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Chapter 18

Multiple Trait Genetic Evaluation
Julius van der Werf

Multi trait mixed model

Thisis an extension of the singletrait case. Data on a number of traits are availablein
Y, and EBV's are calculated for each trait. The results are generally different from what
would be got from a number of separate single-trait BLUPS, because each trait is used to
help give information about al other traits, much as with a selection index. In a later
chapter, the multiple trait BLUP procedure will be worked out in more detail. The benefit
form multiple trait models comes from

* more accuracy asinformation from correlated traits is used

» |essbias as the analysis will take into account that for traits that are measured

after sequential rounds of selection, only the better ones are evaluated.

An example of potential selection bias. Compare a good bull and a bad bull, each having 40 progeny at
weaning. From the good bull, no progeny are culled, whereas from the bad bull 50% is culled. Comparing
the progeny of thesebulls at post-weaning will give a huge advantage to the bad bull, as his bad progeny
have been removed. Multi-trait BLUP would correct for this bias.

For the genetic evauation of the animals, we can use information which is available on
all traits. Originally the main reason for using information on all traits was to obtain more
accurate evaluations. With using information on correlated traits the accuracy of the
estimated breeding value increases. A second advantage arose later, namely a multiple
trait analysisis the only way to obtain unbiased estimates for atrait, which is observed
only on animals selected based on values of a correlated trait. A model including
information of the correlated trait, on which selection was based, is able to correct for this
type of selection. An example of thisisthe evaluation of the second lactation
productions of dairy cows where selection has been practised based on the first lactation.
Only animals that survived the first lactation have a second lactation record, and those are
usually only the better animals. Other examples are the analysis of piglets born in second
litter, or the analyses of yearling weight after animals have been selected for weaning
weight.
Taking again as a sarting point the mixed model in its general form:
y=Xb+ Zu+e.

With more traits we can now partition the observation vector y in a part for each trait. The
same can be done with the associated environmental effects. The vector of breeding values
is also partitioned for the different traits, so that each animal has a breeding vaue for each
trait in the analysis.
For a 2-trait example, the vector y; represents the n; observations for trait 1 and y»
represents np observations for trait two. For each trait we can write a mixed mode:

yi=Xibi+ Ziu + &,
where there are p; fixed effects associated with trait i so that X; isan i X p matrix and by is
ap x 1dimensiona column vector. X; and Z are incidence matrices for fixed effects and
random effects for traiti, respectively.
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The multiple trait model can be represented as follows:

e u= é uéut é ueua* éq
8.0 860 X.0 éxd 60 Zz0 ard &0

Notice that not all animals necessarily have an observation for both traits. Some animals
may be represented in y; but not in y», or vice versa. All animals, however, are represented
with a breeding value for each trait in the analysis, irrespective whether they had an
observation for that trait. The vectorsy; and y, (and e; and e;) are therefore not necessarily
of the same length, but u; and W, are dways equaly long (with the number of elements
equal to the number of animalsin the anayss).

To obtain the mixed model equations for estimating fixed effects b and breeding values u,
we need to specify the covariance matricesR and G associated with the vector e = (e1, €)'
of residua errors and the vector u= (u , Uz)' of random effects.

For the breeding values we can write

If 5% is the genetic variance of trait i, and s g; is the genetic covariance between the two
traits (within one animal), we can define a 2 by 2 genetic covariance matrix

2 ..
G =B Sa?
0 2 =
éngl SgZZﬂ

Each part of G is obtained by multiplying the relationships matrix with either the variance
of atrait (diagonal blocks g;.A) or the covariance between the traits (off diagonal blocks
g;A) where gj is an element of &, . The covariance between the breeding value of trait i
onindividual k and the breeding value of trait j in individua | is the additive genetic
covariance between traitsi and j multiplied by the additive genetic relationship between
individualsk and |.

Multiple Trait Mixed Model Equations

The mixed moddl equations for amultiple trait model can be written according to the
genera principle of setting up mixed model equations. However, they are extended for the
G- and the R-matrices.
For the mixed model equations we will need the inverse of G. In te multiple trait mixed
model this becomes:
1 12 .

G'= & G 2 where G' = g/A?,

gG 21 G 22 ﬂ
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and where g’ is(i,j)-element of the inverse of the 2 by 2 genetic covariances matrix Go
and A isthe inverse of the relationships matrix as it can be setup directly.

The residual covariance matrix R has the same form, but A is replaced by an identity
matrix | assuming there are no correlations between the residuals of different animals.
While residual deviations for a given trait measured on different individuas are often
assumed to be uncorrelated, thisis not necessarily the case for different traits measured on
the same individual. The phenotypic correlation between traits is often the result of
correlation between genetic as well as environmenta effects. When all traits are measured
on all individuals (ny=r,=n), the covariance matrix between e; and ; can be written as s (g
,6)=rijl, whererij = s ¢(i,j) is the environmental covariance between traits i and j as
expressed in the sameindividual. The resulting n.2 x n.2 variance-covariance matrix for the
total error vector e = (e, €2)' becomes:

: €t rtto

andtheinverseis R'* =g a
21 22

aglr= Ir<g

where P is i eement of the inverse of the 2 by 2 environmental covariances matrix
between the two traits: Ro.

és(er.e) S(el’ez)l;'_ él la |I‘12l;|

R=¢ g=é g
8(e.e) S(ee)d @ra lrxl

The set of multiple trait mixed model equations are given in the next figure. It is not
the idea to memorise these equations, but to give you a how single trait mixed model

éleI’lle Xier X 2 Xier * Z1 Xier 2 Z2 gébll:l §X1¢(r11y1+ rlzyz)l;l
é uz=-- e u
= S8 0 % p
X aer X1 Xaer 2X 2 X2er® 21 X2erZZ2 Uahoa SXodr?y, +r¥y,)u
) ag7 e € a
1 Uz, - é ’
- éu1ll me(l’llyl"' I‘lzyz)L'J
€ l;lé G e u
€ 21 2 2. 2 4 Uy, o~ € 2 2, U
8Zar " X1 Zool X2 ZoaPZit 9T AT Zar®Zot g7 AT U &Zodr? 'yt r¥y,)i

gzmrllxl Zlcr 12X2 an'llzl"' gllA-l Zl¢r1222+ gle-

equations are ‘blown up’ to multiple trait mixed model equations. This has a rather large
impact on the number of equations that has to be solved. Roughly, computer time for
solving multiple trait mixed models goes up quadratically with the number of traits!

If not all traits are recorded for all animals, the inverse of the residua covariance matrix R
becomes a bit trickier. The reason is that animals with one record only do not have a
residual covariance with another trait. The covariance matrix between the residuals of the
different traits (s (e1, &)) can no longer be written as adiagona matrix (amultipleof 1 ).
When some observations are missing, the matrix X, can not be directly multiplied with Xo,
i.e. the number of columns (= ny ) does not correspond with the number of rows (= ).
This can be solved by using X1 r*215X» where | 1, identifies when two observations are on
the same individua (only in those case we have an environmental covariance). When both
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traits are measured on al animalsl i, = | and Xir 115X, reduces to X; rH2Xs.
The rules for building up multiple trait mixed model equations are outlined heresfter, as a
reference for the further interested reader.

Rulesfor building mixed model equations:
(thissection is only for reference)

For small examples the mixed model equations can be build from the corresponding design
matrices. For larger data sets, however, this becomes complicated. Rules have been
developed to build the mixed model equation without explicitly setting up the design
matrices. These rules for building the mixed model equations with a multiple trait model
(per animal) are:

1)

2)

3)

If both y; and y» are known for an animd;

The values for r'?, r'2, 1, and r*? are added to the particular sections for each trait in
the fixed and random part of the coefficient matrix. For instance for 2 effects (herd
and anima), we have to add these four numbers to each of X'X, X.Z, , Z'X and
ZZ . To the vectors with the totals (right hand sides) we add r''y; + r'?y, and r'2y,
+ r*?y, to each trait partition of the two vectors (X'y and Z'y).

In asingle trait model, we would have added only one figure to the 4 partia
matrices for atrait. For the totals (right hand sights), we would add only y to the
partial vectors for herd and animal.

When only one observation for one trait on the animal is available;

The values (r11)™ or (r22)” are added to each of the relevant partial matricesin the
coefficient matrix, while yi(r11)™ or ya(r22)* are added to the relevant parts of the
right hand sides.

Independent of the pattern of traits measured, we add the relationships matrix
multiplied by d' to the i-j block of the random effects of the coefficient matrix.
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Example of a Multiple Trait Model

Consder a situation where we have the following measurements on 6 unrelated and non-
inbred individuas, performing in two different herds. Both traits on an anima are
measured in the same herd.

Individual Herd Trait1 Trait 2
1 1 160 -

2 1 180 320

3 1 210 330

4 2 190 -

5 2 228 360

6 2 210 350

The phenotypic standard deviations for weaning weight and yearling are 20 and 40 kg,
respectively, the heritabilities are 0.42 and 0.39 and the genetic correlation is 0.769. The 2

¢l69 250u . , 2, €.0145 -.0058u
0= @ g Which correspondswith G, = a q
©50 6250 &.0058 .0039Y

by 2 matrix with additive genetic covariances (within an individual) are:

The within-individua environmental covariances are;

5231 285 4 .0068 -.0020y
R, =S 53 which correspondswith Ro'lzg OUL,J
€285 9750 & .0020 .0016u

The design matrices for the first trait are straightforward. Z; is an identity matrix since al
animals have arecord for the first trait. For the second trait, however, more attention is
needed. Thematrix Z, has one column for each breeding value (i.e. 6 columns) and one
row for each observation (i.e. 4 rows) which resultsin:

€© 10 0 0 Oy
& U
ZZ:é)Olooo@
% 00 0 10U
é U
€ 00 0 0 10

The right hand side (RHS) for the example are (transposed):
[205 238 0271 0272 069 058 077 082 083 073 0 016 011 0O 013 015
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The first 4 elements are for the fixed effects (2 herds for 2 traits).

The vaues are al scaled by multiplying with residua (co)variances. For example: the
RHS-value for the second animal for the first trait (6" element) is obtained as:

rtty, + r2y, = 0.0068* 180 + (-0.002)* 320 = 0.584, where i, (=180) and y», (=320) are
the record for the first and second trait for the second animal. The first animal has only the
first trait measured, and its RHS value (5" element) becomes

(r12)* y11 = 0.0043* 160 = 0.69. Notice that when an animal has only one trait recorded, we
multiply it by (r1)™ (theinverse of the 1-1 element of the residual covariance matrix) and
not by r** (the (1,1)-element of the inverse of the residual covariance matrix). Notice also
that animals with no record for a given trait have a zero in the RHS.

The solutions for the fixed effects and the multiple trait BLUP EBV’s are:

b= [183 209] b,=[309 342]

é-9.860) & 14580
é ¥ é 0
& 100(J & 2.87(J
€10.86Y € 1172u
u = € u u = € u
& 8170 & 12.084
e u e u
g 7.70g g 935
& 047H g€ 2734

where bl are the solutions for the herd effects for weaning weight, and u; are EBV’ sfor
weaning weight, and b, and u, refer to yearling weight.

When performing two single trait evaluations for the two traits the following solutions were
found for Single Trait BLUP:

Singletrait : bh,=[183 209] b.=[325 355

é& 9.86( é 0 u

é u é u

& 1410 & 1950

_ 811274 8195 (

U, — é l:l W = é L,J
& 817y e 04
€789 U €195 0

e u e u
&028 & 195
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Notes to the solutions:

5)

1)

2)

3)

4)

The average breeding value for both traits is equal to zero within herd. Thisisto
be expected because animals are assumed to be unrelated. Thisillustrates thet it is
impossible to make a fair comparison of the average breeding value of animalsin
herds when there are no genetic ties (e.g. offspring from a common sire).

Animal 1 has no observation for trait 2. Consequently its breeding value is entirely
based on the information from the correlated trait 1. Animal 1 has avalue for trait 1
which lies below the herd average and as a result of the positive genetic correlation
between traits its breeding value is d so below average, i.e. negative. The same is
true for animal 4 in herd 2.

The single trait breeding values (and fixed effect solutions) deviate from the
multiple trait solutions. As to be expected the single trait breeding values of
animal 1 and 6 for yearling weight are equal to zero. There is no information to
estimate the breeding value and consequently the animals get the average
breeding value. The difference in breeding value for yearling weight between
animal 2 and 3 (and between 5 and 6) is larger in the multiple trait case. The
reason is that the information from weaning weight (the correlated trait) gives
additional evidence that these animals are different in breeding value.

The difference between the average herd effect for weaning weight and yearling
weight is larger in the single trait analysis. In fact, this difference is overestimated,
snceisit biased by the fact that for yearling weight we only recorded the best
animals (=selection). The multiple trait evaluation takes this into account. From
using the information on the first trait, the model knows that only the better animals
had a yearling weight measured.

In the multiple trait EBV’ s we see that the animals that were not culled have an
average EBV’ s above zero. This makes sense, because from the information on
trait 1 we know that these are actually the better animals. Single trait evaluation
would not use information on weaning weight, and consider the yearlings that were
weighted as average animals. This shows that multiple trait evaluation is able to
correct for sequential selection.

Advantages of Multiple Trait BLUP evaluation

In general, using the multiple trait model gives an increase in accuracy of estimated
breeding values. Furthermore, in many cases it is the only way to correct for selection on
correlated trait.

The importance of increase of accuracy by using extra information, i.e. the importance of
using amultiple trait (MT) model, depends on several aspects:

- the information available on each animal
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If few or no observations are available for a particular trait, using observations on another
trait when both traits are genetically correlated can increase the accuracy.

- parameter structure

If genetic and environmental correlations are small, the multiple trait model has few
advantages. Furthermore, in a situation with a high I, only afew observations are needed
for an accurate estimate of the breeding value. In other words, information of other traitsis
less important in that case. Besides, the difference between rq and re is important; the larger
the difference, the larger is the contribution of a correlated trait to the reduction of the
Prediction Error Variance. The contribution of correlated traitsto the accuracy of
estimating breeding values can be examined with the selection index method.

- correctness of parameters;

In multiple trait model we make use of estimated values of the genetic parameters
(heritabilities, correlations). This variance-covariance (VCV) matrix hasto be checked on
incorrectness (or consistency).

Schaeffer (1984) discussed the effects of incorrect estimated parameters. He distinguished
two kinds of mistakes. First, the VCV matrices may not be valid, i.e. within the parameter
space. A vaid VCV matrix, by definition, is a positive definite matrix. This can be checked
by looking at all the eilgenvalues of the matrix. Eigenvalues of covariance matrices al have
to be positive, making the matrix “positive definite”. The second and most common
mistake, mentioned by Schaeffer, is that estimates used in the model, could be greatly
different from the underlying true values. Assume that the true parameters give the
maximum response of selection. The realised response then depends on the difference with
the parameters used, namely (rg-fg) and (re-fe).

In this respect, it is good to realise that single trait models are MT models with the
assumption thatf ¢ = g = 0. Therefore, inaccurate correlations are often till closer to the
true values than zero correlations!

- Correction for selection

The example illustrated selection on sequentially recorded traits leads to culling and
missing records for traits that are recorded in a later stage. Multiple trait evaluation was
able to avoid selection bias.

This reflects a more general rule, aso applicable in single trait genetic evaluation, that to
avoid selection bias, al information that was used to base selection decisions on, should
be included in the analysis. Thisis not only the case with missing records in sequentialy
recorded traits. Assume the situation when two traits are recorded simultaneously, and all
animals have records for all trait, but selection is only for one of the traits. Single trait
evaluation of onetrait only would lead to biased EBV’s and generally to an
underestimate of the genetic trend for the correlated trait (although this depends on the
genetic and environmental correlation between the traits). Since selection is usually on an
index (alinear combination on al traits), single trait evaluation leads to incorrect
estimates of the genetic trend in most of the cases!
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Computational considerations

Computer requirements quickly increase with the application of multiple trait BLUP
genetic evaluation procedures. Suppose we want to carry out a 5-trait BLUP analysis. The
multiple trait mixed model equations require nearly 25 times more coefficient to be handled
compared to single trait BLUP. Solving the mixed modd equations when multiple traits are
present can be greatly smplified by constructing a transformation for the traits being
considered (thisiscalled ‘ canonical transformation’). This transformation constructs a new
set of uncorrelated variables, which can be analysed in independent single trait evaluations.
Such atransformation is possible when al animals had observations for al traits. Recently,
algorithms have been developed to handle transformations a so for the case of missing
observations on some traits. Multiple trait models can still be quite cumbersome if more
random effects are included (e.g. maternal effects for some traits. However, The
combination of more efficient computing algorithms with the rapid increase of computing
power has lead to a Situation that multiple trait BLUP is the method of choice for more and
more genetic evaluation systems.

Software

There are software packages available that can be used to implement multiple trait
genetic evaluations. A commonly used package for breeding value estimation is PEST
(Prediction and ESTimation) written by Groeneveld et al. (1994). A more versatile and
increasingly used package is ASREML (Gilmour et al., 1996: This package is most
suitable for estimation of genetic parameters in animal breeding data for a wide variety of
models. There are also genetic evaluation services around that provide the whole package
of delivering multiple trait EBV’s.

An ASREML example:

bwt wwt~ Trait at(Trait,1).bt at(Trait,2).rt Trait.dage !r Trait.aninmf Trait.grp

121 #R struct: 1 site, dinension Ro, 1 G structure
0 #order R (?), ASREM. figures out if put to zero
20Us 120 14 'GP # order Ro, 0, nodel, starting_val ues
Trait.anim 2 #G structure: nodel term dinension
20US49045!Cc #order Go, 0, model starting_values

ani m

In the model statement, some effects are fitted for both traits: Trait.dage

Other effects are fitted for one trait only at(Trait,2).rt

IGP means that the matrix (R of G) has to be positive definite

A multi-trait model can also have more random effects, e.g. a maternal effect:

bwt wwt~ Trait at(Trait,1).bt at(Trait,2).rt Trait.dage !r Trait.anim Trait.dam!f
Trait.grp

121 #R struct: 1 site, dinmension Ro, 1 G structure
00ID #nrec (= outer dim O R, ASREM. figures out if put to
zero

Trait O US 12 0 14 ! GPWP # order Ro (equal to nr. of traits), 0, nodel, start_values
Trait.anim 2 #G structure: nodel term dinension

4 0US!'@ #order Go, 0, model starting_values

4.9

2 9.5

00 4.5

00 2 4.2
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animO0 Al NV

The Gy has now dimension 4. The definition of the & can be spelled out in some more
detail:

40US4.929.5004.500 2 4.2 !GPUPFFPFFUP

4 order of Go

0 al ways a zero here

us unstructured Go

4.9 following is lower Go starting val ues

2 9.5

004.5

0024.2

I GPUPFFPFFUP i ndi cati ng whet her the conponents should be Positive,

Unstructured, or Fixed at the starting val ue

the same line could be replaced by:

4 0 US !+10 ! GPUPFFPFFUP

4.9 following is lower Go starting val ues

2 9.5

004.5

0024.2

! GPUPFFPFFUP could be replaced by !GP if we sinply want Go to be

positive definite
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