3: Introduction to linear models

Chapter 3:

| ntroduction to Linear M odels
Julius van der Wearf

Linear models are commonly used to describe and andyse data in the biologica and
socia sciences. The model needs to represent the sampling nature of the data.
The data vector contains measurements on experimental units. The observations are random
variablesthat follow a multivariate digtribution. The model usudly conssts of factors. These
are variables, elther discrete or continuous, which have an effect on the observed data
Different modd factors are:

Discrete factors or class variables such as sex, year, herd

Continuous factors or covariables such as age

Data satsin animal breeding are generally used to estimate breeding vaues and/or genetic
parameters. Taking the example of breeding vaues, different information sources are used to
obtain the mogt precise estimate of an anima’ s genetic ability. Thisinformation conssts of
measured phenotypes that are influenced not only by the animas genes, but dso by many
other environmenta effects. A smple ‘solution’” might be that we take the different
measurements as a deviation of acomparable mean. This could be a population mean or, if
animds perform in different years and/or different herds, the mean of dl animasin that year
and/or herd. Such deviation should be free of those environmentd effects. Problems with
this smple approach are
- Different herds use different Sres and their means are not only determined by

environmen.

We need to take into account how much information we have to estimate these

comparable means. An estimate of a herd mean based on 5 animalsisless accurate

than one with 100 animals.
Hence, observed phenotypes need to be corrected for other non-genetic effects before they
are used to estimate breeding value. These other effects need to be estimated in an unbiased
way. Bias could occur, for example, if some herds use better sres than other herds. If we
want to correct for the environmentd effect of herds, we could not smply compare herd
means, because unequa genetic means have to be taken into account. Also within herds or
flocks effects of season, birth type, or age of measurement can influence the outcome of a
measurement. A statistical procedure that allows unbiased estimation of a number of effects
dmultaneoudy is based on linear modds. This smultaneous edimation is important for
unbiased estimation of effects when different levels of one effect are not equally represented
at dl levels of another effect, i.e. when we have unbalanced date. Field data, often used for
genetic evauation and other quantitative genetic andyses, are rarely badanced. Linear
models use matrices to layout the design in such data and, as we will show, prove to be very
convenient in order to correct the different effects for each other.

Linear modeds form the bass of Best Linear Unbiased Prediction (BLUP), and are an
important aspect of the method since it provides the machinery to correct breeding vaues
for a number of sydemdic environmentd effects (usudly termed fixed effects)
samultaneoudy. BLUP estimation of breeding vaues is based on a mixed modd, whichisa
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linear mode containing fixed effects as well as random effects (the additive genetic vaues), -
see later inthis course.

The purpose of this lecture is to fmiliarise you with linear modds. Based on a smple
example, we will present a linear model as the satistical method to estimate fixed effects.
Undergtanding such examples is important for understanding how BLUP corrects for fixed
effects in genetic evauation procedures.

Simple Example

Themain practical advantage of alinear modd isthat it can appropriately account for all
effects that influence ameasurement. Thisis particularly useful when the data is unbaanced,
which is nearly dways the case in field data, and often adso in experimentd datardating to
animas. Thefollowing example illugtrates why a smple gpproach will not work.

Table 1. Example data to illustrate analysis of unbalanced data

Cow Breed Feeding regime Weight (kg)
1 Angus intensve 494
2 Angus intengve 556
3 Angus extengve 542
4 Hereford extensve 473
5 Hereford intensve 632
6 Hereford extensve 544

In the example, the mean of Angus cowsis equa to 530.7 kg and the mean of Hereford
cattleis 549.7 kg. Hence, the breed difference from this data could be estimated to be
equd to 19 kg. However, we see that the Angus cattle were relatively more fed on an
intensive feed. Therefore, the earlier estimate of 19 kg for breed differencesis biased by
unequa feeding regimes. We would need to know the effect of feeding regime and correct
for this. However, the difference between intensve and extensive feeding is aso affected by
the unequa representation of breeds. A linear modd will exactly spell out which effects are
affecting which observation and the different effects (such as breed and feeding regime) are
estimated smultaneoudy and during this process they are corrected for each other.

Therefore, avery important reason for usng linear models is to account
appropriately for unbaancedness in data. Very sophisticated linear models can be
formulated, accommodating different effects, and possibly their interactions, covariances
between different effects, different types of distributions etc.
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Linear Modéesin Genetic Evaluation

An important festure of genetic evauation is that animds are compared farly. When
assessing the phenotypic performance of animals, unfair comparisons could be made if
animds perform in different herds, are born in different years or seasons, have a different
birth type (sngles vs twins), are measured at different ages, etc. Before assessing the genetic
merit of animals, such factors should be taken into account, i.e. we want to take an animal’s
performance dter correcting it for such effects. A smple suggestion could be to take a
performance as a deviation from a contemporary mean, i.e. a deviaion from the mean
performance of a group of animas that have performed under smilar conditions, have the
same sex, and the same age.

However, amply taking such deviations from the class means may give biased correction.
Suppose that the sires used in herd A are on average superior to sres used in herd B. For
an animd with a specific breeding vaue it is than more difficult to have a podtive deviation in
herd A than it is in herd B, even if the herds had exactly the same management and
environmenta conditions. Two animas with the same true breeding vaue would then have
different EBV depending on the herd they were tested in. This is a drawback, since we
don’'t want an EBV to be biased by such fixed effects.

Differences in the average production of herd mates are caused by differences in
environment as well as by differencesin genetic level. To obtain unbiased estimated breeding
vaues, effects of gres and effects of herds have to be estimated smultaneoudy. To achieve
this ‘mixed models are used in which fixed effects and breeding values (indicated as
‘random effects) will be edimated jointly. This procedure is cdled “BLUP’, and was
developed in the late forties by C.R. Henderson (Henderson, 1973). The BLUP procedure
takes account of such fixed effects, and is therefore a Best Linear Unbiased Prediction of
the breeding value.

The ability to compare aimals in different herds, and to correct for herd effects in an
unbiased way, depends aso on the structure of the data. To be able to compare animals
across herds, herds will need to be linked.

The following example might illustrate the problem.

Suppose we have progeny means from 4 sresin 2 herds asfollows.

Herd Sirel Sire2 Sire3 Sire4
1 325 275
2 325 275

From within herd comparison we know that Sres 1 and 3 are superior Sres. But how do
sires compare across herds? To be able to make such a comparison we will need afifth sre
that has been used in both herds. Such a sre would be a link sire or a reference dre.
Suppose the link sire has progeny in the two herds as follows:
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Herd Sirel Sire?2 Sire3 Sire4d Sireb
1 325 275 325
2 325 275 375

From this new information we know that the environmental effect of herd 2 must be better
than of herd 1, as progeny from the same dre perform better in herd 2. Given that
information, we can derive that Sire 1 must be a better sire than Sire 3, as he is able to have
the same progeny mean, but in a herd that is not as good. Hence, to be able to compare all
gres, dl datafrom al herds and Sres should be evauated Smultaneoudly.

In redity, different Sres could aso be mated to different cows, and the merit of cows can be
worked out smilarly, with the notion that cows are themsdves daughters of dres that are
used in different herds. It would be quite impossble to make fair comparisons among

animas if not dl data was andysed jointly, across herds, and a powerful method exists that
can take into account how each observation is affected by a number of fixed effects.

In the next section, we will present a linear modd and demondrate thet it is a powerful
framework for unbiased estimation of fixed effects. It will show how different fixed effects
can be corrected for each other in a straightforward approach. Using examples, we will
indicate how to set up liner model equations. These principles are important for
understanding BLUP.

Linear Models

Estimation of Fixed Effects

Linear models are used throughout to estimate different effects acting on observations. We
introduce an example data set to illusirate the concept. The data conssts of 7 weight
observations on 7 animals, producing in 3 different years. Given are the animad IDs and their
yearling weight (in brackets)

Year of Birth Maes Femdes
2000 1 (354) 2 (251)
2001 3(327) 4 (328)

5 (301) 6 (270)
2002 7 (330)




3: Introduction to linear models

Mode with One Fixed Effect

Given certain data, we have to wok on moded building. We are first interested in the effect of
birth year on the weight of an animd. Estimation of year effects can be obtained from a
detigtical model where the fixed effect of Year in the example data set is fitted to explain
vaiation in the data

Weight = generd mean + effect of year + random error

Yij = M+ yed; + €;

They-variable is the dependent variable

The x-variable is the independent varigble.

The unknown year effects (year;) are model parameters.

The modd proposed is a liner mode as the expected vdue of y, E(y) is a linear
combination of parameters.

In matrix notation:
y=Xb+e
where 'y isavector with observations on the weight of an animd,
b isavector with the different year effects,
X isan ‘incidence matrix’, indicating which observation was observed in
which year, and
eisavector with resdud effects

The mode becomes

y = X b + e
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7x1 = 7x4 4x1 + 7x1 dimenson of matrices

The X matrix contains dements that relate the 7 obsarvations to the effects or attributes we
congder in the model. Observation 1 (354K g) has a full dose of the mean, plus afull dose
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of the year-2000 effect. X is an incidence matrix telling us whether a certain effect j (column
J) is present or not with respect to a certain observation i (row i).

Solutions for the effects are found using the Least Squares equations:
b=(X'X)*Xy

where ! refersto “inversg’ and the matrices look like

gé’ 2 4 1p 221615
2 2 0 0. Crne™
1 _g - . 605_
XXZ¢ 0 4 oz ™IXY=E e

€1 0 0 1z 33305

hence, the X’ X matrix contains the number of observations and X'Y contains the sum of dl
the observations for each subclass. “Dividing” X'Y by X' X gives therefore the average per
class.

A complication is now that there is a dependency (or a redundancy) in the set of equations.
The columns of X add up to each other. This is dways the case if we have a mean and an
additiond fixed effect. If the columns add up (i.e. X is Sngular), dso X' X is sngular, and
can not be inverted. A practical explanation is that we want to estimate 4 parameters (a
generd mean and three year effects), but in our data we have only three year means, so we
can only estimate three parameters. We can find solutions by setting a redtriction:

1) put the generd mean to zero
2) put one of the yearsto zero
3) put the sum of the year effectsto zero

NB: The option you choose is arbitrary, it does affect the estimates, but not the relevant
comparisons, and in this case, it does not affect the estimate of the year difference.

The second option is the easiest. If a parameter is set to zero you can omit the equation for
that parameter. If a certain year has a zero solution, the generd mean will be in fact
represent the edimate of the mean of that year. The other year effects are
deviationg/differences from the year that was set to zero,

The firgt option, i.e. set the generd mean to zero, is only useful if you have only one fixed

effect (the genera mean will be in the year effects). The third option is rlaively the most
complicated, but it can be handy to have al year effects sum to zero.

Working out the third option in more detall gives.
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Wewant tofind b= (XX)"1X'Y - firg (XX)"1 then X'Y:

X' X = XX

el 11111 1ggd 1 04

(‘;110000-1+(;110+

eo o 1 11 1 1671 0 1, o7 1 3§
9101::g131+
Ci 0 17 €3 150
Ci1 o0 1+
€1 1 1 9

Note the incidence matrix. The last year is represented as a function of the two previous
years: D000 + B2001 + 02002 = 0 = D002 = -B2000 02001

5001944  -0278 -1111 §
Oninversion, (X'X)-1 = ¢ --0278 03611 -.0556 =
€ -.1111 -.0556 02778 @

X Y = XY
11 1 1 14 .
& 6 a0
(5;110000-1+(;251;
eo 0 1 1 1@ 2327 . 02161 §
9328: = ¢ 25 +
Can ™ e 8% @
Goro~
€330
N
b = (X'x)-1 XY = reslt
b 5601944 0278 -1111 {52161l § 5313 §
mean O - - -
By = G 0278 03611 -.0556 :9 275 | = 910.5:

Do € -1111 -0556 02778 9€ 8% G €-659
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The firgt solution (313) refers to the estimated mean; other solutions are year effects of Yoo
and Ygo1. Thereis no solution for Yoo, but this can easily be worked out as baooz = -boooo —
B2oo1 = 10.5 + 6.5 = +17. Hence the difference between years 2002 and 2000 is 27.5 kg.

Summarising the different options for X, and the resulting solutions:

Generd meanzero  Firstyear zero  Lastyear zero  Sum of yearsto zero

(62000=0) (62002=0) (B2000+ B2001 + 2002=0)

X b X b X b X b
100 3025 100 3025 110 330 110 313
100 306.5 100 40 110 -275 110 -105
010 330 110 +275 101 -235 101 -6.5
010 110 101 101
010 110 101 101
010 110 101 101
001 101 100 1-1-1

m=20 m=302.5 m= 330 m= 313
Yzooo =302.5 Yzooo: 0 Yzooo =-275 Yzooo = -10.5
Y 2001 = 306.5 Y2001 = +4 Yo =-235 Yym= -65
Y 2002 = 330 Y2002 = +27.5 Y2002 =0 Yoo = 17

We see from the different redtrictions that the important parameters are adways the same.
These important parameters result from ‘estimable functions’, those are linear combinations
of observations. The expectation of any observation according to our modd is

E(W) =K+ Yoo
And the difference between observations in two different yearsis
EQi—y) =H+Yi—p=Y = Yi- Y,

Therefore, the difference between 2 year effects are estimable, and from the solutions we
see that these differences are the same, not affected by the constraint we put on the
solutions.

Y 2002 — Y2000 = 27.5
Y 2002 — Y2001 = 23.5
Y 2001 — Y2000 = 4

Y ear differences:

A year effect by itsdf is not estimable, we can not find a combination of observation to
estimate Y; as this is dways confounded with p1. Another estimable function is the expected
vaue of an observation, i.e. pu + ;.

Expected observations: K+ Y2000 = 302.5
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M + YZOOl = 306.5
M+ Y 5002 = 330

and again these va ues are the same for al sets of solutions

M odel with Two Fixed Effects

The previous section might have looked unnecessarily complicated as with only one fixed
effect in the mode, these year differences can be estimated from the raw means for each
year. However, the sory is different if we have more than one fixed effect. In that case the
means of each fixed effect have to be adjusted for the other effect. In a linear model, we
eadly add extra effects to the modd.

Suppose we now consider o the sex effect on yearling weight. We want now an estimate
for the year effects, but adso for the sex effect. Estimates of one fixed effect should be
corrected for the other fixed effect. If in a particular year there are more males than females,
we should account for thet if estimating the year effects. In a linear modd, joint estimation
for saverd effectsis degant and relatively smple.
The modd for two fixed effects becomes:

Weight = generd mean + effect of year + effect of sex + random error

Yik =R+ Yit+ S+ e
In matrix notation:

y=Xb+e
With two fixed effects, we have to use two redtrictions to obtain estimates. We will use the
rediriction that the solution of females in year 2002 is equd to zero (i.e. they represent the
generd mean).

The X matrix, and the solution become:

X b meaning

@101

gi (1) 2 2%@85.79

gl 01 oig'S'Sj the mean of femdesin 2002

201 1%;23 the effect of year 2000 (relative to 2002)
¢t 01 0+ 7 the effect of year 2001 (relaive to 2002)
& 00 14 the effect of males (relative to femaes)
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Note that the effect of year 2002 is greetly reduced because now we know that there was
only an observetion on a made. The difference between maes and femaes was estimated
with information from the previous years. In the firgt andyss we thought that 2002 was a
particularly good year, but after consderation of the sex effect we know that the mean was
only higher because there were rdatively more maes than femaes in 2002. Notice also that
the difference between 2000 and 2001 has not changed. This is because within these years
there were equal numbers of maes and females.

Correcting for other fixed effects is different from just taking raw means only if those other
effects are unequaly contributing to a fixed effect under congderation, eg. if not dl years
have an equal amount of males and females. Thisis caled a “palanced desgn”. In practice
we hardly ever have a balanced design, and we need a linear model to correct gppropriately
for dl other effects.

The reasoning for usng linear models to disentangle different fixed effects is aso true for
disentangling genetic and systematic environmenta effects. To esimate herd effects, we
need to take into account that some herds may have used better sires, and therefore have on
average animas with better genetic effects. Jointly estimating fixed systematic environmenta
effects and random effects of animas breeding values is accommodated for in a mixed
mode!.

The same examplein ASREML

Dadfile exmp2.dat

1990 Mal e 354
1990 Female 251
1991 Mal e 327
1991 Female 328
1991 Mal e 301
1991 Female 270
1992 Mal e 330

ASREML file: exmp2.as

anal ysis of test data 2 LM course
year 3 'A
sex 2 1A
wei ght

exnp2. dat

wei ght ~ mu sex year

Output: exmp2.9dn
year 1990 0. 000 0. 000
year 1991 4.000 33.92
year 1992 5. 333 50. 56
sex Mal e 0. 000 0. 000
sex Femal e -44. 33 31.98
mu 1 324. 7 31.98

And with forcing the sum of year solution to zero:

3-10
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ASREML file exmp2.as

anal ysis of test data 2 LM course
year 3 'A
sex 2 1A
wei ght

exnp2. dat

wei ght ~ rmu con(sex) con(year)

Output: exmp2.9dn
con(year) 1990 -3.111 24.13
con(year) 1991 0. 8889 21.32

con(sex) Mal e 22.17 15. 99
mu 1 305. 6 18. 07

Modd with a Covariate

In the two previous sections, we consdered two fixed effects, both of them being class
variables. Another type of fixed effect can be due to a continuous variable, and the most
obvious example is age a measurement. Suppose the 7 animals were measured at dightly
different ages. To correct the phenotypes for an age effect, we can firs estimate this age
effectin alinear modd. A modd with just one continuous variable is aregresson mode . For
example, if wefit just age (with the age a measurement measured in months):

Weight = general mean + age of the animal
Yi=p+age +e

In matrix notation:
y=Xb+e

The X matrix, and the solution become:
X b meaning

A 136
g b
&L 10?
¢l 12433?9.716

¢ 11%322'425 the intercept: the weight at age 0
Q1 o11s the dope: the extraweight for one extra month of age

&1 145
Hence, there is only one column needed for a covarigble: it takes only one degree of
freedom, or one parameter to estimate (unless we aso want to fit a quadratic effect of age),
and rather than an “incidence’ we smply put the age of measurement in the X-matrix. In a
regresson mode we estimate the ‘mean’ as an intercept, which is basicdly the estimated
weight at age 0. In this example, the vaueis pretty redigtic to represent ‘birth weight' but it
could have been quite deviant from a redigtic value as the observed vaues for age are far
from birth weight, so it is based on extrapolation. Again, we can reparameterise the model,

3-11
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by expressng the covarigble relaive to a mean. We can choose to express age relative to
12 months, and the estimated intercept will become the estimated weight a 12 months.

400
y =22.42x +39.71 3

300 >
/
*

200

weight (kg)

100

0 2 4 6 8 10 12 14 16

age (mo)

Regresson andysis with observed ages (above) and ages as deviations (below)

400

y =22.42x + 308.71

weight (kg)
.
.
g

-4 3 2 1 0 1 2 3 4
age (mo)

X b meening
A +1o
c _ -
¢t Ozi
§, 808710

¢ * . .

& . 1829 0 the intercept; the weight at the age of 12 months
gl 2. the dope: the extraweight for one extra month of age
&+

Hence, reparameterisation affects the solution for the intercept, but not the dope. We are
dill estimating thet the anima's grow 22.42 kg per month.

Now, to put it al together, we can fit a modd where the effects of year, sex and age are
jointly fitted.

Yik =H+Yi+§ +age t e

3-12
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In matrix notation: y=Xb+e

The X matrix, and the solution become:

X b meaning

4 10 1 15

¢ 2595056

gi 2 (i 01 j:éiiojf The meen for 2002, femaes, 12 mo
24010 11849.2% The effect of 2000 relative to 2002
G0 11 136267 The effect of 2001 rdlative to 2002
£ 001 '2326'4“ The effect of males relative to females

The effect of one extramonth of age

Now, after correcting al effects for each other we observe that

- The difference between Yoo and Yogo; IS a bit smdler than 4, because the
ages of the animasin those years were different.

- The difference between Y00 and Yoo, 0N 0ne hand, and Y0, 0N the other
hand have changed drastically. Because anima 7 was messured at an older
age, the year effect of 2002 has gone down.

- The difference between maes and femdes is dso reduced because
differences between maes and femaes are patly explaned by age of
measurement (males were on average 12.5 months of age and femaes were
on average 11.3 months old; animal number 7 does not count as he could not
be compared with a femae within his year).

Modd with interaction

Condder the following small data set with 8 observations on weight from 2 breeds (Angus

and Brahman) in two environments (Tropical and Temperate):
1 BRA TROP 255

2 BRA TROP 245

3 ANG TROP 262

4 ANG TRCP 238

5 BRA TEMP 295

6 BRA TEMP 305

7 ANG TEMP 345

8 ANG TEMP 355

A simple 2 way analysis:

anal ysis of test data 6 LM course
1D
breed 2 1A
environm2 ' A
wei ght
exnp6. dat
wei ght ~ nmu breed environm
envi ronm TROP 0. 000 0. 000
envi ronm TEMP 75.00 12.99

3-13
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br eed BRA
br eed ANG
nmu

Anal ysi s of Variance
5 mu
2 breed
3 environm

0. 000 0. 000
25. 00 12.99
1 237.5 11. 25
DF F-incr
1 1958. 68
1 3.70
1 33.32

However, it is ussful to make a Table with the sub dass means for the different

combinations, likethis

TROP TEMP

BRA 250 250
ANG 300 350
275 300

250
325
287.5

We see that there is definitely a breed effect in the temperate environment, but not in the
tropics. Thisexample calsfor atest about whether thereisan INTERACTION between the
main effects. Practicaly, to test whether one effect depends on the levels of another effect,
i.e. whether the breed effect depends on whether you arein the tropics or in Scandinavia

An interaction modd: The modd is

Yi= H+ai+bj+7+e;,

where ?; is an interaction term. The number of levels for ?is equa to the number of filled
subclasses. With no missing data, that would be equd to nr. of levels of effect 1 x nr. of

levelsfor effect 2.

anal ysis of test data 6 LM course

I D
breed 2 'A
environm2 A
wei ght

exnp6. dat

wei ght ~ mu breed environm breed. envi ronm

The X matrix look like (parameters printed above)

( m a'l a2 bl b2 gll g12 ng g22 )

3-14
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The incidence matrix has many dependencies, dl main effects add up to the mean, as
before, but now aso, dl interactions within a main effect subclass add up to that main effect.
This means technically that it is hard to estimate both main effects and interactions. We can
St redtriction to the solutions, as before, but the interpretation becomes a bit more tricky.
See below for two possible solutions, and try to interpret these, with an eye on the means
table above. You can imagine that with missng subcdls and with more levels, such
interpretation could become more difficult (that’s why it is usudly good to try avery smple

examplefird.
with solutions:

not fitting pH

breed. envi ronm
br eed. envi ronm
br eed. envi ronm
br eed. envi ronm
envi ronm

envi ronm

br eed

br eed

fitting p and setting first of levels to O.

br eed. envi ronm
br eed. envi ronm
br eed. envi ronm
breed. envi ronm
envi ronm

envi ronm

br eed

br eed

m

and analysis of variance:

Anal ysi s of Variance
5 mu
2 breed
3 environm
6 breed. environm
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O O OO O O - -
O 0O OO0 rr B+ OO

BRA. TROP
BRA. TEMP
ANG TROP
ANG TEMP
TROP
TEMP
BRA
ANG

BRA. TRCP
BRA. TEMP
ANG TRCP
ANG. TEMP
TROP
TEMP
BRA
ANG

O O r P OO O O

06

0:
0+
02
0+
0.
17
15

0. 000
0. 000
0. 000
50. 00
0. 000
50. 00
250.0
250.0

0. 000
0. 000
0. 000
50. 00
0. 000
50. 00
0. 000
0. 000
250.0

F-incr

6038. 81
11. 42
102. 74
11. 42

0. 000
0. 000
0. 000
14. 80
0. 000
10. 46
7.399
7.399

0. 000
0. 000
0. 000
14.80
0. 000
10. 46
0. 000
10. 46
7.399

We will discuss interactions further in anext chapter on analyss of variance.
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For the moment, we are mainly interested in the meaning of the solutions obtained. The
question here is. how relevant are the estimates of main effectsin a dataset where sgnificant

interactions exig.

RECOMMENDED (backup) READING

Mrode, R.A. 1996. Linear Models for the Prediction of Animal Breeding Values. CAB International,
Neter, J., Wasserman, W. and Kutner, M. 1985. Applied Linear Statistical Models. [rwin, Illinais.
Searle, S.R. 1971. Linear Models. Wiley & Sons.
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Exercise 3: Linear models
A) Example of regression on covariablesvariables

Give are the weights of Sx cows, and their age at which the measurement was taken

cow ageg(mo) weight (kg)

1 18 494
2 21 556
3 19 542
4 17 473
5 23 632
6 19 544

Determine the effect of age on weight

Determine the first order regression
Compare the residuals

Hint: Themodd is.y = Xb + e. Determine X and y for this example (see Ch.2)
Solutions are via Lesst squares. b = (X’ X)X’y
Residudscalculated as € = y - Xb . Residua sums of squares= SSE = €
Resdud variance= €'e/(n-2)

B) Example of regression on class variables
Given are the weights of the same cows, but now we have discovered they are from 2

different breeds, and they were raised under two different feeding regimes (intensve and
extendve grazing)

cow  breed feeding regime weight (k)
1 Angus intensve 494
2 Angus intengve 556
3 Angus extengve 542
4 Hereford extensve 473
5 Hereford intendve 632
6 Hereford extendve 544

Determine the effects of breed and feeding regime by Least Squares Analyss
(You may first assume equal ages now, but then also try to account for it)

Compare estimates from different moddls and explain.
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