuming information on relatives 
known1 

 
  h2

1                                        
    h2

2  0.1  0.3  0.5 
rg=re= 0.5   0.1  1.00  1.01  1.02   
    0.3  1.03  1.00  1.00   
    0.5  1.08  1.01  1.00   
                                                             
rg=-re= 0.5   0.1  1.18  1.08  1.05   
    0.3  1.22  1.10  1.06   
    0.5  1.25  1.11  1.07   
 1 Breeding value is estimated from phenotype of animal itself, its sire and its dam, on 4 full 
sibs and on 36 paternal half sibs for each trait. 
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 When records from relatives are also included for each trait, the improvement from including 
information on a correlated trait is reduced. The effect of the heritabilities on the ratio of accuracy 
from multivariate and univariate models is smaller and the ratio is almost unity if the phenotypic and 
environmental correlations are rather equal.   
 
For the same example used in Table 2.9 we could also determine single trait indices for each trait 
and combine those in an index (taking into account the variance and covariances between these 
univariate estimates).  
  
A combined index of univariate breeding values is as efficient as a multivariate index when re= rg and 
it is about 3% less efficient when re= -rg= 0.5.  In the latter case, information is lost from averaging 
sources of information that are not equivalent. The weights for the different information sources of 
the correlated trait are dependent on the phenotypic and genetic regression (Thompson and Meyer, 
1986) and those regressions are not equal for say an own record and a full sib mean. Noteworthy is 
that the ratio of accuracy from a multivariate index and a combined univariate index is almost fully 
dependent on the differences between rg and re, whereas the heritabilities have an insignificant 
effect.  
 
Effect of using incorrect parameters in genetic evaluation 
 
Because true genetic parameters are not known,  genetic evaluations can only be done using 
parameter estimates. The realised response to selection will be always less or equal to the 
optimum response and the expected response (these are all equal when parameters used are 
correct). When P is the VCV matrix among phenotypic observations, and G is the covariance matrix 
netween these observations and the breeding value to be estimated, and the ‘hats’ refer to the used 
(estimated) values, then 
 

   Optimum response is (in units of i)  GP'GR 1
opt

−=  

   Expected response is    ĜP̂'ĜR 1
exp

−=  

  Realised response is    
ĜP̂PP̂'Ĝ

GP̂'Ĝ
R

11

1

act −−

−

=  

 A simple method to study the effect of using incorrect parameters is to try arbitrary values for 
incorrect parameters in a selection index and compare the response with that obtained with the 
correct values, and what was predicted using the incorrect values. Examples are given in Figure 2.2 
and Figure 2.3. 

 
Figure 2.2 
Optimal (Ropt), Actual (Ract) 
and Expected (Rexp) 
Response to selection for one 
trait, with varying estimated 
genetic correlation. Selection 
is on phenotype for two traits, 
heritabilities are 0.5, 
phenotypic and true genetic 
correlations are 0.5. 
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Figure 2.3. 
Optimal (Ropt), Actual 
(Ract) and Expected 
(Rexp) Response to 
selection for oneh trait, 
with varying estimated 
genetic correlation. 
Selection is on 
phenotype for two traits, 
h1

2 = 0.1; h2
2 = 0.5; rp = 

0.1 and true rg = 0.6   
 
 
 
 
 
 
 
 
 
 

Schaeffer (1984) used this method of trial values for incorrect genetic parameters and calculated the 
loss in efficiency of multiple trait BLUP models as the increase in prediction error variance. He 
noticed that the increase was very much dependent on the Absolute Difference, which he defined as 
 
 AD = ( r̂ e -re) - ( r̂ g - rg) 
  
Where  r̂ g and r̂ e  are estimates of genetic and error correlation, respectively. The formula shows 
that the loss of accuracy would be less if both genetic and error correlation would be over- or 
underestimated. Decrease of accuracy would be large if one correlation was overestimated whereas 
the other correlation would be underestimated. Increase in PEV varied from 1% for AD=0.1 to 35% 
for AD=1.8.  
 
The AD-value, however, predicts loss of efficiency particularly quite well if both traits have equal 
heritability. When heritabilities are different, the absolute difference between estimated and true rg 
becomes relatively more important. This is illustrated in Table 5. Traits with lower heritability 
generally suffer more from an increase in PEV when incorrect parameters are used. Animal models 
with a reasonable amount of information from relatives available (higher accuracy), and sire models 
are less sensitive to incorrect correlations. 
 

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.09 0.19 0.29 0.39 0.49 0.59 0.69 0.79 0.89

estimated genetic correlation

R
es

po
ns

e

Ropt

Rexp

Ract



  Multiple Trait Selection 
 

Armidale Animal Breeding Summer Course  2005 57 

Table 2.10 Effect of incorrect genetic correlations on ratio of accuracies of multivariate versus 
univariate evaluation of trait 1 for two sets of correlation values, assuming information on 
relatives known  

 
      h2

1=0.3  h2
1= .1   

      h2
2=0.3  h2

2= .5  
rg re      AD  MT/ST  MT/ST 
  .5  .5 true values   0 1.00  1.08 
 .2  .2     0 1.00  1.04 
-.2  -.2     0  .97   .84 
 .7  .3     .4  .98  1.05 
 .3   .7     .4  .97  1.03 
-.2   .2     .4  .94   .74 
-.5   .5     1  .93  1.04 
 
 .5  -.5 true values   0 1.10  1.25 
 .7  -.3     0 1.10  1.23   
 .2  -.2     .6 1.06  1.17   
-.2  .2    1.4  .84   .64   
  
1 Selection is on phenotype of animal itself, its sire and its dam, on 4 full sibs and on 36 paternal 
half sibs for each trait.  
 
 
The effect of avoiding multiple trait analysis would fit in the perspective of using incorrect parameter 
estimates, i.e. a single trait analysis is equivalent to using prior correlation of 0. In other words, a 
multiple trait with incorrect parameters could be a better alternative then single trait analysis as is 
illustrated in some examples in Table 2.10. 
 
The previous exercises might give some idea about using incorrect correlations, but in practice, we 
usually do not know true correlations, and therefore can not make such comparisons. A more 
relevant questions might be how accurate an estimate of a certain parameter needs to be , to use it 
with good confidence in multi trait genetic evaluation.  Sales and Hill (1976a) proposed a method to 
determine the proportional loss in response when estimated rather than true values were used for 
the parameters in a single trait selection index. The method was based on a Taylor's series 
approximation of the function for actual response dependent on the accuracy of the parameter 
estimates. They found that for single trait selection, the loss of efficiency from using incorrect 
parameters (i.e. heritability) is very small, even for large differences between true and estimated 
heritability.  
 
Sales and Hill (1976b) applied the same method also to a selection index using information from 
correlated traits and showed the proportional loss from the optimal response when selection was on 
phenotypical values for each trait. They considered an economically important trait, and the value of 
using information from a second correlated trait (with no economic value). They made the loss of 
response dependent on the sample size that was used to estimate the parameters (i.e. on the 
accuracy of the parameter estimate rather than on an actual (but arbitrary) difference between true 
and estimated parameter). Very inaccurate parameter estimates indeed may make single trait 
analysis more beneficial than using (unreliable) information from a correlated trait.  
 
Generally they found for a wide range of parameters the proportional loss to depend critically on h1

2  
(the heritability of the economic trait) but much less on the correlations and the heritability of the 
correlated trait. Table 2.11 (from Table 2 from Sales and Hill) illustrates what should be the 
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minimum size of an experiment to estimate parameters to obtain equal expected response using 2 
traits (compared to only using trait 1).  They considered selection on individual phenotypes only. 
 
Table 2.11 
  Number of observations required to get an increase in expected response using two traits, from an 
initial experiment with s half sib families of size n (Sales and Hill, 1997b) 
 
h1

2 h2
2 Rg Re Rp R/RST T (n=4) T (n=16) 

0.2 0.5 0.0 0.16 0.10 1.005 17800 11632 
  0.0 0.50 0.32 1.054 1696 1056 
  0.5 -0.5 -0.16 1.386 208 80 
  0.5 0.0 0.16 1.187 456 208 
  0.5 0.5 0.47 1.062 1432 832 
0.5 0.5 0.0 0.2 0.10 1.005 3080 2672 
  0.0 0.5 0.25 1.035 476 400 
  0.5 -0.5 0.0 1.118 124 80 
  0.5 0.0 0.25 1.035 456 336 
  0.5 0.5 0.5 1.000 - - 
R = optimum response (if values were the true ones), RST = single trait response, T = sample size of 
experiment to estimate genetic parameters so that expected R > RST. 
 
 
Generally, when the correlated trait adds more information, there’s a smaller amount of observations 
required.  If little extra information is added by the correlated trait, very large sample sizes would be 
required to obtain estimates that are accurate enough to include in a multi trait index. Sample sizes 
need to be a bit larger if family sizes are very small (n=4). A special case occurs when the 
additional trait adds no value to the economic trait, since incorrect parameters are likely to have 
most effect. It should be reminded that a second trait’s contribution is zero if genetic and 
phenotypic correlations are 0, but more generally if rgh2 = rph1 (phenotypic regression = genotypic 
regression). So even if phenotypic correlations are positive (easy to measure), one needs to know 
genetic correlations as well about decisions to incorporate a second trait.  
 
The use of incorrect parameters has no effect on bias in genetic evaluation (Henderson, 1975) with 
no selection. In case of selection, however, not all selection bias would be removed by analysis with 
a multiple trait model that does not have the correct parameters and therefore such analyses would 
be biased.  
 
Schaeffer (1984) also discussed the problem of invalid variance-covariance matrices because of 
inconsistencies in parameter values. This problem can be avoided by checking the eigenvalues of 
the variance-covariance matrices; they should be positive, i.e. If the estimated variance-covariance 
is not positive definite, the values should be adjusted, e.g. using the bending algorithm described by 
Hayes and Hill (1976).  
 
 
Other issues 
 
Which traits to include in the selection index? 
 
Criteria Traits:   All traits that add information and that can be measured cost effectively 
Breeding Objective Traits: All traits that have economic value 
 
Although in principle there could are many traits that could have an economic value different from 
zero, the breeding goal contains usually only a limited number of traits. For traits to be included in 
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selection index, phenotypic, genetic and economic parameters have to be known. Such parameters 
are usually estimated only for ‘obviously measurable’ traits like production and reproduction traits. 
From other traits there are usually no accurate parameters known and it is difficult and unpractical 
to include such traits in the breeding goal. Moreover, the additional gain from including more traits 
may be small. The question whether or not certain traits should be included in the breeding goal can 
be assessed by selection index theory. Another important question, more related to costs, that can 
be solved by selection index is whether or not certain traits should be included in the information 
index, i.e. whether or not they should be measured..  
 
The selection index approach is therefore a very general method to optimize selection on multiple 
traits, and to weigh the information on several relatives and for several traits optimally in an index.  
 
If there is no phenotypic (or marker) information available for a certain trait, we could still include it in 
the breeding objective. However, generally we would not directly produce an EBV for such a trait.  
Then how would we construct a selection criterion, based on economic weights times EBV for all 
traits in the breeding objective? Firstly, we could calculate an EBV of such a trait, based on a 
genetic regression on the other traits that we have an EBV on. For example, consider trait j with BV 

jg . EBV for all other traits are represented by the vector ĝ .  ˆ jg  can be estimated as cov( jg ,  

g )/var( g ), which is a genetic regression resulting in a vector, say w. Hence, for each individual we 

estimate the EBV as   
1

ˆ ˆ
m

j i i
i

g w g
=

= ∑  where  ˆig  are BLUP EBV on other traits. 

 
The selection index becomes then 
 
 

   
1

ˆ ˆ
m

i i j j
i

I v g v g
=

= +∑  

 
However, we would get an equivalent index value if the economic value for each trait was adjusted 
for the unmeasured trait. The index can also be written as  
 

  
1 1

ˆ ˆ
m m

i i j i i
i i

I v g v w g
= =

= +∑ ∑   =  
1

ˆ( )
m

i j i j
i

v v w g
=

+∑  

 
 
A practical example of this: suppose selection is for more Weight and less Feed Intake. And 
suppose only Weight is measured. We can now either calculate an EBV for Feed Intake by a 
genetic regression on the EBV of Weight, and subsequently use these 2 EBV in an index with the 
appropriate economic weights for each trait. However, we could also calculate the index based on 
just one EBV for weight, and correct the economic weight for Weight by adjusting it for the amount 
of extra feed eaten if an animals grows bigger. 
 
 
Selection index assumed linearity in the breeding objective 
The linearity of the breeding goal implies that a negative value for one trait can be compensated by a 
positive value for another trait in the breeding goal. From the perspective of an individual breeding 
company, who has to consider the competitive value of his livestock, this compensation does not 
always hold. If the animals are low for a certain trait, it may be under a certain acceptable level for 
the consumers. In that case, the improvement should be solely focused on this trait that 
deteriorates the competitive value, until it is above an acceptable level. Non linearity of economic 
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value is for many breeders a reason to make recourse to other selection methods. A simple 
alternative is independent culling, a method that selects animals only if they are above a minimum 
value for a certain set of traits. However, for small deviation of linearity, selection index is still an 
optimal method, and independent culling is in most cases not as optimal as selection index.  
 
 
Selection Index versus desired gains 
Sometimes the changes predicted per trait may be surprising or not satisfying. We may wish a trait 
to increase, but the optimal index shows that an optimum change should be an decrease. The 
reason could be that the trait is negatively correlated with another trait that needs to be improved. 
The change in the individual traits depends not only on economic weights but also on heritability 
and genetic and phenotypic correlations, and is sometimes hard to predict.   

Sometimes, the knowledge about the economic weights is not accurate but we might have 
an idea in which direction traits need to be changed. The previous table shows that if we put more 
weight on feed intake in the breeding goal, a much larger change could be achieved. In principle, we 
could choose a certain ratio of changes for both traits and choose the “economic” weights 
accordingly. This approach is called “selection index with desired gains”. One particular example of 
a desired change index is to choose the weight so that one breeding goal trait does not change at 
all. Such an index is called a “restricted index”. A restricted index could be applied if the trait has 
an optimum value, i.e. when the economic weight is not linear with the trait mean. In general, it is 
suboptimal to choose for a desired gains approach, since one puts potentially very much emphasis 
on traits that are difficult to improve (e.g due to a low heritability). The small ‘desired’ improvement 
that is achieved goes to the expense of a large loss of potential genetic gain for another trait that 
was easier to improve. Therefore, if economic weights could be derived without too much 
uncertainty, straightforward selection index is the most efficient approach.  
 
Indirect selection 
 
If the breeding goal is the improvement of a certain character, say trait A, an obvious approach is to 
improve the trait by direct selection on trait A.  An alternative strategy is to select on a correlated 
trait B. to achieve progress in trait A. Such a strategy is called “indirect selection”. The motivation 
for indirect selection can be  
• it is cheaper to measure B rather than A. 
• it is impossible to measure A  
• indirect selection can be more efficient. 
 
Examples of cheaper indirect selection are the selection on backfat to determine carcass quality. A 
very expensive but more direct measurement (on a live animal) would be a computer tomography 
scan. Slaughter quality measured on the carcass is an example of an trait impossible to measure 
on breeding animals since usually we prefer not to slaughter breeding animals. For this example, 
another alternative to direct selection is also used, being selection not on a trait correlated to 
carcass value, but to measure carcass value on related animals.  
 
It can be easily determined for which cases indirect selection is more accurate as direct selection. 
Let us consider only selection on individual phenotype. The direct response by selecting on trait A 
is  
RA = i.hA.σgA   and the correlated response for trait A if selection is on trait B is  
CRA= i.hB.rg. .σgA 
 
Indirect selection is therefore more efficient as direct selection if CRA>RA, i.e. if hB.rg> hA. In words; 
indirect selection is more efficient as direct selection if the heritability of the indirect character is 
much higher and the correlation with the trait under selection is also reasonably high.  
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Genotype-environment interaction 
 
We base selection decisions on the performances of animals measured under certain 
circumstances. We select therefore in a certain environment. It is possible that the best genotypes 
of the animals we choose in one environment are not the best in another environment. An example 
is the selection of dairy bulls based on daughter performances under circumstances with optimal 
feeding- and health conditions and using such bulls to improve cattle under tropical conditions. 
Besides the fact that in another environment other traits might be important (e.g. specific disease 
resistance), also the trait under direct selection might be expressed differently in different 
environments. If differences between genotypes are not the same in different environments, there is 
genotype-environment interaction. The question is then under which environment should we select 
the animals?  
 
It was generally assumed that selection should take place under the most optimal conditions, since 
animals where then able to optimally show their genetic potential. However, Falconer (1960) 
described experiments with selection in mice that selection under suboptimal conditions resulted in 
a better overall performance. Furthermore he concluded that if the environments are very different, it 
is generally better to select the animals under the environment in which they (or their offspring) are 
going to produce.  
 
Falconer (1960) introduced an interesting concept of genotype-environment interaction. He 
considered performance for a trait in different environments as performances of two different traits 
with a genetic correlation between them. For example, the growth performance can be measured 
under ad lib feeding, and under a restricted feeding regime. It is possible that animals would rank 
differently when they were ranked under the ad lib regime performance than as if they had been 
measured under restricted feeding. Under ad lib conditions, the feed intake capacity will be 
important for growth, and under restricted feeding it is more important to improve the efficiency 
utilizing feed. Both underlying traits are possibly not affected by the same genes, but 
measurements of growth under the two conditions will be correlated. If the genetic correlation of 
measurements of the same trait in different environments is equal to 1, there is no genotype-
environment interaction. The response to selection for a trait in the ‘other’ environment can be 
predicted based on the indirect selection principles (see previous paragraph). It is important that the 
breeding goal trait is defined for the environment that animals will have to produce under in the near 
future.  
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