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Chapter 18 
Multiple Trait Genetic Evaluation 

Julius van der Werf 

Multi trait mixed model 
This is an extension of the single trait case.   Data on a number of traits are available in 
Y, and EBV's are calculated for each trait.  The results are generally different from what 
would be got from a number of separate single-trait BLUPs, because each trait is used to 
help give information about all other traits, much as with a selection index. In a later 
chapter, the multiple trait BLUP procedure will be worked out in more detail. The benefit 
form multiple trait models comes from 
§ more accuracy as information from correlated traits is used 
§ less bias as the analysis will take into account that for traits that are measured 

after sequential rounds of selection, only the better ones are evaluated.  
 

An example of potential selection bias . Compare a good bull and a bad bull, each having 40 progeny at 
weaning. From the good bull, no progeny are culled, whereas from the bad bull 50% is culled. Comparing 
the progeny of these bulls at post-weaning will give a huge advantage to the bad bull, as his bad progeny 
have been removed. Multi-trait BLUP would correct for this bias. 
 
For  the genetic evaluation of the animals, we can use information which is available on 
all traits. Originally the main reason for using information on all traits was to obtain more 
accurate evaluations. With using information on correlated traits the accuracy of the 
estimated breeding value increases. A second advantage arose later, namely a multiple 
trait analysis is the only way to obtain unbiased estimates for a trait, which is observed 
only on animals selected based on values of a correlated trait. A model including 
information of the correlated trait, on which selection was based, is able to correct for this 
type of selection.  An example of this is the evaluation of the second lactation 
productions of dairy cows where selection has been practised based on the first lactation. 
Only animals that survived the first lactation have a second lactation record, and those are 
usually only the better animals. Other examples are the analysis of piglets born in second 
litter, or the analyses of yearling weight after animals have been selected for weaning 
weight. 
Taking again as a starting point the mixed model in its general form:  

y = Xb + Zu + e. 
With more traits we can now partition the observation vector y in a part for each trait. The 
same can be done with the associated environmental effects. The vector of breeding values 
is also partitioned for the different traits, so that each animal has a breeding value for each 
trait in the analysis.  
For a 2-trait example, the vector y1 represents the n1 observations for trait 1 and y2 
represents  n2 observations for trait two. For each trait we can write a mixed model: 

yi = Xibi + Ziui + ei , 
where there are pi  fixed effects associated with trait i so that Xi is an ni x pi matrix and bi is 
a pi x 1 dimensional column vector. Xi and Zi are incidence matrices for fixed effects and 
random effects for trait i, respectively. 
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The multiple trait model can be represented as follows: 

Notice that not all animals necessarily have an observation for both traits. Some animals 
may be represented in y1 but not in y2, or vice versa. All animals, however, are represented 
with a breeding value for each trait in the analysis, irrespective whether they had an 
observation for that trait. The vectors y1 and y2 (and e1 and e2) are therefore not necessarily 
of the same length, but u1 and u2 are always equally long (with the  number of elements 
equal to the number of animals in the analysis). 
To obtain the mixed model equations for estimating fixed effects b and breeding values u, 
we need to specify the covariance matrices R and G associated with the vector e = (e1, e2 )' 
of residual errors and the vector u = (u1 , u2 )' of random effects. 
 
For the breeding values we can write  
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Each part of G is obtained by multiplying the relationships matrix with either the variance 
of a trait (diagonal blocks   gii.A) or the covariance between the traits (off diagonal blocks 
gij.A) where gij is an element of G0. . The covariance between the breeding value of trait i 
on individual k and the breeding value of trait j in individual l is the additive genetic 
covariance between traits i and j multiplied by the additive genetic relationship between 
individuals k and l. 
 

  Multiple Trait Mixed Model Equations 
 
The mixed model equations for a multiple trait model can be written according to the 
general principle of setting up mixed model equations. However, they are extended for the 
G- and the R-matrices. 
For the mixed model equations we will need the inverse of G. In te multiple trait mixed 
model this becomes: 
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and  where g ij  is (i,j)-element of the inverse of  the 2 by 2 genetic covariances matrix G0 
and  A-1 is the inverse of the relationships matrix as it can be setup directly. 
 
The residual covariance matrix R has the same form, but A is replaced by an identity 
matrix I assuming there are no correlations between the residuals of different animals. 
While residual deviations for a given trait measured on different individuals are often 
assumed to be uncorrelated, this is not necessarily the case for different traits measured on 
the same individual. The phenotypic correlation between traits is often the result of 
correlation between genetic as well as environmental effects. When all traits are measured 
on all individuals (n1=n2=n), the covariance matrix between e i and e j can be written as σ(ei 
,e j)=rijI, where rij = σe(i,j) is the environmental covariance between traits i and j as 
expressed in the same individual. The resulting n.2 x n.2 variance-covariance matrix for the 
total error vector e = (e1, e2 )' becomes: 
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where rij is i-j element of the inverse of the 2 by 2 environmental covariances matrix 
between the two traits: R0.  

 The set of multiple trait mixed model equations are given in the next figure. It is not 
the idea to memorise these equations, but to give you a how single trait mixed model 

equations are ‘blown up’ to multiple trait mixed model equations. This has a rather large 
impact on the number of equations that has to be solved. Roughly, computer time for 
solving multiple trait mixed models goes up quadratically with the number of traits! 
If not all traits are recorded for all animals, the inverse of the residual covariance matrix R 
becomes a bit trickier. The reason is that animals with one record only do not have a 
residual covariance with another trait. The covariance matrix between the residuals of the 
different traits (σ(e1, e2)) can no longer be written as a diagonal matrix (a multiple of I ). 
When some observations are missing, the matrix X1

' can not be directly multiplied with X2, 
i.e. the number of columns (= n1 ) does not correspond with the number of rows (= n2 ). 
This can be solved by using X1

'r12I12X2 where I12 identifies when two observations are on 
the same individual (only in those case we have an environmental covariance). When both 
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traits are measured on all animals I12 = I and X1r 12I12X2 reduces to X1
'r12X2. 

The rules for building up multiple trait mixed model equations are outlined hereafter, as a 
reference for the further interested reader. 
 
Rules for building mixed model equations: 
(this section is only for reference) 
 
For small examples the mixed model equations can be build from the corresponding design 
matrices. For larger data sets, however, this becomes complicated. Rules have been 
developed to build the mixed model equation without explicitly setting up the design 
matrices. These rules for building the mixed model equations with a multiple trait model 
(per animal) are: 
1)  If both y1 and y2 are known for an animal;  
 The values for r11, r12, r21, and r22 are added to the particular sections for each trait in 

the fixed and random part of the coefficient matrix.  For instance for 2 effects (herd 
and animal), we have to add these four numbers  to each of X’X, X.Z, , Z'X and 
Z'Z . To the vectors with the totals (right hand sides) we add r11y1 + r12y2 and r12y1 
+ r22y2 to each trait partition of the two vectors (X'y and Z'y).  

 In a single trait model, we would  have added only one figure to the 4 partial 
matrices for a trait.  For the totals (right hand sights), we would add only y to the 
partial vectors for herd and animal.  

2)  When only one observation for one trait on the animal is available; 
 The values (r11)-1 or (r22)-1 are added to each of the relevant partial matrices in the 

coefficient matrix, while y1(r11)-1 or y2(r22)-1 are added to the relevant parts of the 
right hand sides. 

3)  Independent of the pattern of traits measured, we add the relationships matrix 
multiplied by gij to the i-j block of the random effects of the coefficient matrix. 
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 Example of a Multiple Trait Model 
 
Consider a situation where we have the following measurements on 6 unrelated and non-
inbred individuals, performing in two different herds. Both traits on an animal are 
measured in the same herd. 

Individual Herd Trait 1 Trait 2 
1 1 160 - 
2 1 180 320 
3 1 210 330 

4 2 190 - 
5 2 228 360 
6 2 210 350 

 
The phenotypic standard deviations for weaning weight and yearling are 20 and 40 kg, 
respectively, the heritabilities are 0.42 and 0.39 and the genetic correlation is 0.769. The 2 

by 2 matrix with additive genetic covariances  (within an individual) are: 
 
The within- individual environmental covariances are: 

The design matrices for the first trait are straightforward. Z1 is an identity matrix since all 
animals have a record for the first trait. For the second trait, however, more attention is 
needed. The matrix Z2 has one column for each breeding value (i.e. 6 columns) and one 
row for each observation (i.e. 4 rows) which results in: 

The right hand side (RHS) for the example are (transposed):  
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The first 4 elements are for the fixed effects (2 herds for 2 traits). 
The values are all scaled by multiplying with residual (co)variances. For example: the 
RHS-value for the second animal for the first trait (6th element) is obtained as:  
r11y12 +  r12y22 = 0.0068*180 + (-0.002)*320 = 0.584,  where y12 (=180) and y22 (=320) are 
the record for the first and second trait for the second animal. The first animal has only the 
first trait measured, and its RHS value (5th element) becomes 
(r11)-1 y11 = 0.0043*160 = 0.69. Notice that when an animal has only one trait recorded, we 
multiply it by  (r11)-1  (the inverse of the 1-1 element of the residual covariance matrix) and 
not by r11 (the (1,1)-element of the inverse of the residual covariance matrix). Notice also 
that animals with no record for a given trait have a zero in the RHS. 
 
The solutions for the fixed effects and the multiple trait BLUP EBV’s are: 
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where b1 are the solutions for the herd effects for weaning weight, and u1 are EBV’s for 
weaning weight, and b2 and u2 refer to yearling weight. 
 
When performing two single trait evaluations for the two traits the following solutions were 
found for  Single Trait BLUP: 
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Notes to the solutions: 
1) The average breeding value for both traits is equal to zero within herd. This is to 

be expected because animals are assumed to be unrelated. This illustrates that it is 
impossible to make a fair comparison of the average breeding value of animals in 
herds when there are no genetic ties (e.g. offspring from a common sire). 

 

2) Animal 1 has no observation for trait 2. Consequently its breeding value is entirely 
based on the information from the correlated trait 1. Animal 1 has a value for trait 1 
which lies below the herd average and as a result of the positive genetic correlation 
between traits its breeding value is also below average, i.e. negative. The same is 
true for animal 4 in herd 2. 

 
3) The single trait breeding values (and fixed effect solutions) deviate from the 

multiple trait solutions. As to be expected the single trait breeding values of 
animal 1 and 6 for yearling weight are equal to zero. There is no information to 
estimate the breeding value and consequently the animals get the average 
breeding value. The difference in breeding value for yearling weight between 
animal 2 and 3 (and between 5 and 6) is larger in the multiple trait case.  The 
reason is that the information from weaning weight (the correlated trait) gives 
additional evidence that these animals are different in breeding value. 

 

4) The difference between the average herd effect for weaning weight and yearling 
weight is larger in the single trait analysis. In fact, this difference is overestimated, 
since is it biased by the fact that for yearling weight we only recorded the best 
animals (=selection). The multiple trait evaluation takes this into account. From 
using the information on the first trait, the model knows that only the better animals 
had a yearling weight measured. 

 
 

5) In the multiple trait EBV’s we see that the animals that were not culled have an 
average EBV’s above zero.  This makes sense, because from the information on 
trait 1 we know that these are actually the better animals. Single trait evaluation 
would not use information on weaning weight, and consider the yearlings that were 
weighted as average animals. This shows that multiple trait evaluation is able to 
correct for sequential selection. 

 
 
  Advantages of Multiple Trait BLUP evaluation 
 
In general, using the multiple trait model gives an increase in accuracy of estimated 
breeding values. Furthermore, in many cases it is the only way to correct for selection on 
correlated trait.   
The importance of increase of accuracy by using extra information, i.e. the importance of 
using a multiple trait (MT) model, depends on several aspects: 
 
- the information available on each animal  
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If few or no observations are available for a particular trait, using observations on another 
trait when both traits are genetically correlated can increase the accuracy. 
- parameter structure 
If genetic and environmental correlations are small, the multiple trait model has few 
advantages. Furthermore, in a situation with a high h2, only a few observations are needed 
for an accurate estimate of the breeding value.  In other words, information of other traits is 
less important in that case.  Besides, the difference between rg and re is important; the larger 
the difference, the larger is the contribution of a correlated trait to the reduction of the 
Prediction Error Variance.  The contribution of correlated traits to the accuracy of 
estimating breeding values can be examined with the selection index method. 
 
- correctness of parameters; 
In multiple trait model we make use of estimated values of the genetic parameters 
(heritabilities, correlations). This variance-covariance (VCV) matrix has to be checked on 
incorrectness (or consistency).   
Schaeffer (1984) discussed the effects of incorrect estimated parameters. He distinguished 
two kinds of mistakes. First, the VCV matrices may not be valid, i.e. within the parameter 
space. A valid VCV matrix, by definition, is a positive definite matrix. This can be checked 
by looking at all the eigenvalues of the matrix.  Eigenvalues of covariance matrices all have 
to be positive, making the matrix “positive definite”. The second and most common 
mistake, mentioned by Schaeffer, is that estimates used in the model, could be greatly 
different from the underlying true values.  Assume that the true parameters give the 
maximum response of selection.  The realised response then depends on the difference with 
the parameters used, namely (rg- r̂g) and (re-r̂e).  
In this respect, it is good to realise that single trait models are MT models with the 
assumption that r̂ e =r̂ g = 0. Therefore, inaccurate correlations are often still closer to the 
true values than zero correlations! 
 
- Correction for selection  
The example illustrated selection on sequentially recorded traits leads to culling and 
missing records for traits that are recorded in a later stage. Multiple trait evaluation was 
able to avoid selection bias. 
This reflects a more general rule, also applicable in single trait genetic evaluation, that to 
avoid selection bias, all information that was used to base selection decisions on, should 
be included in the analysis. This is not only the case with missing records in sequentially 
recorded traits. Assume the situation when two traits are recorded simultaneously, and all 
animals have records for all trait, but selection is only for one of the traits. Single trait 
evaluation of one trait only would lead to biased EBV’s and generally to an 
underestimate of the genetic trend for the correlated trait (although this depends on the 
genetic and environmental correlation between the traits). Since selection is usually on an 
index (a linear combination on all traits), single trait evaluation leads to incorrect 
estimates of the genetic trend in most of the cases!  
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Computational considerations  
Computer requirements quickly increase with the application of multiple trait BLUP 
genetic evaluation procedures. Suppose we want to carry out a 5-trait BLUP analysis. The 
multiple trait mixed model equations require nearly 25 times more coefficient to be handled 
compared to single trait BLUP. Solving the mixed model equations when multiple traits are 
present can be greatly simplified by constructing a transformation for the traits being 
considered (this is called ‘canonical transformation’). This transformation constructs a new 
set of uncorrelated variables, which can be analysed in independent single trait evaluations. 
Such a transformation is possible when all animals had observations for all traits. Recently, 
algorithms have been developed to handle transformations also for the case of missing 
observations on some traits. Multiple trait models can still be quite cumbersome if more 
random effects are included (e.g. maternal effects for some traits.  However, The 
combination of more efficient computing algorithms with the rapid increase of computing 
power  has lead to a situation that multiple trait BLUP is the method of choice for more and 
more genetic evaluation systems.  
 
Software  
There are software packages available that can be used to implement multiple trait 
genetic evaluations. A  commonly used package for breeding value estimation  is PEST 
(Prediction and ESTimation) written by Groeneveld et al. (1994). A more versatile and 
increasingly used package is ASREML (Gilmour et al., 1996: This package is most 
suitable for estimation of genetic parameters in animal breeding data for a wide variety of 
models. There are also genetic evaluation services around that provide the whole package 
of delivering multiple trait EBV’s.  
 
An ASREML example: 
 
bwt wwt~ Trait at(Trait,1).bt at(Trait,2).rt Trait.dage !r Trait.anim!f Trait.grp  
1 2 1     #R struct: 1 site, dimension Ro, 1 G structure 
0     #order R (?), ASREML figures out if put to zero 
2 0 US 12 0 14 !GP       # order Ro, 0, model, starting_values 
Trait.anim 2    #G structure: model term, dimension  
2 0 US 4.9 0 4.5 !GP    #order Go, 0, model starting_values  
anim 
 
In the model statement, some effects are fitted for both traits: Trait.dage 
Other effects are fitted for one trait only    at(Trait,2).rt 
!GP means that the matrix (R of G) has to be positive definite 
 
A multi-trait model can also have more random effects, e.g. a maternal effect: 
 
bwt wwt~ Trait at(Trait,1).bt at(Trait,2).rt Trait.dage !r Trait.anim Trait.dam !f 
Trait.grp  
1 2 1     #R struct: 1 site, dimension Ro, 1 G structure 
0 0 ID    #nrec (= outer dim. Of R), ASREML figures out if put to 
zero 
Trait 0 US 12 0 14 !GPUP     # order Ro (equal to nr. of traits), 0, model, start_values 
Trait.anim 2    #G structure: model term, dimension  
4 0 US !GP    #order Go, 0, model starting_values  
4.9  
2 9.5  
0 0    4.5  
0 0    2   4.2 
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anim 0 AINV 
 
 
The G0 has now dimension 4. The definition of the G0  can be spelled out in some more 
detail: 
 
4 0 US 4.9 2 9.5 0 0 4.5 0 0 2 4.2 !GPUPFFPFFUP 
 
4  order of Go 
0  always a zero here 
US  unstructured Go  
4.9   following is lower Go starting values 
2 9.5  
0 0 4.5  
0 0 2 4.2  
!GPUPFFPFFUP      indicating whether the components should be Positive, 
    Unstructured, or Fixed at the starting value 
 
 
the same line could be replaced by: 
4 0 US !+10 !GPUPFFPFFUP 
4.9   following is lower Go starting values 
2 9.5  
0 0 4.5  
0 0 2 4.2  
 
!GPUPFFPFFUP    could be replaced by !GP if we simply want Go to be 
positive definite   
 
 


