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Chapter 19 

Analysis of longitudinal data 

-Random Regression Analysis 
Julius van der Werf 

1 Introduction 
 In univariate analysis the basic assumption is that a single measurement arises 
from a single unit (experimental unit). In multivariate analysis, not one measurement but 
a number of different characteristics are measured from each experimental design, e.g. 
milk yield, body weight and feed intake of a cow. These measurements are assumed to 
have a correlation structure among them. When the same physical quantity is measured 
sequentially over time on each experimental unit, we call them repeated measurements, 
which can be seen as a special form of a multivariate case. Repeated measurements 
deserve a special statistical treatment in the sense that their covariance pattern, which has 
to be taken into account, is often very structured. Repeated measurements on the same 
animal are generally more correlated than two measurements on different animals, and 
the correlation between repeated measurements may decrease as the time between them 
increases. Modeling the covariance structure of repeated measurements correctly is of 
importance for drawing correct inference from such data.  

Measurements that are taken along a trajectory can often be modeled as a function 
of the parameters that define that trajectory. The most common example of a trajectory is 
time (longitudinal), and repeated measurements are taken on a trajectory of time. 
However, there could be other variables defining the trajectory, e.g. by location (spatial), 
environmental determinants (moisture, temperature, humidity) or physiological 
determinants (fat versus a trajectory of weight). 

The term ‘repeated measurement’ can be taken literally in the sense that the 
measurements can be thought of as being repeatedly influenced by identical effects, and it 
is only random noise that causes variation between them. However, repeatedly measuring 
a certain characteristic may give information about the change over time of that 
characteristic. The function that describes such a change over time may be of interest 
since it may help us to understand or explain, or to manipulate how the characteristic 
changes over time. Common examples in animal production are growth curves and 
lactation curves. 
  Generally, we have therefore two main arguments to take special care when 
dealing with repeated measurements. The first is to achieve statistically correct models 
that allow correct inferences from the data. The second argument is to obtain information 
on a trait that changes gradually over time.  

Experiments are often set up with repeated measurements to exploit these two 
features. The prime advantage of longitudinal studies (i.e. with repeated measurements 
over time) is its effectiveness for studying change. Notice that the interpretation of 
change may be very different if it is obtained from data across individuals (cross sectional 
study) or on repeated measures on the same individuals. An example is given by Diggle 
et al. (1994) where the relationship between reading ability and age is plotted. A first 
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glance at the data suggests a negative relationship, because older people in the data set 
tended to have had less education. However, repeated observations on individuals 
showed a clear improvement of reading ability over time.  

The other advantage of longitudinal studies is that it often increases statistical 
power. The influence of variability across experimental units is canceled if experimental 
units can serve as their own control.  

Both arguments are very important in animal production as well. A good example 
is the estimation of a growth curve. When weight would be regressed on time on data 
across animals, not only would the resulting growth curve be more inaccurate, but also 
the resulting parameters might be very biased if differences between animals and 
animals’ environments were not taken into account.  
 Models that deal with repeated measurements have been often used in animal 
production. In dairy cattle, the analysis of multiple lactation records is often considered 
using a ‘repeatability model’. The typical feature of such a model from the genetic point 
of view is that repeated records are thought of expressions of the same trait, that is, the 
genetic correlation between repeated lactation is considered to be equal to unity. Models 
that include data on individual test days have often used the same assumption. Typically, 
genetic evaluation models that use measures of growth do often consider repeated 
measurements as genetically different (but correlated) traits. Weaning weight a nd 
yearling weight in beef cattle are usually analyzed in a multiple trait model.    
 Repeatability models are often used because of simplicity. With several 
measurements per animal, they require much less computational effort and less 
parameters than a multiple trait model. A multiple trait model would often seem more 
correct, since they allow genetic correlations to differ between different measurements. 
However, covariance matrix for measurements at very many different ages would be 
highly overparameterised. Also, an unstructured covariance matrix may not be the most 
desirable for repeated measurements that are recorded along a trajectory. As the mean of 
measurements is a function of time, so also may their covariance structure be. A model to 
allow the covariance between measurements to change gradually over time, and with the 
change dependent upon differences between times, can make use of a covariance 
function.  
 As was stated earlier, repeated measurements can often be used to generate 
knowledge about the change of a trait over time. Whole families of models have been 
especially designed to describe such changes as regression on time, e.g. lactation curves 
and growth curves. The analysis may reveal causes of variation that influence this 
change. Parameters that describe typical features of such change, e.g. the slope of a 
growth curve, are regressions that may be influenced by feeding levels, environment, or 
breeds. There may also be additive genetic variation within breeds for such parameters. 
One option is then to estimate curve parameters for each animal and determine 
components of variation for such parameters. Another option is use a model for analysis 
that allows regression coefficients to vary from animal to animal. Such regression 
coefficients are then not fixed, but are allowed to vary according to a distribution that can 
be assigned to them, therefore indicated as random regression coefficients. 
 We will present models that use random regression in animal breeding. Typical 
applications are for traits that are measured repeatedly along a trajectory, e.g. time. 
Different random regression models will be presented and compared. The features of 
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random regression models and estimation of their parameters will be discussed.  
 Alternative approaches to deal with repeatedly measured traits along a trajectory 
are the use of covariance functions, and  use of multiple trait models. These approaches 
have much in common, since they all deal with changing covariances along a trajectory. 
Different models that allow the study of genetic aspects of changes of traits along a 
trajectory will be presented and discussed. 

 

2    Exploring correlation patterns in repeated 
measurements  
 
There are several ways to explore the correlation structure in repeated measurements 
Diggle et al. (1994) . Graphical displays can be very useful to identify patterns relevant to 
certain questions, e.g. the relationship between response and explanatory variables. 
Figures 2-1, 2-2, and 2-3 (adapted from Diggle et al. 1994) illustrate this by showing 
graphs for body weight in 5 pigs as a function of time. Figure 2-1 shows the lines 
connecting the weights on an individual pig in consecutive weeks. This graph shows that 
(1) pigs gain weight over time, 2) pigs that are largest at the beginning tend to be largest 
at the end, and 3) the variation among weights is lower at the beginning than at the end.  
 The second observation is important in relation to correlation structure, and has 
important biological implications. Figure  2-2 gives a clearer picture of the second point. 
By plotting deviations from the mean, the graph is magnified. In Figure 2-2, we observe 
that lines do cross quite often, and rankings do change for different times on the axis. 
Measurements tend to cross less in the later part of the experiment, i.e. correlations might 
be higher in later part of the trajectory. With many individuals, it is more difficult to 
interpret such graphs.  
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Figure 2.1. Body weight for 5 pigs measured at 9 consecutive weeks 
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Figure 2-2. Residual body weight (deviation from week mean) for 5 pigs measured at 9 

consecutive weeks 
 
Exact values such as correlations between measurements at different time points can not 
be obtained from graphs like in Figure 2-1. When observations are made at equally 
spaced times, associations between repeated measurements at two fixed times are easily 
plotted and measured in terms of correlations. With unequally spaced observations,  this 
is less evident. Diggle et al. (1994) suggest to use a variogram. This is a function that 
describes the association among repeated values and is easily estimated with irregular 
observation times. A variogram is defined as 
 
γ ( ) [{ ( ( ) ( )} ],u E y t y t u u= − − ≥1

2
2 0  

 
where γ ( )u  describes the squared differences between measurements that are u time 
units apart. The variogram is calculated from observed half- squared differences between 
pairs of residuals,  
 
   v r rijk ij ik= −1

2
2( )  

 
and the corresponding time differences 
 
    u t tijk ij ik= −  
 
where yij is the  jth observation on animal i, and  residuals are r y E yij ij ij= − ( ) ,  i.e. they 

can be calculated as deviations from contemporary  means. If the times are regular, $( )γ u  

is estimated as the average of all v ijk  corresponding to the particular u. With irregular 
sampling times, the variogram can be estimated from the data pairs (uijk,vijk) by fitting a 
curve A variogram for the example of  Figure 2-2 is given in Figure 2-3. As an example, 
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the point for u=8 is obtained as the average of the half- squared differences between the 
residual for the first and the 9th observation  on the five pigs:  
 

$( ) {( ) ( )} /. .γ u y y y yi i
i

= = − − −
=

∑8 51
2 1 1 9 9

1

5
2 , 

 
where y j.  is the average of the jth observation. 
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Figure 2-3. Variogram for the pig example, showing γ ( )u  (gama(u)) for u=1,…8 (u= 

distance between measurements in weeks)    
 
A structure often used in repeated measurements to describe the correlation matrix is the 
autocorrelation structure. We can define autocorrelation as the correlation between two 
measurements as a function of the distance (in time) between the measurements. 
The autocorrelation function can be estimated from the variogram as 
$( ) $( ) / $ρ γ σu u= −1 2 , where $σ 2  is the ‘process variance’, which is calculated as the 

average of all half squared differences  1
2

2( )y yij lk−  with i≠ l. 

 There exist several types of correlation models. In a uniform correlation model, 
we assume that there is a positive correlation ρ  between any two measurements on the 
same individual (independent of time). In matrix terms the correlation matrix between 
observation on the same animal is written as   
    V I J0 1= − +( )ρ ρ   
where I is the identity matrix and J is a matrix with all elements equal to 1. The uniform 
correlation model is used in what is generally called a ‘repeatability model’ in animal 
breeding.  
 In the exponential correlation model , correlations between two observations at 
the same animal at times j and k are  
   v t tjk j k= − −σ φ2 exp( | |) .  
In this model, the correlation between a pair of measurements on the same individual 
decreases towards zero as the time separation between measurements increases. The rate 
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of decay is faster for larger values of φ . If the observation times are equally spaced, than 
the correlation between the jth  and the kth  measurements can be expressed 
asv jk

j k= −σ ρ2 | | , where ρ φ= −e . Sometimes the correlation decreases slow initially, 

and then decreases sharply towards zero. Such behaviour may be better described by a 
Gaussian correlation function: 
    v t tjk j k= − −σ φ2 2exp( ( ) ) . 
 The exponential correlation model is sometimes called the first order 
autoregressive model. In such a model, the random part of an observation depends only 
on  the random part of the previous observation: ε ρεj j jz= +−1 , where z j is an 
independent random variable. Models where random variables (e.g. errors) depend on 
previous observations are called ante-dependence models, and a when random variable 
depend on p previous variables we have a pth order Markov model.  
 
 In general we can distinguish three different sources of random variation that play 
a role in repeated measurements (Diggle et al., 1994): 
• Random effects. When the units on which we have repeated measurements are 

sampled at random from a population, we can observe variation between units. Some 
units are on average higher responders than other units. In animal breeding, an obvious 
example of such effects are animal effects, or more specific, the (additive) genetic 
effects of animals.  

• Serial correlation. This refers to part of the measurement that is part of a time varying 
stochastic effect. Such an effect causes correlation between observations within a short 
time interval, but common effects are less correlated if measurements are further 
away.  

• Measurement error. This is an error component of an observation which effect is each 
time independent of any other observations. 

 
 If a model is build that accommodates these three random effects, the variance 
structure of each of the effects needs to be described. Diggle et al (1990) give a general 
formula for the variance  of observations on one experimental unit as 
 
  var( )ε σ τ= + +v J H I2 2 2      [2.1] 
 
where v 2 2,σ andτ 2  are variance components for the three random effects, J is  a matrix 
with ones, and H is specified by a correlation function.   
 This model given in [2.1] often used in analysis of longitudinal data. In fact, 
model [2.1] is not at all general. The random effects are assumed to be constant over all 
measurements within a unit. If we think of this effect as a the genetic effect of an animal 
we can imagine very well these to vary between ages (over time), and this may even bear 
our special interest. Therefore, J should be replaced by a correlation function. The serial 
correlation effect may be seen as the temporary environmental effects often used in 
animal breeding data. For both the random and the serial correlation effect, the question 
is how the correlation (c.q. covariance-) function should be defined.  
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 The patterns as described in this section, and as often use in the statistical 
literature, show smooth functions that seem natural for many stochastic processes. 
However, the additive genetic effect on a trait over time maybe more irregular. For 
example, some genes could be mainly active during the first 4 months of growth of a pig, 
with high correlations between measurements within this period, but other genes may 
take over during the last month. Also the permanent environmental effect does not 
necessarily follow the pattern of the correlation structures shown in this section.  In dairy 
cattle, the permanent environmental effect might be explained by differences between 
raising of animals before first calving, possibly having a large effect on the first part of 
lactation, and only then gradually decreasing. We could therefore require a method used 
to describe the change of covariances over time to be flexible, and not relying on 
predefined structures.  
 A flexible approach is to define a function for the covariance structure that is 
based on regression. The next section will describe the development of covariance 
functions based on regression on orthogonal polynomials. Like polynomial regression is 
suitable and flexible for fitting linear function of the means, it can be used to fit 
covariance structures. Alternatively, models to fit covariance structures over time could 
be based on time variables defined based upon a biological model (e.g. growth and 
lactation curves). Such models will be presented in a later section, when random 
regression will we discussed.  
  

 
Random Regression Models 

 
Random regression models can typically be used when a trait is expressed repeatedly, e.g. 
over time or in different environments. In that case, the effect changes gradually along a 
trajectory of time, or of some other continuous variable (temperature, elevation, rainfall.  
For simplicity, we think of the expression of body weight as a function of time. If the 
random effects are modeled as a function of time, then both the variance as the 
covariance between expression at different times are modeled as a continuous function. 
Note that previously we often modeled repeated measures of weight as multiple traits, 
e.g. weaning weight, post-weaning weight, yearling weight. The advantage of random 
regression is that traits can be measured at any point along a trajectory, i.e. at any age, 
and we do not have to chop this up in distinct traits.  
 In linear models we are used to fitting weight as a regression of age. This is often 
a fixed regression, indicating that for each animal that is a certain amount of time 
younger or older than an average age  there will be a weight correction. This correction is 
the same for all animals, hence a fixed regression. In random regression models, we 
estimate a different regression coefficient for each animal. Hence, each animal has his/her 
own slope (some grow faster than others) and we estimate the variance of all slope 
parameters. An animal individual’s slope is estimated as a BLUP, depending on the 
variance of slopes (like the breeding value is derived from the variance of breeding 
values. 
Hence, each animal may have 3 breeding values for weight, if we fit a three order 
regression. The first is an intercept, the ‘average weight’, i.e. how much the animal 
deviates from the population mean over all ages, the second is a slope, ‘the growth’, i.e. 
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how much the animals deviates more/less at the beginning/end of the trajectory from 
other animals’ weight, and the third is a quadratic term (harder to interpret) 
The regression coefficients are not the same for each animal, but they are drawn from a 
population of regression coefficients. In other words, regression coefficients in a and p 
are random regression coefficients with var(a)= Ka and var(p)= Kp, where a is additive 
genetic effect and p is permanent environmental effect. If the second term of a represents 
a random ‘slope’, and the variation in this term gives an indication of variation in growth 
curve. If most of the variation is in the first term, there is no genetic variation in growth 
curve, and individual growth curves would be pretty much parallel to each other. A lot of 
variation in ‘slope’ means that we can select on ‘growth curve benders’. As a geneticist, 
think of genes for early vs. genes for late growth.  Note the similarity of this interpretation 
with multivariate models (the higher genetic correlations between weight at different 
ages, the smaller the prospect of selection for growth curve benders), and with principal 
components analysis (different variables indicating different aspects of a process – the 
different random regression variables could be made orthogonal by decomposing the K-
matrices, e.g. see Van der Werf, 2002) 
 In fact, we have rewritten a multivariate mixed model to a mixed model in a 
format of a univariate random regression model, with each random effect having k 
random regression coefficients. A model for n observations on q animals can then be 
written as 
 

y= Xb+ 
j

k

=

−

∑
0

1

 Zjaj +  
i

k

=

−

∑
0

1

Zjpj + ε ,      [4-6] 

 
where Zj are n by q matrices for the ith polynomia l, and aj and pj are vectors with random 
regression coefficients for all animals for additive genetic and permanent environmental 
effects. The matrix Z contains the regression variables, i.e. the coefficients are those of 
the polynomials in Φ  (i.e. rather than a 1’s, Z contains 1, x, x2, etc.. We can order the 
data vector by sorting records by animal, and we can stack the aj and pj vectors and sort 
them by animal, each animal having k coefficients in a and k coefficients in p (to simplify 
notation, we assume equal order of  fit for CF’s for both random effects, therefore having 
equal incidence matrices). We can then write Z* as a block diagonal matrix of order n by 
k*q, with for each animal i  block Zi

*= Φ i. 
The mixed model can be written as 
 
   y= Xb+ Z*a + Z*p + ε ,  
 
with a'= {a1' ,...aq'} and p'= {p1' ,...pq'}, with ai and pi being the sets of random regression 
coefficients for animal i for the additive genetic and the permanent environmental effects, 
respectively. If all animals have measurements on the same age points, all Zi

* are equal 
and   Z*= Iq⊗ Φ ;  
 
 The variances and covariances of the random effects for the model can be written 
as:  
  var (a)= A⊗Ka  
 



19: Random Regression Analysis  

19-9 

  var(p)= I⊗ Kp 
 
 and  cov(a,p)=0. 
 
where Ka and Kp are the random regression variances for a additive genetic and 
permanent environmental effects, respectively. The mixed model equations for the 
random regression mode l with covariance functions (RR -model) have a similar structure 
as a repeatability model, except that more coefficients are generated through the 
polynomic regression variables from Φ which are incorporated in Z. In the additive 
genetic effects part of the equations there is for each animal a diagonal block Φi’Φi + 
aiiσε

2Ka
-1, and there are off diagonal blocks   aijσε

2Ka
-1  with aij the (i,j)th element of the 

inverse of the numerator relationships matrix (A-1). The part for the permanent 
environmental effects is block diagonal with diagonal blocks equal to  Φi’Φ i + σε

2Kp
-1 . 

Schematically, the mixed model equations will be like 
 
 

X X X X

X a K

X K

b

a

p

i i i i i i

i i i i
ii

a i i

i i i i i i p

i

i

' . .. ' ... ' ...

. . . . . .

' ... ' ... ' ...

. . . . . .

' . ' . ' .

. . .. . . .

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

Φ Φ

Φ Φ Φ Φ Φ

Φ Φ Φ Φ Φ

+

+































−

−

σ

σ

ε

ε

2 1

2 1

























=





























X y

y

y

i i

i

i

'

.
'

.

'

.

.

.

.

.

.

.

Φ

Φ

 

 
where the subscript i refers to those part of the equations for animal i. For the earlier 
example, we a 3-order CF with measurements at standardized ages [-1 0 1], Φ’Φ  is  
 
 The ASREML package can be used for random regression analysis. The latter 
package requires the user to define a regression model (e.g. a 3rd order polynomial 
regression on ‘days in milk = dim’, and random regression is achieved by defining a 
random interaction term between animal and this polynomial regression term.  
 
 weight = herd poly(dim,4) !r poly(dim,3).animal  
 
The first term is a 4th order polynomial regression of milk on days in milk (dim) as a 
fixed effect. This basically fits an average lactation curve equal for all animals. The 
random term indicates individual animal variation around this mean curve, interpreted as 
a dim by animal interaction (each animal another regression coefficient on dim)  
Alternatively, in ASREML, the regression coefficients (e.g. the Legendre regression on 
age as in the Φ  matrix for each animal) can be constructed 'by hand' based on the age of 
the measurement and provided in a data file. ASREML allows estimation of variances 
and covariance components between these regression coefficients when they are taken as 
random. This covariance matrix should be equal to the K-matrix. 
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Covariance functions  
 
A covariance function can be defined as “ a continuous function to give the variance and 
covariance of traits measured at different points on a trajectory”, see e.g. Kirkpatrick et al 
(1990). Covariance functions are automatically estimated in random regression models; a 
covariance function is defined for each of the random effects that explain variation. 
Covariance functions (and RR models) can be defined based on many regression models, 
e.g. polynomials, Legendre polynomials, splines, etc). In mathematical terms, a 
covariance function (CF), e.g.  for the covariance between breeding values ul  and um on 
an animal for traits measured  at ages xl and xm is: 
 

cov(ul,um)= (ƒ(xl,xm)= 
i

k

j

k

=

−

=

−

∑ ∑
0

1

0

1

φi(xl)φj(xm)kij   [3-1] 

 
where φi  is the ith (i=0,..,k-1) polynomial for a k-order of fit, x is a standardized  age  
(-1 ≤ x ≤ 1) and kij  are the coefficients of the CF. The ages can be standardized by 
defining amin and amax as the first and the latest time point on the trajectory considered, 
and standardizing age ai to xi= [2( ai-amin) /( amax-amin)]-1. 
  The CF can be written in matrix notation as  

   $G = Φ KΦ '  

where $G  is the genetic covariance matrix of order t for breeding values at t given ages,   
Φ  is a t by k  matrix with orthogonal polynomials. When using Legendre polynomials, the 
matrix  Φ  can be written as MΛ , with M  being a t by k matrix with elements mij= ai

(j-1) 
(i=1,..t; j=1,..k), and  Λ being a matrix of order k with Legendre polynomial coefficients.  
 
Besides estimating CF directly from data via Random Regression, one can also estimate 
them from a covariance matr ix $G  that was previously estimated. For example, a genetic 
covariance matrix among siz 50-day lactation periods (1-50; 51-100; etc) is given in 
Table 4. A CF of order 3 is estimated, approximating these coefficients via best fit (for 
details, see Kirkpatrick et al., 1990). Note that a CF of order 6 would have given a full fit. 
In addition, estimates for a 3rd order RR model obtained from the same data via REMl are 
given. 

Table 4 and Figure 1 show that for a 3 order fit genetic variances estimated from 
random regression were higher at the periphery of the trajectory. Also covariances 
between ages most far apart were more extreme in the CF estimated from RR model. 
Genetic correlation between the first and the last month of lactation was near zero with 
the CF from the RR model, whereas it was near 0.7 in a bivariate analysis (Table 4-4).
 From this comparison, it appears that estimating CF parameters from a random 
regression model may not always give reliable parameters. In our example, particularly 
genetic variance was overpredicted near the edges. This example shows a typical 
property of  random regression models, that variances and covariances tend to be 
exaggerated near the edges. This is very much a property of polynomials in general, 
although the extend would depends somewhat on the availability of data near the 
extremes of the trajectory. Often, there is little data, and a lower order of fit might give a 
quite good likelihood of the whole data, in spite of its bad fit near the edges. A higher 
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order fit does not always resolve these problems, and the use of splines is usually 
advocated as a remedy (Gilmour, 2006) .  
 

TABLE 4. Pre-estimated genetic covariance matrix (
~G ) and fitted matrices using CF coefficient from 

REML in a random regression model, and from fitting 
~G (variances on diagonal, correlations on 

off-diagonals) 
 
  ~G  :  pre-estimated covariance matrix   

2.7576    0.9250    0.8940    0.8419    0.7318    0.7290 
      0.9250    1.7367    0.9634    0.9240    0.7905    0.6268 
      0.8940    0.9634    2.4029    0.8250    0.8160    0.7074 
      0.8419    0.9240    0.8250    1.6709    0.8512    0.6395 
      0.7318    0.7905    0.8160    0.8512    2.4600    0.8951 
      0.7290    0.6268    0.7074    0.6395    0.8951    2.4519 

G estimated from CF from REML random regression model (order 3) 
5.4653    0.9522    0.7786    0.4982    0.1795   -0.0759 

     0.9522    3.7534    0.9306    0.7198    0.4041    0.0877 
     0.7786    0.9306    2.8598    0.9181    0.6745    0.3501 
     0.4982    0.7198    0.9181    2.5851    0.9051    0.6600 
     0.1795    0.4041    0.6745    0.9051    2.9545    0.9128 
   - 0.0759    0.0877    0.3501    0.6600    0.9128    4.4768 

G estimated from 
~G  (3-order fit Legendre polynomials  

2.4413    0.9643    0.8962    0.8528    0.8110    0.6856 
     0.9643    2.0702    0.9799    0.9444    0.8612    0.6526 
     0.8962    0.9799    1.8981    0.9843    0.8955    0.6553 
     0.8528    0.9444    0.9843    1.7387    0.9528    0.7483 
     0.8110    0.8612    0.8955    0.9528    1.7097    0.9121 
     0.6856    0.6526    0.6553    0.7483    0.9121    2.3127 
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Figure 1  Phenotypic, additive genetic and permanent environmental variances over lactation estimated by 

covariance function (3-order Legendre polynomials) from multiple trait variance-covariance 
matrices (CF) and by REML directly from data (RR) 
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The conclusion is that although it is theoretically most appealing to estimate CF 
parameters directly from a random regression model, this method may not always give 
the most reliable estimates. Other regression techniques than polynomials (e.g. the use of 
splines), and other statistical models (e.g. varying the temporary environmental variance 
along the trajectory) an often help. 
 

Analyzing patterns of variation 
 
Kirkpatrick and Heckman (1989) and Kirkpatrick et al (1990) show that covariance 
functions can be used to analyze ‘patterns of inheritance’ in the covariance matrix ~G . For 
this purpose they determined eigenvalues and eigenfunctions from the coefficient matrix 
for a given covariance function.  
 In a way, this is a similar approach as principal component analysis. If we 
consider the covariance structure among 25 type traits in dairy, we might be able to say 
that one main eigenvalue is due to some kind of linear combination of all type traits 
related to udder scores. We would find this if this is a group of traits highly correlated 
among each other, but not highly correlated to other traits. In the canonica l 
decomposition of covariance functions, determining such major components has a special 
meaning, because it shows at which ages the observed variables are correlated, and where 
they are not. In other words, it shows how independent variables act on the trait along the 
trajectory.  For example we may determine that a first major eigenvalue is related to a 
linear combination of test days in the first part of lactation (the combination being 
defined by the eigenvector attached to that eigenvalue), whereas another eigenvalue may 
be a combination of test day variables in later lactation. If this was found for the genetic 
covariance matrix, the interpretation could be that two main and independent  
components could be distinguished in milk  production, each acting on different parts of 
lactation, and those two components could be related to different genes, possible on two 
different parts of the genome. The last would be of interest in QTL analysis: one 
canonical variable could be linked to one marker, whereas another is linked to another 
marker.  Other examples include: analysis of growth over time (different genetic effects 
for different part of the growth curve) and genotype by environment interaction (variation 
in environmental sensitivity) 
 In contrast to multiple traits, the variables in repeated measurement can be 
ordered along a trajectory. In that case, The transformation of variables described by each 
eigenvector can be written as a continuous function of age. This is indicated as 
eigenfunction (Kirkpatrick and Heckman, 1989). Eigenfunctions are calculated as 
follows: 
   Consider the covariance function   
 

      $G = Φ KΦ '  
 
for a set of ages in age vector a, where the age coefficients are build in the regression 
coefficient in Φ . The matrix K is decomposed into eigenvalues D and eigenvectors E as  
K =EDE’, and we can then evaluate eigenfunctions for a give set of ages as ΦE 
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Taking the earlier example: 
 

 $
. .

. . .
. . .

K =
−
−

− −

1348 665 1117
665 24 3 14 0
1117 14 0 14 5

 

 

 D =
1361 0 0

0 24 5 0
0 0 15

.
.

   E =
− −
−

−

0 995 0 079 0 056
0 050 0 915 0 400

0083 0 395 0 915

. . .

. . .
. . .

 

 

and  ΦE =
− −
− −
−

0 511 1802 0 997
0 769 0 256 0 684
0 634 0441 1976

. . .

. . .

. . .
 

 
The columns of ΦE represent eigenfunctions, and each has an eigenvalue attached to it. 
The rows refer to each of the ages, i.e. -1, 0 and 1 for row 1,2 and 3, respectively.  
 
To obtain the eigenfunction coefficients, we have to use ΛE which is: 
 

 ΛE =

− −

−
−

0 769 0 256 0 684

0 062 1121 0 489
01971 0 937 2170

. . .

. . .
. . .

 

 
And the first eigenfunction could be written as 
 
ψ 1

20 769 0 062 0197( ) . . .x x x= − − +  
 
Figure 4 shows the three eigenfunction plotted for the example of Kirkpatrick et al. 
(1990). It should be noticed that the sign a the evaluated values between eigenfunctions is 
irrelevant (for example, the firs eigenfunction has only positive values in the Genetics 
paper of  Kirkpatrick et al. What matter is how the values of the eigenfunctions change 
over the trajectory. In this example, the main eigenfunction is almost constant for all 
ages. Since it has the largest eigenvalues attached to it, the interpretation is that the major 
part of the genetic variance is explained by a factor that is constant for all ages. Selection 
on this factor will increase weight for all ages. Since this eigenvalue is very dominant, 
selection for weight at any age will improve weight on all ages. In multiple trait terms, 
weight at different ages is highly correlated (from the G used in the example, we can 
calculate correlations of 0.88 between weight at 2 and 3 weeks; 0.86 between weight at  2 
and 4 weeks ,and 0.99 between weight at 3 and 4 weeks. 
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eigenfuctions kirkpatrick example
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1.5

 
Figure 4 Eigenfunctions for the example of Kirkpatrick et al (1990) 
 
A very interesting pattern is shown by the second eigenfunction. Selection on this 
variable decreases weight at early age and increases weight at later ages. Selection on the 
variable represented by this eigenfunction could therefore be used to change the growth 
curve, e.g. select for lower weight at start and higher weight at the end of a trajectory 
considered. In this example, the 2nd and 3rd eigenvalues are not very large (relative the 
first eigenvalue, and the possibilities to change the growth curve may be limited.  
 Notice that we could have drawn the same conclusion from inspection of the high 
genetic correlations represented in G. However, with considering more ages along the 
trajectory would make such interpretations more difficult. We could also have calculated 
eigenvalues of G directly, being 1714, 82 and 6, i.e. not a very different pattern than the 
eigenvalues from K.  However, it is important to see that the ages used in this example 
were symmetrically chosen. In multiple trait evaluation this is not necessarily the case. 
Therefore, the most important difference between eigenvalue decomposition of a 
multivariate covariance matrix and a eigenvalue decomposition of a covariance function 
is that the last takes the ordering measurement along a trajectory into account. 
 

Summarizing Discussion 
 
We have presented various ways to analyze repeated measurements where interest is in a 
model that uses correct variance covariance structures between the observations, and that 
can make use and enable inferences on the gradual change of the measurements over 
time. A random regression model seems the most appropriate for modeling such data, and 
such models more or less implicitly use covariance functions. Canonical transformation 
can be used to simplify large scale genetic evaluations, and to reduce the rank of the 
covariance matrices used for each random effect. Eigenvalue decomposition possibly 
reveal patterns in the covariance structure, and might be of help to implement selection 
rules that aim for a change of the curves. Such analysis might also be useful when 
detecting more specifically the mode of action of Quantitative Trait Loci in specific parts 
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of the genome, determined by genetic markers, or to identify parts of genetic variation 
that are specifically correlated with third traits of interest. Such analysis has similarities 
with principal component analysis, but the extra dimension is added by considering 
principal components as a function of time (eigenfunctions). 
 Examples of the use of random regression or covariance functions are: analysis of 
test day models, analysis of weight and growth data, feed intake, etc (note, this could 
include component traits, e.g. analysis of fatness traits as a function of weight. Trait 
measurements can be modeled as a function of time,  but also as a function of a 
continuous environmental variable (herd production level, ambient temperature, etc). For 
example genetic variation in susceptibility to heat can be modeled by regression 
production on a heat stress index (a function of temperature and humidity). Variation in 
susceptibility to disease can be measures as a regression of parasite infection level on an 
environmental variable that measures environmental risk to disease.  
Many studies have considered genetic aspects of growth by first estimating parameters 
for growth curves, and subsequently estimating variance components for the growth 
curve parameters. Such analysis could be improved upon by the use of random regression 
models. Main differences between these approaches is that the first (two-step) approach 
maybe less able to estimate curves for animals with missing data, and more general, does 
not use information from relatives. The values of such information is well known to 
animal breeders, not only in gaining accuracy, but also to account for directional 
selection. Varona et al (1997) presented random regression models in a Bayesian manner, 
and give a good discussion on the merits of such models over the two-step procedure 
with first estimating curve parameters and subsequently estimating their variance 
components. 

It is often of interest not only to analyze the behavior of a repeatedly measured 
trait over time as such, but also to study correlations of certain curve parameters with 
‘third’ traits. An example is to study growth curves by random regression models for 
weight data, and to correlate CF parameters with meat quality traits such as fat and 
muscle. Animals that tend to grow faster in the last phase before slaughter may have also 
a different pattern for onset of body fat, different mature weight and a different maturity 
rate (age at first calving!). Multivariate random regression analyses are required here. 
Such analyses will form a computational challenge (with a need to explore robustness of 
the estimation) but will be the basis of a very interesting biological debate on how to 
improve such dynamic traits of growth and development such that animals will have 
improved performance in the prevailing production system.  

Fitting a curve with many parameters will generally give an accurate fit of the 
covariance structure. However, there is often an interest in fewer numbers of parameters. 
Models based on ‘biological curves’ may appeal because certain parameters have a 
‘biological meaning’. The biological meaning from polynomials can be determined by 
plotting eigenfunctions from polynomials. Lindsey (1993) argues that it is generally 
preferable to choose a model that describes the mechanism that generates the data. 
Herewith, we can refer to modeling certain residual covariance matrices, which may have 
autocorrelation structures. Lindsey also discusses growth  curves  and refer to Sandland 
and McGilchrist (1979)  who provide a number of reasons why polynomials are 
unattractive for growth models: 
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1)  growth processes can undergo changes of phase which cannot be accommodated by 
polynomials 

2)   the stochastic structure of the model will be distorted if the polynomial is 
inappropriate 

3)   polynomials cannot easily represent asymptotic behavior of a growth curve.  
 
Anderson and Pedersen (1996) argue that many growth curves are non-linear functions 
(e.g. Gompertz, logistic regression) for which is more difficult to introduce random 
effects. They also argue that average curves of the exponential form (e.g. y= a exp(-bx-
c/x) are not of the same form if the parameters a, b and c vary from animal to animal.  
Sometimes, transformations to linear models are possible, although transformations to 
stabilize between animal variation may destabilize within animal variation (see Anderson 
and Pedersen (1997) for an example).  

The need to avoid polynomials depends on the trajectory considered. In certain 
instances, it may be more important to accurately account for asymptotes, in which case 
polynomials are less appropriate. The use of splines is often advocated as being a robust 
technique in regression analysis and should probably be considered as very useful in 
random regression analysis as well. Also, the behavior of different random regression 
models in relation to data structure needs more study. For some traits, there may be many 
more data point at the younger ages, and there may be sequential selection. In general, 
estimating covariance matrices between certain ages of the trajectory can be useful as a 
reference for checking parameter estimates for covariance functions, as was also 
demonstrated in these notes.   

In general, arguments for fitting mean growth curves for populations, or 
subpopulations, can also be used for random regression models. The same holds true for 
the number of parameters that should be used to fit regression models. However, a 
practical argument for analyzing (large size) animal breeding data is that more random 
regression coefficients rapidly increase computing demands, and that for predicting 
breeding values, accurately fitting first moments (means) is usually more important than 
accurately fitting second moments (variances)  
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