14: Genetic groups

Chapter 14

Genetic Grouping
Julius van der Werf

Accounting for genetic group effects

A mode for genetic evaluation needs to account for genetic groups when the animals in the data set
come from widdy divergent sources. The mixed mode assumes that the breeding values to be
estimated come from a homogeneous population (E(u) = 0), and dl have the same expected mean,
that isfor the animas with unknown parents (the expectation of animas with parents known is equa
to the parentdl average EBV). Animals without parents are called ‘base animas’, and if they are not
from a homogeneous population, genetic groups are needed to distinguish between different genetic
levels of base animas.

Notice that the reationships matrix takes care of al genetic differences due to selection snce the
base population. For example, in andlyzing data of a selection experiment with ahigh and low line,
but both semming from the same base population, genetic groups are not needed as long as pedigree
and datasince the start of sdection isincluded in the andysis. Genetic groups are therefore needed
for those cases where we can’t explain genetic differences between animals by pedigree and data.
Thisistypicdly the case if animds arise from different breeds or populations.

Consider Finnsheep (F, average litter Size about 3) mixed in with Merinos (M, lucky to get one).
Litter 9zeisalowly heritable trait, and so any genetic evauation ignoring breed will regressdl EBV's
to close to the average - dearly wrong, asthe breed effect on litter Szeis strong and rdligble.

The solution isto fit anima source as afixed effect. With ongoing breeding, individua animas can be
amixture of sources - but thisis not aproblem. Hereisan example of entriesin the X matrix for the
F(@inn) and M(erino) fixed effects:

Type of animd F effect M effect
Hnn 1 0
Merino 0 1

FxM Yo 12

M X (FxM) Y 34

Examples of genetic groupings are:
- breed origin
- animasimported — by country of origin
- animds birth year

The EBV of an animd isnow the sum of it's EBV (random effect) estimate within the group, with
added to that the genetic group effect. For example, if the fixed effect estimate of Fis+0.7
compared to M, animds fully belonging to the Finn breed get 0.7 added to their random within breed
breeding vaue, so that EBV’ s of Finns and Merino’s can be directly compared.

Additive genetic modelswith groups. Modified equations

The outline with genetic groups as fixed effects as outlined above is sraightforward if al animals
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belonged only to one genetic group. However, often they belong to two or more genetic groups,
snce the parents can be from different origin. In a crossbreeding context, an anima can have a
Merino dam, and his Sire can be a cross of Border Leicester * Poll Dorset.

Quaas (1988) has presented the basic Structure of additive genetic reationships within a population.
Based on this structure, rules for cresting the relationships matrix were derived. Thistheory can be
extended to the Situation of having different means for different groups of base animals, leading to a
coherent and operationaly smple gpproach to the problem of genetic grouping in anima eva uations.

The problem to be dedt with isthat not al base animals have equa means or, in other words, equal
expectation. Redlize that usudly in mixed modds the expectations of the random effectsis equa to 0.
When breeding values of animasdo not have the same expectation, e.g. because animads arefrom
different breeds, the problem can be solved by incorporating genetic groups in the mode!.

Hence, instead of the model y=Xb+Zu+ ¢,
we used the model y=Xb+ZQg+Za+e.

The vector g refersto fixed group effects and the vector a referred to random animd effects within
genetic groups. The matrix Q relates animas to groupsand ZQ relates records to groups.
The estimated breeding vdue is

(=Qg +4

and the mixed mode iswell defined again because the expectation of the vector of random effects is
equd to 0. In fact, records are linked to fixed group effects, and random effects are predicted after
correction for fixed groups.

The expectation is Ea= 0 and var(a)= As?, and the vector of breeding vaues for animas across
groupsis U = Qg + & Becausein thismodd g is just a common fixed effect, the mixed mode
equations would be:
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These equations are in principle correct in the sense that it takes into account thet al animds arein
different ways related to the genetic groups. In practice such equation would cause problems, unless
a systematic way is found to creste the Q matrix. Thiswas solved by Quaas by 1) writing the above
equations in another way which he cdls 'modified equations and 2) by redizing that modified
equations can be set up by smplerules.

The modified equations are derived by pre-multiplying the coefficient matrix and the right hand Sde in
(2) by
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These modified equations have a number of advantages. Firgtly, the off-diagona blocks of groups by
fixed effects are zero, asistheright hand side for groups. Secondly, the solutions to the animals
within groups are giving across group breeding vaues (u rather than a). This has an important
numerica advantage in solving mixed modd equations. However, the main breskthrough of these
modified equationsistheingght it givesinto aflexible way to define genetic groups. From the
equations, you can see that the grouping equations look very Smilar to equations of animas with no
data. The only coefficients are related to the relationship matrix. Thiswas noted by Quaas (1988)
and he discovered that thisis akey to defining genetic groups for dl animas. Aswe seein the next
section, the genetic groups are like ancestors and every animd will have arelationships through such
an ancestor through its pedigree. Thisgives a‘naturd way’ to define group effects (the Q matrix),
something that could otherwise become very tedious, as we see next.

Assigning animalsto genetic groups

Groups can then be defined e.g. according to the breed and/or the birth year of the base animd. The
problem with such amoded would be to define the incidence matrix for groups, i.e. how observations
on animas are related to groups. For example, an animal could have ancestors (base animas) from
different breeds and these ancestors could be born in different years. The breeding vaue (and the
record) of such an anima would then be linked for say 0.25 to the mean of breed 1 in year 1998 and
for 0.25 to breed 2 in year 2002, and for 0.50 to breed 2 in year 2004. Because we basically want
to derive the contribution of each group relevant to the genetic make up of each animal that we want
to evduate, it would be an advantage if we could make use of rules for defining these coefficients
sysematicdly, smilar to the systematic way of ancestors contributing to an anima through the
pedigree. From the rdlationship of a certain animal to the groups we want to derive the relationship of
its progeny to these groups. The procedure developed by Quaas (1988) shows such a systematical
gpproach in avery eegant way.

Base animds, for whom in principle we can not determine their pedigree, will have to be assigned to
genetic groups, according to their suspected origin. In the grouping strategy proposed by Quaas, not
the base anima's themselves ar assigned to groups, but they are assigned unknown ‘dummy’ parents,
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who ar assigned to groups. Such dummy parents are indicated asphantom parents For example, an
average milking cow could have assgned a“phantom” dre to the group “ Sires born between 1985
and 1990", wheressiits dam would be assgned to “cows bornin 1992”. If we assign dl such
phantom parents to a genetic group, equd to their expectations, than descendents are linked to
genetic groups through the pedigree. In fact, we can treat phantom parents as normd part of the
pedigree (i.e. usng Henderson's rules fro the coefficients). This creates a very flexible framework to
assign animals to genetic groups.

The modd iswritten as.

awlt _ €0 Ol éul
g u— e e u- e u
éud  éP, Pléud ewd 3

where P, relates the animds to the unknown parents and P relates the known animas as in 1.
Furthermore, the expectation of unknown parents is E(u,) = Q,g, Where g is a vector with genetic
group effects and Q,, assigns base animds to genetic groups. The expectation of u, i.e. the vector of
breeding vaues of known animals is then:

E(u)= (I-P)*PoE(us) = (I-P)P,Qug= Qg (Quaas, 1988).

Quaas shows with numericd examples that the matrix Q exactly relates the breeding vaues of dl

known animds to the genetic group effects. Hence, if there are n animals and p genetic groups, than
Qisan x p matrix and the (i,j)™ dement of Q reflects the fraction of the genes of animd i are
originating from group j. Hence, genetic groups are like ancestors. As with ‘red pedigree, it is not
necessary to work out all relationshipsin a pedigree. Only direct relationships are taken into account,
and other relationship are automatically implied, was we have see with rules for building A-inverse.
Smilaly, we do not need to worry about genetic groups of animals that have parents known, as their
expected genetic mean is determined by the parent average. Only animals with one or two unknown
parents need an assgnment to a genetic group, or better, the missng parents needs ke placed in a
group where it most likely belongsto

Rules for genetic grouping are derived from the same rules as those for building the (inverse)
reldionship matrix. If parents are known, we proceed as before, with the normd rulesfor the
relaionship matrix. If one or two parents are unknown, we define a genetic group for that unknown
parent and treat that genetic group as an ancestor. The only difference with ared ancestor isthat
genetic groups are fixed effect whereas real ancestors are treated as random

The rulesto creste grouping equations are summarized as

= Assign phantom parents to base animas
(if only one parent known, assign another phantom parent
= Deermine for each phantom parent to which genetic group it belongs
= Build the mixed mode equations using the pedigree, including phantom parents
The matrix A® is obtained by the usud rules for obtaining the inverse of the relationship
matrix. A lig of pedigrees, conssting of only actuad animals, but with unknown ancestors
assigned D groups is set up. For the i" animd, caculate the inverse (b) of the variance of
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Menddian sampling as

b = 4/(2 + number of parents of animd | assigned to groups)
Then add:

b to the (i,i) element of A

-b/2tothe(i,9), (i,d), (si) and (d,i) dements of A
b/4tothe (s;9), (sd), (d,s) and (d,d) elementsof A*

Note that when both parents are known, none has to be assigned to groupsand b, = 2. The
coefficients added are then 2, -1 and %, i.e. the usud coefficients for the NRm for 2 parents known.
If only one parent is known, b= 4/3 and the coefficients are 4/3, -2/3 and 1/3, i.e. again the same as
the case for NRM with one parent known. If no parents are known, both need assignment to groups
andb; = 1. Theelementsadded are 1, -Y2and 1/4 .

Thelogicisthat if two parents are known, haf of the variance of the breeding value has dready been
explained, leading to a coefficient of 2 (inverse of ¥z the variance of the Menddian sampling term)) to
the animas diagond. If the anima has no parents known, and his ancestry is explained by groups
(e.g. abreed), none of the animas BV has been explained and leading to a coefficient of 1. This
digtinction between ‘fixed groups and ‘random real ancestors iseasier to maintain, and in away less
relevant, if the groups consst of many ‘ phantom parents, i.e. if they have many ‘progeny’. In that
cass, the difference between random and fixed will be smdl (asit iswith sres with many progeny).
Butif groups are made up of phantom parents of just one animd, the digtinction is not easy to
maintain. This leads to the conclusion that there are some theoretica arguments about fitting group
effects as random rather than fixed.
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Example (from Mrode, 1996)

By way of example the modifications of a pedigree structure needed to set up the above NRM is
shown.

Calf Sre Dam
1 unknown unknown
2 unknown unknown
3 unknown unknown
4 1 unknown
5 3 2
6 1 2
7 4 5
8 3 6

This can be rewritten assigning unknown sres to one group and unknown dams to another group.

Cdf Sire Dam
1 Gl G2
2 Gl G2
3 Gl G2
4 1 G2
5 3 2

6 1 2

7 4 5

8 3 6

The NRM is then congtructed using the above rules, in this case n = 8 animals and p = 2 groups. The
solutions to the modified MME have a problem in that the genetic group effects are il fixed effects
and some redtrictions on their solutions may be needed.

In the example, there are different groups for sres and dams, as sdected sSres may have a different
(usudly higher) genetic merit than the average of selected dams. However, there is some danger here,
as group solutions could become confounded. In this example, if animd 4 was discarded, it would
not be possible to estimate a difference between G1 and G2, and the coefficient matrix would be
sngula.
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Genetic Evaluation acr oss Breeds

Many genetic evaluation systems are for one breed at atime. Sometimes thereis agood Setitica
reasons for this, that animas from different breeds are hardly ever found on the same farm, let done
in the same contemporary (management) group. In that case, breed effects can not be estimated from
the data, and an across breed evauation is not justified. A second reason might be more politicd, as
some genetic evaluations are organized by breed societies, that have no interest in crossbreeding or
comparing themselves with other breeds (especidly if they might look lessfavourable). From a
neutral perspective it would be best to evaluate animals always across breeds and have good
linkages between breeds (many farms with more than one breed). In that case, sdlection cabe
optimized across breeds, and use of genetic resources should be optimal (although there are some
interesting optimization problems here for anima breeders).

The main issues to consider with across breed evauation are

0 Modding and estimating the breed differences
0 Modeling and estimating crossbreeding effects
0 Modding and estimating differences in variances between breeds

Breed differences (additive genetic effects between breeds) can be dedlt with through appropriate
genetic grouping. Whether the breed effects are accuratdly estimable depends on the digtribution of
different breeds across te different management groups. Breed comparisons can only be made based
on data on different breeds within the same fixed effect level (e.g. of contemporary group)

Note that often, both direct and materna breed effects need to be estimated. For the latter we aso
need dams of different breeds to be compare in the same herd.

Non additive genetic effects (between breeds)

In the analysis of data across populations, one might expect nonadditive effects. Depending on the
crossbreeding group, different coefficients for dominance (or heterosis) and epistatic (or
recombination) effects are expected. A straightforward way to account for such effectsisto include
them in the modd as linear regression coefficients (Van der Werf and De Boer, 1989). The additive
genetic breed effects will be aregresson of phenotype on proportion of genes of a particular breed in
the anima making the record. Smilarly, dominance is related to heterozygosty of the animas
genome. For example, the heterog's coefficient for an animd with aSre having p; as a proportion
from breed A and 1- ps from breed B, and a dam with coefficient pyand 1-pg, would be equal to
Ps.(1-pg) + (1-pg).pe Thisiseasy to see asit predicts the proportion of ‘ heterozygous dleles .

Dam dldes

Sredldes Prop. Breed A Prop breed B
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Pd 1-py
Proportion from breed A Ps Ps. Py Ps-(1-Pa)
Proportion from breed B 1-ps (2-ps)-pd (1-ps) -(1-pa)

Thereisardaively smple extenson to coefficients for multiple breeds, athough gives an additiona
complication that AXB heterosis may not be the same as BXC heteross, etc.

The coefficient for epistasisisrelaed to heterozygosity of the parents genome. This can be derived
ase.g. asps(1-ps) + pa(1-py). Thiscoefficient would represent what is dso known as
‘recombination loss (Dickerson, 1969). However, there are severa epistatic models possible,
depending on the actud dléelic actions and interactions tat are hypothesized (see Kinghorn, 1983). In
any case, additive and non-additive effectsin crossbreeding data should be accounted for as these
effects influence the mean (as first moments) and genetic evauation would be baised if they were not
accounted for.

A problem is often that not al crossbreeding types are evenly (or even at dl) represented. The
regresson modd is not very robust to such sub-optima designs. Depending on the dataset, one might
‘pre-edimate- crosshreeding effects and pre-correct the data. In estimating crossbreeding effects, is
useful to check the estimability of the crossbreeding parameters (often A, D and E have a quite high
sampling corrdation). It isaso useful to compare aregresson modd with amode with each
crossbreeding type as afixed effect. The latter modd does not rely on any assumptions of genetic
effect in the modd. If the expected mean for a particular crossbreeding group from the regression
model deviates from the breed group model (other than by sampling), than the regresson model
might lack a certain effect (e.g. maternd effect or heteross).

Finaly, when looking a crossbreeding models at single, or two locus leve, it is quickly clear that
different crossbred groups can be expected to have different genetic variance (both additive and non-
additive). To some extent, the infinitesma genetic modd is not competible with dominance and
inbreeding depression (see next).

Conclusion

In andysis of crossbred data, the first worry isto have the firss momertsright, i.e. the moded hasto
account for breed effects and possible non-additive effects like heterogs and recombination loss. It is
important here to redlize that breed differences are additive effects and should be added on to within
breed effects of additive effects, in order to obtain across breed EBV's.

A second, and of secondary importance, worry isto have the variancesright. The fewer loci in the
underlying genetic mode, the more change that different genotypes (crossbred groups) have different
genetic variance. However, as mogt traits are assumed to be regulated by alarge number of loci, and
as breed differences (and allele frequencies) are generaly not expected to be very high (unless for
more extreme crosses), it may be reasonable to assume homogeneity of variance across crossbred
groups.
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Exercises 1.

1) Consder thefallowing data

Animd gre dam  breed performance
1 0 0 Jersey 220
2 0 0 Jersey 260
3 0 0 HF 280
4 0 0 HF 320
5 1 2 Jersey 240
6 3 4 HF 300

Set up mixed mode equation with groups according to the regular MME
Set up the modified mixed modd equations

Discuss the interpretation of the group solutions as ‘ phantom parents
Note the matrix Q' * A and discuss the meaning of this.

2) Repeet thefirgt exercise with the following deta

Animd 9re  dam  breed performance
1 0 0 Jersey 220
2 0 0 Jersey 260
3 0 0 HF 280
4 0 0 HF 320
5 1 4 Xbred 265
6 3 2 Xbred 275

Exercise 2

In the following example, set up mixed modd equations. Condder only effects of breed. Determine
breed contribution of each anima and aso EBV'’s *across breeds .

Calf Sre Dam % Angus %Neore Yearling Wgt
1 unknown unknown 100 0 320
2 unknown unknown 0 100 280
3 unknown unknown 50 50 310
4 1 unknown 50 50 304
5 3 2 follows from above 307
6 1 2 follows from above 296
7 4 5 follows from above 302
8 3 6 follows from above 314
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