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2.  Principles of Estimation of Breeding Values 
 

Julius van der Werf 
 

 

Learning objectives 
 
On completion of this topic you should be able to: 
 

 Understand the principle of estimation of breeding value (EBV) 

 Understand accuracy of EBV 

 Predict how much EBVs vary among individuals 

 Predict how much EBV might change with new information 

 Predict response to selection based on EBV 
 

Key terms and concepts 
 
Estimated Breeding Value (EBV), Accuracy of EBV, Prediction Error Variance, Variance of EBV, 
Predicting Response to Selection on EBV. 
 

Introduction to the topic 
 
Within animal breeding systems, we would like to rank and select animals based on their true 
breeding values (TBV or “A”: additive genetic value).  Unfortunately we don't have this perfect 
knowledge - we cannot see genes and breeding values, and so we must use observed phenotypes 
to obtain estimated breeding values (EBV's or Â).  
 
Breeding values are average effects of genes that are transmitted by a parent to an offspring. 
 
Genetic change due to selection based on EBV will be lower than if selection had been on true 
breeding value. The relative response is proportional to accuracy of EBV, and accuracy is between 
0 and 1. 
 
The most obvious piece of phenotypic information we can use to estimate an animal’s breeding 
value is the animal’s own phenotype. But we can also use information from relatives, such as the 
sire, the dam, siblings and progeny. Commercial genetic evaluation systems produce EBVs for 
each animal for all traits of relevance. Such an evaluation is based on a statistical procedure 
leading to Best Linear Unbiased Prediction (BLUP) of breeding values. Inclusion of information 
from relatives is automatically taken care of in the BLUP method, provided such information is 
available in the database through the knowledge of pedigree. We will discuss the BLUP procedure 
in greater detail in later topics.  
 
In this topic we will discuss the principle of estimation of breeding value. First we present how 
phenotypic information is turned into an EBV. The heritability of the trait is important here. Second, 
we discuss the accuracy of EBV, how it is calculated, and why it is important. Basically, the higher 
the accuracy, the higher the response to selection based on EBV. Closely related to accuracy are 
the variance of the EBV and the Prediction Error Variance of EBV. The variance of the EBV 
indicates how much difference in EBV values we can expect. This is relevant if we want to predict 
the EBV of a selected group of individuals. The  
 
Prediction Error Variance gives information about the uncertainty of an EBV. It is used to predict 
how much an EBV can still change when more information becomes available. The higher the 
accuracy of an index, the smaller the change when more information comes in. This change has 
great practical importance, e.g. when determining the price differences between top breeding 
animals based on EBV.  
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2.1  Principle of estimating breeding values  
 

Components of variation 
Breeding Values are estimated based on phenotypic differences between animals. It is based on 
the notion that part of these phenotypic differences is due to genetic components. Quantitative 
genetic theory is used here, and one of the key principles is that phenotypic differences occur due 
to genetic as well as non-genetic differences. Differences are measured as variance, and therefore, 
phenotypic variance is the sum of genetic and non-genetic variance. Not all genetic differences 
between individuals are passed on to progeny.   
 

We are only interested in additive genetic variance as  
 

 it is the variance in breeding value, i.e. that part of the genetic differences that are passed on 
to progeny 

 it can be more easily estimated than total genetic variance, e.g. differences between progeny 
groups of different sires are a reflection of additive genetic differences.  

 
The non-additive genetic effects are due to dominance effects as well as (some) epistatic effects. 
These effects are not unimportant in real life, e.g. they could explain why some sires make 
particularly good combinations with certain cows (farmers call this ‘nicking’), but these effects are 
hard to estimate (because the same sire is not often used to the same cow), therefore non-additive 
effects are hard to utilise in breeding. Non-genetic effects are therefore put in the basket of 
‘residual effects’ together with non-genetic effects due to environmental differences. Therefore 
 
Phenotypes are made up of breeding values and residual effects: 
 
   P = A + E 
 
We use “E” for ‘environmental effect, although this is actually a residual effect, also containing non-
additive genetic effects 
 
Phenotypic differences are due to differences in breeding values plus differences in residual effects 
 
   VP = VA + VE 
 
 where:  VP = Phenotypic Variance 
  VA = Additive Genetic Variance 
  VE = Residual (or Environmental) Variance 
 
Table 2.1 gives an illustration of these concepts, by considering the differences between 5 rams for 
fleece weight 
 
Table 2.1  Performance of 5 rams and underlying true effects. 
 

Observed 
Phenotype 

(Fleece Weight) 

P A E 

Phenotypic 
Deviation 

Additive Genetic 
Value 

Residual 
Effect 

4.4 0.4 0.2 0.2 

4.2 0.2 -0.1 0.3 

4.05 0.05 0.25 -0.2 

3.75 -0.25 -0.05 -0.2 

3.6 -0.4 -0.3 -0.1 

 

Standard Deviation 0.326 0.226 0.235 

Variance 0.106 0.051 0.055 

Mean 0 0 0 
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Table 2.1 is hypothetical, as in real life we are not able to observe A and E, but it illustrates a 
number of things: 
 

 Phenotypic differences are due to differences in both breeding value (A) and residual effects 
(E) 

 Differences in A and E are unrelated, i.e. animals with positive A do not have more chance to 
have a positive (or negative) E. In the example, the correlation between A and E is 0 

 Differences in E are generally larger than differences in A. The standard deviation is larger 
and consequently the variance is larger. In fact, the heritability in the example is 0.06/0.11 = 
0.48. 

 Animals with the best phenotype do not necessarily have the best breeding value, but… 

 Selecting animals on phenotype will provide animals with on average positive breeding values 
(there is a correlation between P and A) 

 
It is common that differences in E are larger than differences in A. A measure for difference is 
variance. Variance is formally calculated as the sum of the squared deviations. The mean values 
for P, A and E are zero. The variances and standard deviations in the example of Table 2.1 are: 
   
 VP = 0.106  SDP = 0.326 
 VA = 0.051  SDA = 0.226 
 VE = 0.055  SDE = 0.233 
 
Hence, about 50% of the observed phenotypic differences are due to breeding value (A). This 
figure is called heritability. 
 
Heritability = Additive genetic variance/ Phenotypic variance = VA / VP 
 

In our example, the exact heritability is 0.051 / 0.106 = 0.482. 
 
It is important in quantitative genetics to have a good understanding of distributions. Taking Table 
2.1 as an example: the phenotypic SD = 0.3. In a larger population we would expect the extremes 
to be about 3 SD deviating from the mean, so ranging from about -1 to +1 (or between 3kg and 5 
kg in trait measurement). Note 1: the example is only a small population so the extremes are closer 
to the mean. If we sampled many animals, the range of values would be roughly between 3.0 and 
5.5 Kg). The variance in true breeding value is smaller. If many were sampled we would expect 
values between -0.7 and +0.7 
 

Estimating breeding value 
Without the knowledge of true genotypes, the only information that can be used to estimate 
breeding value is the phenotype. For this purpose we use phenotypic differences between animals, 
or more specifically, phenotypic deviations. The breeding value is now estimated as a proportion of 
this deviation, being the proportion of total variation that is due to variation in breeding value. This 
proportion is equal to heritability, i.e. in our example; the proportion is equal to 0.48. Hence, when 
the information used is an animal’s own phenotypic deviation, the breeding value is estimated as: 
 

  EBV = h
2
.P 

 
Where h

2
 is the symbol for heritability and P is the phenotypic deviation, i.e. how much does the 

individual’s performance deviate from the mean (Note, this is not the same as phenotypic standard 
deviation!). The heritability is a population parameter, i.e. the value is constant. It can only vary 
between traits or between the same trait in distinctly different environments or different populations 
(breeds). 
 
The reason why we use h

2
 rather than h is statistical. The correlation between breeding value and 

phenotype is equal to h. The proportion of variation explained by breeding value is h
2
. This notation 

is equivalent to statistical modeling, where we use r
2
 for the proportion of variance explained by the 

model, and r for the correlation between observed values and predicted values. 
In the example (Table 2.1) the correlations are: corr(A,E) = 0.00;  corr(A,P) = 0.69 and corr(E,P) = 

0.72. The latter two are equal to h and to (1-h
2
). 

 
 
Notice that we don’t use the absolute phenotypic value, but we use it as a deviation from a mean, 
since we are only interested in differences between animals (variation). The larger the heritability of 
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a trait, the more we believe that observed phenotypic differences are due to breeding value. 
 
The principle of breeding value estimation is based on regression. We want to know differences in 
breeding value based on observed differences in phenotype. Regression is illustrated in Figure 2.1. 
If we regress breeding values on the phenotypic observations, the slope of the regression line tells 
us how much difference we have in breeding values per unit of difference in phenotype. This slope 
is equal to the heritability. This can be derived from quantitative genetic theory, since the slope of a 
regression line is:  

 

b
x y

y
xy


cov( , )

var( )
 which is now equal to 

cov( , )

var( )

var( )

var( )

P A

P

A

P
h  2

 

 
recalling that cov(P,A) = cov(A+E, A) = cov(A,A) = var(A). This is a theoretical derivation, as in 
practice we can not observe true breeding values (A). However, we can estimate heritability (see in 
later lectures) and therefore, with the knowledge of h

2
 and phenotypes, we can estimate breeding 

values. 
 

Figure 2.1    The relationship between breeding value and phenotype, depending on 
heritability. The higher the heritability, the larger the part of phenotypic difference that is 

attributed to breeding value. 
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Example 
In Table 2.1, the best ram had a fleece weight of 4.4 kg. The mean of his contemporaries is 4.0 kg. 
The heritability of fleece weight is 0.48. What is the ram’s EBV? 

EBV = h
2
.P = 0.48 . (+0.4) = + 0.19 kg 

 
Table 2.2  Performance of 5 rams, underlying true effects and EBVs. 

 
 
 
 
 
 
 
 
 
 
 
 
 

P = Phenotypic Deviation; A = Additive Genetic effect (Breeding Value), E = Environmental Effect 
 
 
Again, Table 2.2 illustrates some important aspects of EBV 
 

 The ranking based on EBV is not exactly the same as the ranking based on true breeding 
value (A), but…….. 

 

 Animals with the highest EBV have on average a higher true breeding value 
 

Observed 
Phenotype  

(Fleece Weight 
P A E EBV 

4.4 0.4 0.20 0.20 0.19 

4.2 0.2 -0.10 0.30 0.10 

4.05 0.05 0.25 -0.20 0.02 

3.75 -0.25 -0.05 -0.20 -0.12 

3.6 -0.4 -0.3 -0.1 -0.19 
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 In fact, when only using animals’ phenotype, the ranking on EBV is the same as ranking on P. 
This will change when we also use P from relatives, or when P gets adjusted for non-genetic 
effects such as flock, sex, birth type, age. Therefore the correlation between EBV and A is 
also equal to h (square root of heritability). This is the expected accuracy for an EBV when 
using as information the phenotype of the individual. Hence, the accuracy is 0.69. 

 

 The variation in EBV is lower than the variation in A. See later in this lecture, 
 

 There is a prediction error on each EBV (being the difference between A and EBV). The 
estimation of EBV might seem very poor for individual animals, but as a criterion for achieving 
genetic change the EBV is the most efficient, as will be discussed later in this topic. Also 
realise that with more information, especially information on progeny, the EBV will be closer to 
A. 

 
In reality, we cannot see A, and therefore we will not know prediction error. The expectation of 
prediction error is zero (meaning that they are zero – on average). The size of the prediction error 
depends on the accuracy (see later in this topic). With more information available the prediction 
error becomes smaller, and the EBV will slowly move toward the true breeding value. With an 
accuracy of 1, the prediction error will be zero.  
 
An important thing to note is that the animal with the best EBV has no more chance to have a 
negative prediction error that the animal with the worst EBV, i.e. each animal has just as much 
chance to change upward than downward if more information becomes available. 
 

Correcting for fixed effects 
Estimation of breeding values has two aspects to it. This first is about deriving regression 
coefficients, i.e. how much about a piece of information do we attribute to breeding value. This will 
be discussed in more detail in the next topic. The other aspect is that breeding values should be 
based on fair comparisons between individuals, i.e. they should not be biased by the fact that some 
animals had more chance to realise a good phenotype than others. Systematic effects that affect 
phenotypes are called fixed effects, e.g. the effect of the animals’ sex, its herd (flock) or 
management group, the season it was born in, whether it was born as a single or twin, etc. For 
those fixed effects that are observable we can do a correction. This is in contrast to the random 
environmental effects “E” which we cannot observe, and cannot correct for. 
 
Correction for fixed effects will be discussed in more detail when we discuss linear models and 
BLUP. However, the principle is that for a fair comparison among animals, we need to consider 
their observed phenotype as a deviation of an expected mean, i.e. as a deviation of a 
contemporary group mean. 
 
A simple example can illustrate this concept. 

Ram Phenotype Flock Mean P EBV (h
2
 = 0.50) 

Bert 4.8 4.2 +0.6 +0.3 

John 4.5 3.8 +0.7 +0.35 

 
So although Bert is a heavier cutting ram, its EBV is lower. His heavier fleece weight was mainly 
because of being in a good flock. Correcting for fixed effects makes sense, and is the main reason 
why selecting on EBV is more sensible than selecting on phenotype. However, at the same time 
this creates a lot of confusion as breeders might wonder why their best looking animals do not have 
the best EBV. 
 
Note that it is possible that Bert’s flock used better rams, and in that case the correction would be 
unfair. However, in the BLUP procedure, there is a joint correction for flocks and rams used in 
these flocks, and BLUP would take such a thing into account (this was one of the main reasons 
why BLUP was introduced in dairy cattle evaluation in the 1970s). 
 
Besides correcting for fixed class effects, as above, we can also correct for continuous effects such 
as time since last shearing. In the example below, we use a correction for fleece weight of 0.4 
kg/month (assume that we have first estimated from data that fleece growth per month is 0.4 kg). 
Each animal is adjusted to a 12 month fleece weight, by adjusting their fleece weight according to 
time since last shearing. For example, Frank was shorn 11 months ago, and so his phenotype of 
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4.5 kg is only equivalent to 11 months of growth.  We expect he would cut 0.4 kg heavier if he had 
12 months of growth. Therefore, he gets 0.4 kg extra credit, and we put his corrected fleece weight 
at 4.9 kg.  Ben however hasn't been shorn for 13 months and so his phenotype of 4.6 kg has the 
equivalent of 1 month's extra wool growth (0.4 kg).  Thus 0.4 kg is removed from his fleece weight 
to give his corrected phenotype.  
 

Ram Phenotype 
Mths since 
last shorn 

Corrected 
Phenotype

1
 

P EBV (h
2
 = 0.50) 

Frank 4.5 11 4.9 +0.9 +0.45 

Ben 4.6 13 4.2 +0.2 +0.05 
 

1
assuming that fleece growth per month is 0.4 kg. 

 
 

 
2.2  Properties of estimating breeding values  
 

Accuracy of EBV 
 
The accuracy is defined as the correlation between true and estimated breeding value. The symbol 
for accuracy is  rIA.  
 

Since the EBV is often indicated as an Index (I), - see Topic 3- the true breeding value has symbol 
A and r is a common symbol for correlation. 
 

The accuracy is between 0 and 1 (or 0% and 100%). In the extreme case of no information, the 
accuracy of a breeding value is 0, and with a very large amount of information, the accuracy will 
approach 1. Table 2.3 shows examples of accuracy. It illustrates that: 
 

 Accuracy is higher when more information is used, e.g. from relatives and progeny 

 The accuracy is higher for traits with a higher heritability, but the effect of heritability becomes 
smaller with more information used 

 The accuracy of parent average depends on the parent EBV accuracy and not on heritability 
(but note that with low heritability it will be harder for a parent to achieve a certain accuracy) 

 The accuracy of information from collateral relatives (i.e. siblings) is limited to 0.5 for HS and 
0.71 for FS. A progeny test is required to obtain higher accuracies. 

 
Table 2.3  Accuracies of EBV depending on source of information used. 
 

Information used                  h
2
 = 0.10        h

2
 = 0.30 

 
Sire EBV (rIA=0.5)    0.25   0.25 
Sire EBV (rIA=0.9)    0.45   0.45 
Sire EBV (rIA=0.5) + Dam EBV (rIA=0.5)  0.35   0.35 
Sire EBV (rIA=0.9) + Dam EBV (rIA=0.5)  0.51   0.51 
 
Own Performance only    0.32   0.55 
OP+ Sire EBV (rIA=0.9)+ Dam EBV (rIA=0.5)  0.57   0.66 
 
Mean of 5 full sibs    0.32   0.48 
Mean of 10 half sibs    0.23   0.33 
OP + 5 FS + 10 HS    0.43   0.65 
 
Mean of 1000 half sibs    0.49   0.50 
Mean of 1000 full sibs    0.70   0.71 
Mean of 20 progeny    0.58   0.79 
Mean of 100 progeny    0.85   0.94 
Mean of 1000 progeny    0.98   0.99 
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Accuracies can be derived using selection index theory (see Topic 3). Here we only give a simple 
example for the derivation of accuracy of an EBV based on own performance: 
 

<for reference only> 
 

   EBV = I = h²P      
 
giving rIA =  is the correlation between estimated and true breeding value is corr(h

2
P, A). 

 

 = Cov h P A

V h P VA

h V

h V V

A

P A

( ² , )

( ² )
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  =  h V
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²
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h
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²

   =  h   

 

If the heritability is higher, EBV’s based on own performance records become more accurate.  
You can check in the example of Table 2.2 that the correlation between EBV and A is indeed 0.69 

 
 
It is good to realize that the accuracy of an animal’s EBV increases as it gets older, as more and 
more information will become available, see the example below (assumed h

2
 = 0.25). We can also 

see in Table 3a how a genomic test that can be done early in an animals life, adds more to the 
accuracy when there is not much other information available. 
 
Table 2.3a  Accuracies of EBV depending on source of information used. 

 

info used 
            heritability 10% 

  
heritability 30% 

  

  
no 

genomics genomics 
no 

genomics genomics 

DNA test only 0 0.22 0 0.39 

Parents records 0.22 0.31 0.39 0.51 

….+ 20 half sibs 0.35 0.40 0.49 0.58 

…..+own info 0.45 0.48 0.66 0.69 

…....+20 progeny 0.66 0.67 0.84 0.85 

...….+100 progeny 0.86 0.86 0.95 0.95 
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Variance among EBV 
 
The variance among EBVs is of practical value because:  
 

 it can give us an indication of the difference in EBV between the highest and lowest animals 

 It is used to predict selection differential, e.g. the average EBV of the best 10% of animals 
 
In general, the variance of EBVs can be written as depending on accuracy as well as additive 
genetic variance: 
 

  Var(EBV) = rIA²VA    
 

where rIA is the accuracy of the EBV. Hence, the variance of the EBV’s is equal to the accuracy-
squared multiplied by the variance of the true breeding values (additive genetic variance).  
 

 Therefore:   EBV = rIA 
A  is the standard deviation of EBVs 

 
 
It is useful to consider the following 
 
   If rIA = 0 then Var(EBV) = 0:   accuracy is zero, there is no information and all EBVs 
      have the same value (=0) 
 
   If rIA = 1 then Var(EBV) = 1:   Accuracy is one is a perfect accuracy (the correlation 
      between EBV and BV is one); the variance of EBV 
      is equal to the variance of breeding values.  
     All EBV should be equal to the true BV with 
      this accuracy, and there is no prediction error. 
 
Var(EBV) is generally smaller than VA 
  
Var(EBV) becomes larger when accuracy is higher, i.e. the EBV of older animals will be more apart 
than those of young animals. The same holds for EBV of intensely measured nucleus animals 
compared to the EBV of base animals that have less information and therefore EBVs closer to 
each other. 
 

Example:  Single trait/own performance case: 
 

Var(EBV)= Var(h²P) = h
4

VP= h²VA 
  
[ ... as  h² = VA / VP   VP= VA /h² ] 
 
In Table 2.2, the heritability is equal to 0.48, and the accuracy based on own performance EBV is 

0.48 = 0.69.  
 

We expect Var(EBV) = 0.48 VA and SDEBV = 0.69 A.  
 

Remember that A = 0.226  and VA = 0.051. 

Using the numbers from Table 2.2 we obtain Var(EBV) = 0.024 and EBV = 0.156.  
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Prediction Error Variance 
The Prediction Error Variance (PEV) gives insight into the amount of error, and therefore the 
distribution of the true breeding value – see Figure 2.2. For this distribution we use the standard 
deviation, which is the Standard Error of Prediction (SEP). The SEP of a breeding value is 
important as it can be used when assessing a change in an EBV when more information becomes 
available – how much can they still change? 
 
The prediction error variance (PEV) depends again on accuracy and is calculated as: 
 
  V(A - EBV) =  (1 – rIA²)VA 

 

And the Standard Error of Prediction (SEP) is (PEV) 
 

    
2(1 )IA Ar V   

 
Table 2.4. Example with phenotypes, underlying effects A and E, EBV and Prediction error (PE) 

and their variances. 
 

Observed Phenotype  
P A E EBV PE 

(Fleece Weight) 

4.4 0.4 0.20 0.20 0.19 -0.01 

4.2 0.2 -0.10 0.30 0.10 0.20 

4.05 0.05 0.25 -0.20 0.02 -0.23 

3.75 -0.25 -0.05 -0.20 -0.12 -0.07 

3.6 -0.4 -0.3 -0.1 -0.19 0.11 

    
  Standard Deviation 0.326 0.226 0.235 0.156 0.163 

Variance 0.106 0.051 0.055 0.024 0.027 

Mean 0.000 0.000 0.000 0.000 0.000 
 
Check  
 
 rIA = 0.69 
 

SDEBV = rIA A = 0.69*0.226 = 0.156 
 

and SEP 
2(1 )IA Ar V  = 0.163 

 
 
 
It is useful to consider the following: 
 

 when there is no information, and accuracy is 0: all EBV’s will be 0 and the variance of the 
prediction error is equal to VA. 

 when there is full information, the EBV will be equal to the true BV and the variance of the 
prediction error will be 0. 

 PEV becomes smaller with higher accuracy 

 Var(EBV) + PEV is equal to VA:  rIA² VA+(1 – rIA²)VA = VA . 
 
The prediction error of an EBV is important as it gives us an indication of the difference between 
the TBV and the EBV. This is important for example to answer questions like: how much could an 
EBV still change if we obtain more information on the animal. Changes in EBV’s are not good for 
the industry’s confidence in the genetic evaluation system. However, we have to realise that an 
EBV is never exact, unless the accuracy is 100%. We expect the TBV to be the same as the EBV, 
but there is a certain probability that it will be a bit different. The probability distribution of the TBV, 
given an EBV looks like Figure 2.2. 
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Figure 2.2  The distribution of true breeding value (TBV), given the estimated breeding value 
(EBV). The SD of the distribution is equal to the standard error of prediction (SEP). 

 
 
 
 
Take again the example where the best ram had an EBV for fleece weight of +0.19.  
 

 VA = 0.051 kg
2
; A = 0.226 kg; rIA = 0.69 and r

2
IA = 0.48.  

 

Then the SEP = (1-0.48).0.226 = 0.16  
 

If we would take a 95% confidence interval for the TBV we would take EBV 1.96 x SEP 
 

TBV is +0.19  1.96*0.16 is a range from -0.13 to 0.51.  
 
We see that even with a high heritability (and with rIA = 0.69), the TBV can deviate still quite a bit 
from the EBV and it is not surprising that EBVs still change as more information becomes known 
about an animal. Such information can come from relatives such as the sire, the dam, half and full 
sibs or progeny (and possibly even more distant relatives). Using information from progeny is the 
only way to obtain EBV’s with a very high accuracy. For example, dairy bulls often have thousands 
of progeny, and the accuracy of their EBV is close to 1. Such EBV’s are not expected to change 
anymore in subsequent genetic evaluations. In fact, if EBV’s are changing more than expected 
based on the PEV, this could be a sign that something is wrong with the evaluation procedure, e.g. 
a wrong model is being used. However, Table 2.4 and Figure 2.3 below show that even accurate 
EBVs can still change. 
 
Table 2.4 gives confidence intervals about the best ram’s breeding value for different accuracies. It 
illustrates that, even with high accuracy, confidence intervals are still quite large. However, one 
always needs to take Figure 2.2 in mind, showing that the highest probability about TBV is around 
the EBV. 
 
Table 2.5.  95% Confidence interval of TBV of the best ram (EBV = +0.19) for different 

accuracies (A = 0.226). 
 

Accuracy SEP lower 
thresh. 

upper 
thresh. 

0.51 (parent average)  0.19 -0.19 0.57 

0.67 (PA + Own Performance) 0.17 -0.14 0.52 

0.85 (PA + OP + 20 progeny) 0.12 -0.04 0.42 

0.95 (PA + OP + 100 progeny)  0.07 0.05 0.33 

0.99 (PA + OP + 600 progeny) 0.03 0.13 0.25 

0.999 (PA + OP + 6000 progeny) 0.01 0.17 0.21 

 
Table 2.4 might suggest that it is very useful to have a high accuracy. Also Figure 2.3 shows that 
we can only have a very high confidence about EBV when accuracies are extremely high. 
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However, it is wrong to conclude that only breeding animals with the highest accuracy should be 
used. In the next section we will see that response to selection depends linearly on accuracy. In 
optimising breeding programs, where we need to balance accuracy versus generation interval, it is 
often efficient to select younger animals and reduce generation interval while accepting lower 
selection accuracy. 
 

 
 

 
Fig 2.3. 95% Confidence Interval of True Breeding Value of best ram (EBV = +0.19) for different 

accuracies (A = 0.226). 

 
 

Response to selection 
Ultimately the main issue about EBVs is the response we may expect from selecting on them. 
 

The expected value of a selected group of animals - when selecting on EBV: 
 

Expected average EBV:  i.EBV 
 

Expected average true BV: i.EBV = i.rIA.A 
 
    Because the expected value of an EBV is 
     equal to the true BV, see Figure 2.2. 
 
The expected breeding value of a selected group is equal to selection response. 
 
Note that selection response depends directly (linearly) on accuracy. 
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The response is equal to the selection intensity multiplied by the SD of the EBV. 
  

 R =   i.EBV 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
More generally: 
 

Response =  i   rIA   A 

 
      Intensity              *            Accuracy               *      Genetic SD 

 
Often there is more information available on the selection candidates of one sex, and the accuracy 
of EBV’s may differ between sexes. Also, the selection intensity will differ. Furthermore, we are 
interested in a response per year rather than per generation. A more appropriate formula to predict 
selection response is therefore:  
 
Response per year 
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where subscripts m and f refer to males and females. 

Note that with a lot of information on each animal, EBV increases and so response increases. In 
other words, the response to selection is directly linked to the accuracy of EBV. It makes sense 
therefore, to increase the accuracy of EBV by including relatives’ information. This is particularly 
important if we select on traits with low heritability, since selection on own phenotype only (mass 
selection) is not very accurate in that case. Also, the use of family information can be very useful 
for traits which can be measured on one sex only, or they are measured very late in (or even after!) 
life (e.g. longevity, carcase traits). 
 

 
Predicted progeny performance based on parental EBV 
 
Expected breeding value of offspring:  
 
EBVoffspring = ½EBVsire + ½EBVdam 

 
Note that the expected phenotypic deviation and the expected genotypic value are equal to 
EBVoffspring, as progeny dominance deviation and environmental deviation are unknown and have 
'expectation' zero.  The term expectation means the average value of many possible outcomes of 
this event, of course one particular outcome has a good change to deviate somewhat around that 
expected value. 

EBV Response 
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Sometimes it is stated that the heritability of an EBV is equal to 1.  
 
This depends on the definition of heritability. The relevant definition in the  
context of selection response is: 
 

 "Proportion of parental superiority (in EBV) transmitted to progeny" 
 
This is equal to the regression of true breeding value on EBV (how much difference do we expect 
between progeny for a certain difference of EBV) (Figure 2.4). 
 

bA,EBV =   
cov( , )

1
var( )

IA

IA

r VAA EBV

EBV r VA
   

  
A selected animal is expected to pass half of this EBV superiority on to its progeny independent of 
the accuracy of that EBV.  
 

 

 
Figure 2.4  Regression of true breeding value A on EBV with high accuracy (left graph) and low 

accuracy (right graph) is (should be)  equal to 1 in both cases. 
 
 
 
Note that bA,EBV (the slope) is the same for high and low accuracy. The variance of inaccurate 
EBV’s is very low, and therefore the selection superiority based on inaccurate EBV’s will not be 
very high. 
 
An interesting problem is the following. Suppose that two rams have the same EBV, however, ram 
A has an accuracy of 95% (based on a progeny test) whereas ram B has an accuracy of 50% 
(based on parent average). Which ram should be selected? 
 
Most people would vote for animal A. However, both animals have the same expected value for 
their progeny. The range around this expected value is higher for animal B. However, progeny 
have just as much chance to be better than their expected value than to be worse. Therefore, 
whether you choose A or B depends on your attitude towards risk. A breeder that is interested in 
breeding the very best ram might be more interested in animal B, as he has more chance that his 
best son will be high. A commercial producer might be more interested in reducing risk and go for 
animal A. 
 
It might seem that EBVs are not of much value, as the confidence intervals about any prediction 
based on the EBV seems so large. However, again you should be reminded that ultimately, 
selection response depends linearly on selection accuracy. Table 2.5 illustrates a small simulation, 
where 10 rams are ranked on their EBV based on parent average. It shows their actual realised 
fleece weight as well as true BV and EBV based on own performance. For individual cases, there 
seem to be huge discrepancies.  However, when selecting the top 50% (best 5), we see indeed 
that selection response depends on selection accuracy, but even inaccurate EBVs provide a 
worthwhile response (Table 2.6). Predicted response (remember how this can be predicted?) and 
realized response are not exactly the same as for a small sample, the effect of individual outliers is 
relatively large. 
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Table 2.6  EBV based on parent average (EBV_PA), realised phenotype, EBV based on own 
performance (EBV_OP) and true breeding value for 10 rams for fleece weight. 
 

EBV_PA Phenotype EBV_OP True BV 

0.34 4.14 0.07 0.22 

0.29 4.51 0.25 0.56 

0.26 4.04 0.02 0.32 

0.23 4.20 0.10 0.00 

0.18 3.54 -0.23 0.17 

0.14 4.43 0.22 0.21 

-0.02 4.67 0.34 0.79 

-0.02 4.47 0.24 -0.08 

-0.23 3.14 -0.43 -0.38 

-0.40 3.91 -0.05 -0.02 
 
 

Table 2.7  Selection response based on EBV based on parent average (EBV_PA), EBV based 
on own performance (EBV_OP) or true breeding value (TBV) for top 50% of 10 rams for 

fleece weight (A = 0.5; h
2
=0.5). 

 

Selection On Accuracy Predicted Response
1
 Realised Response 

EBV_PA 0.45 +0.13 +0.25 

EBV_OP 0.71 +0.20 +0.30 

TBV 1.00 +0.28 +0.42 

 
1
 Response is calculated as the average TBV of the top 50% when ranking is based on each of the selection criteria. 

 

 
A graphical representation of the relationship between accuracy and response is given in Figure 
2.5
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Figure 2.5. Relationship between accuracy and selection response for low and high accurate EBV. 

Selection response is the average true breeding value (along y-axis) of the top 10% 
individuals selected on Estimated breeding value (EBV x-axis). Note also that the variance 
in TBV is the same, but the variance in EBV increases with accuracy.
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Summary  
Estimated Breeding Value - EBV is an estimate of the true breeding value, based on phenotypic 
differences between animals. EBVs can be estimated based on own performance, but also on 
performance of relatives. EBV is estimated as a regression of breeding value of phenotypic 
differences. The higher the heritability, the more of these differences are attributed to EBV. 
 
The accuracy of EBV is a key property. It is an indication of the selection efficiency.  The 
accuracy can range generally from 35-99%, with higher values for traits that have a higher 
heritability and when more information is used, e.g. more relatives’ information. To achieve 
accuracies above 70 %, information on progeny is required. The accuracy is used to predict the 
variation among EBV, the selection differential, and the prediction error. 
 
Best Linear Unbiased Prediction (BLUP) is the name of a method that is used worldwide to give 
estimated breeding values (EBV's) for commercially important traits. BLUP uses all available 
information to estimate an animal’s EBV and corrects for fixed effects. Further topics will provide 
more detail on BLUP and focus on the principles to understand the role of BLUP EBVs in animal 
breeding programs. 
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Glossary of symbols and terms 
 

 

rIA 

Accuracy of EBV 
The correlation between true and estimated breeding 
value 

 

VA 

Additive genetic 
variance

1
 

The variance in a trait due to the combined effects of 
genes with additive action 

h
2
 

Heritability 
Proportion of phenotypic difference that is transmitted 
to offspring  

 

EBV or Â 

Estimated Breeding 
Value  

Prediction of the additive genetic merit of an animal 

 
Fixed effects 

Systematic effects that affect the phenotype of an 
animal eg. its sex or its herd or flock 

 

VP 
Phenotypic variance

1
 

Variance in a trait due to the combined effects of 
genes and the environment 

P Phenotypic Standard 
Deviation 

Degree of differences in penotype 

 
Random effects 

The effects that impact on the phenotype of an animal 
that cannot be observed or corrected for eg 
environmental effects 

 
Regression

1
 

A procedure that measures the direction and strength 
of an association between two characters 

 Residual variance
1
 Variance in a trait due to non-genetic effects 

 

TBV or A 
True Breeding Value   

The additive genetic merit of an animal.  Cannot be 
directly, only estimated (EBV) 

PEV Prediction Error 
Variance 

Standard Deviation of the error on an estimated 
breeding value 

Var() Variance Amount of variation about a variable  

Cov() 
Covariance 

Amount of difference in one variable that can be 
predicted from variation in another. 

1
 Glossary terms taken from Simm (2000). 

 
 
 


