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Chapter 3: 
Introduction to Linear Models 

Julius van der Werf 
 
 Linear models are commonly used to describe and analyse data in the biological and 
social sciences. The model needs to represent the sampling nature of the data. 
The data vector contains measurements on experimental units. The observations are random 
variables that follow a multivariate distribution. The model usually consists of factors. These 
are variables, either discrete or continuous, which have an effect on the observed data. 
Different model factors are: 

• Discrete factors or class variables such as sex, year, herd 
• Continuous factors or covariables such as age  

 
Data sets in animal breeding are generally used to estimate breeding values and/or genetic 
parameters. Taking the example of breeding values, different information sources are used to 
obtain the most precise estimate of an animal’s genetic ability. This information consists of 
measured phenotypes that are influenced not only by the animals’ genes, but also by many 
other environmental effects. A simple ‘solution’ might be that we take the different 
measurements as a deviation of a comparable mean. This could be a population mean or, if 
animals perform in different years and/or different herds, the mean of all animals in that year 
and/or herd. Such deviation should be free of those environmental effects. Problems with 
this simple approach are 

• Different herds use different sires and their means are not only determined by 
environment. 

• We need to take into account how much information we have to estimate these 
comparable means. An estimate of a herd mean based on 5 animals is less accurate 
than one with 100 animals. 

Hence, observed phenotypes need to be corrected for other non-genetic effects before they 
are used to estimate breeding value. These other effects need to be estimated in an unbiased 
way. Bias could occur, for example, if some herds use better sires than other herds. If we 
want to correct for the environmental effect of herds, we could not simply compare herd 
means, because unequal genetic means have to be taken into account. Also within herds or 
flocks effects of season, birth type, or age of measurement can influence the outcome of a 
measurement. A statistical procedure that allows unbiased estimation of a number of effects 
simultaneously is based on linear models. This simultaneous estimation is important for 
unbiased estimation of effects when different levels of one effect are not equally represented 
at all levels of another effect, i.e. when we have unbalanced date. Field data, often used for 
genetic evaluation and other quantitative genetic analyses, are rarely balanced. Linear 
models use matrices to layout the design in such data and, as we will show, prove to be very 
convenient in order to correct the different effects for each other. 
 
Linear models form the basis of Best Linear Unbiased Prediction (BLUP), and are an 
important aspect of the method since it provides the machinery to correct breeding values 
for a number of systematic environmental effects (usually termed fixed effects) 
simultaneously. BLUP estimation of breeding values is based on a mixed model, which is a 
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linear model containing fixed effects as well as random effects (the additive genetic values), - 
see later in this course.  
 
The purpose of this lecture is to familiarise you with linear models. Based on a simple 
example, we will present a linear model as the statistical method to estimate fixed effects. 
Understanding such examples is important for understanding how BLUP corrects for fixed 
effects in genetic evaluation procedures. 
 
Simple Example 
 
The main practical advantage of a linear model is that it can appropriately account for all 
effects that influence a measurement. This is particularly useful when the data is unbalanced, 
which is nearly always the case in field data, and often also in experimental data relating to 
animals. The following example illustrates why a simple approach will not work. 
 

Table 1: Example data to illustrate analysis of unbalanced data 

Cow Breed   Feeding regime Weight (kg) 
  1  Angus    intensive  494 
  2  Angus   intensive  556 
  3  Angus   extensive  542 
  4  Hereford   extensive  473 
  5  Hereford   intensive  632 
  6  Hereford   extensive  544 
 

 In the example, the mean of Angus cows is equal to 530.7 kg and the mean of Hereford 

cattle is  549.7 kg. Hence, the breed difference from this data could be estimated to be 

equal to 19 kg.  However, we see that the Angus cattle were relatively more fed on an 

intensive feed. Therefore, the earlier estimate of 19 kg for breed differences is biased by 

unequal feeding regimes. We would need to know the effect of feeding regime and correct 

for this. However, the difference between intensive and extensive feeding is also affected by 

the unequal representation of breeds. A linear model will exactly spell out which effects are 

affecting which observation and the different effects (such as breed and feeding regime) are 

estimated simultaneously and during this process they are corrected for each other. 

 Therefore, a very important reason for using linear models is to account 

appropriately for unbalancedness in data. Very sophisticated linear models can be 

formulated, accommodating different effects, and possibly their interactions, covariances 

between different effects, different types of distributions etc.   
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Linear Models in Genetic Evaluation 

An important feature of genetic evaluation is that animals are compared fairly. When 
assessing the phenotypic performance of animals, unfair comparisons could be made if 
animals perform in different herds, are born in different years or seasons, have a different 
birth type (singles vs twins), are measured at different ages, etc. Before assessing the genetic 
merit of animals, such factors should be taken into account, i.e. we want to take an animal’s 
performance after correcting it for such effects. A simple suggestion could be to take a 
performance as a deviation from a contemporary mean, i.e. a deviation from the mean 
performance of a group of animals that have performed under similar conditions, have the 
same sex, and the same age. 
 
However, simply taking such deviations from the class means may give biased correction. 
Suppose that the sires used in herd A are on average superior to sires used in herd B.  For 
an animal with a specific breeding value it is than more difficult to have a positive deviation in 
herd A than it is in herd B, even if the herds had exactly the same management and 
environmental conditions.  Two animals with the same true breeding value would then have 
different EBV depending on the herd they were tested in. This is a drawback, since we 
don’t want an EBV to be biased by such fixed effects.  
 
Differences in the average production of herd mates are caused by differences in 
environment as well as by differences in genetic level. To obtain unbiased estimated breeding 
values, effects of sires and effects of herds have to be estimated simultaneously. To achieve 
this ‘mixed models’ are used in which fixed effects and breeding values (indicated as 
‘random effects’) will be estimated jointly. This procedure is called “BLUP”, and was 
developed in the late forties by C.R. Henderson (Henderson, 1973). The BLUP procedure 
takes account of such fixed effects, and is therefore a Best Linear Unbiased Prediction of 
the breeding value.   
 
The ability to compare animals in different herds, and to correct for herd effects in an 
unbiased way, depends also on the structure of the data. To be able to compare animals 
across herds, herds will need to be linked. 
 
The following example might illustrate the problem. 
 
Suppose we have progeny means from 4 sires in 2 herds as follows: 
 

Herd Sire 1 Sire 2 Sire 3 Sire 4 
1 325 275   
2   325 275 

 
From within herd comparison we know that sires 1 and 3 are superior sires. But how do 
sires compare across herds? To be able to make such a comparison we will need a fifth sire 
that has been used in both herds. Such a sire would be a link sire or a reference sire. 
Suppose the link sire has progeny in the two herds as follows: 
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Herd Sire 1 Sire 2 Sire 3 Sire 4 Sire 5 

1 325 275   325 
2   325 275 375 

 
From this new information we know that the environmental effect of herd 2 must be better 
than of herd 1, as progeny from the same sire perform better in herd 2. Given that 
information, we can derive that Sire 1 must be a better sire than Sire 3, as he is able to have 
the same progeny mean, but in a herd that is not as good. Hence, to be able to compare all 
sires, all data from all herds and sires should be evaluated simultaneously. 
 
In reality, different sires could also be mated to different cows, and the merit of cows can be 
worked out similarly, with the notion that cows are themselves daughters of sires that are 
used in different herds.  It would be quite impossible to make fair comparisons among 
animals if not all data was analysed jointly, across herds, and a powerful method exists that 
can take into account how each observation is affected by a number of fixed effects. 
 
In the next section, we will present a linear model and demonstrate that it is a powerful 
framework for unbiased estimation of fixed effects. It will show how different fixed effects 
can be corrected for each other in a straightforward approach. Using examples, we will 
indicate how to set up linear model equations. These principles are important for 
understanding BLUP.   
 

Linear Models 

Estimation of Fixed Effects 
 
Linear models are used throughout to estimate different effects acting on observations. We 
introduce an example data set to illustrate the concept. The data consists of 7 weight 
observations on 7 animals, producing in 3 different years. Given are the animal IDs and their 
yearling weight (in brackets) 
 

Year of Birth  Males   Females 
 

2000   1 (354)   2 (251) 
 

2001   3 (327)   4 (328) 
    5 (301)   6 (270) 
 

2002   7 (330) 
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Model with One Fixed Effect 
 
Given certain data, we have to wok on model building. We are first interested in the effect of 
birth year on the weight of an animal. Estimation of year effects can be obtained from a 
statistical model where the fixed effect of Year in the example data set is fitted to explain 
variation in the data. 
 
 Weight = general mean + effect of year + random error 
 
 yij = µ + yeari + eij 

 
 
The y-variable is the dependent variable 
The x-variable is the independent variable.  
The unknown year effects (yeari) are model parameters. 
The model proposed is a linear model as the expected value of y, E(y) is a linear 
combination of parameters.  
 
In matrix notation: 
 
 y = Xb + e  
 
where  y is a vector with observations on the weight of an animal,  
 b is a vector with the different year effects,  
 X is an ‘incidence matrix’, indicating which observation was observed in  
  which year, and  

e is a vector with residual effects 
 
The model becomes 
 
      y       =          X           b          +     e 
                          

354
251
327
328
301
270
330

 
 
 
 
 
 
 
 
 
 
 

 =  2000

2001

2002

1 1 0 0 1
1 1 0 0 2
1 0 1 0 3
1 0 1 0 4
1 0 1 0 5
1 0 1 0 6
1 0 0 1 7

mean

e
e

b
e

b
e

b
e

b
e
e

   
   
    
    
     +    
    
    
   
   
   

     

   
     7 x 1    =              7 x 4            4 x 1   +  7 x 1      dimension of matrices 
 
The X matrix contains elements that relate the 7 observations to the effects or attributes we 
consider in the model.  Observation 1 (354Kg) has a full dose of the mean, plus a full dose 



3: Introduction to linear models 

3-6 

of the year-2000 effect. X is an incidence matrix telling us whether a certain effect j (column 
j) is present or not with respect to a certain observation i (row i). 
 
Solutions for the effects are found using the Least Squares equations:  
 

b = (X’X)-1 X’y 
 
where -1 refers to “inverse” and the matrices look like 
 

X X' =



















7 2 4 1
2 2 0 0
4 0 4 0
1 0 0 1

 and X y' =



















2161
605

1226
330

 

 
hence, the X’X matrix contains the number of observations and X’Y contains the sum of all 
the observations for each subclass. “Dividing” X’Y by X’X gives therefore the average per 
class. 
 
A complication is now that there is a dependency (or a redundancy) in the set of equations. 
The columns of X add up to each other. This is always the case if we have a mean and an 
additional fixed effect. If the columns add up (i.e. X is singular), also X’X is singular, and 
can not be inverted. A practical explanation is that we want to estimate 4 parameters (a 
general mean and three year effects), but in our data we have only three year means, so we 
can only estimate three parameters. We can find solutions by setting a restriction: 
 

1) put the general mean to zero 
2) put one of the years to zero 
3) put the sum of the year effects to zero 

 
NB: The option you choose is arbitrary, it does affect the estimates, but not the relevant 
comparisons, and in this case, it does not affect the estimate of the year difference. 
 
The second option is the easiest. If a parameter is set to zero you can omit the equation for 
that parameter. If a certain year has a zero solution, the general mean will be in fact 
represent the estimate of the mean of that year. The other year effects are 
deviations/differences from the year that was set to zero, 
 
The first option, i.e. set the general mean to zero, is only useful if you have only one fixed 
effect (the general mean will be in the year effects). The third option is relatively the most 
complicated, but it can be handy to have all year effects sum to zero. 
 
 
Working out the third option in more detail gives:  
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We want to find  b̂ = (X'X)-1X'Y   -    first (X'X)-1  then  X'Y:  
 
                           X'                                         X                  =          X'X 
 

 







1 1 1 1 1 1 1

1 1 0 0 0 0 -1

0 0 1 1 1 1 -1

 













1 1 0

1 1 0

1 0 1

1 0 1

1 0 1

1 0 1

1 -1 -1

 =   







7 1 3

1 3 1

3 1 5

 

 
Note the incidence matrix. The last year is represented as a function of the two previous 
years: b2000 + b2001 + b2002 = 0 à b2002 = -b2000 –b2001. 
 
 

On inversion, (X'X)-1 =    







0.1944 -.0278 -.1111

-.0278 0.3611 -.0556

-.1111 -.0556 0.2778

 

 
 
                           X'                                    Y            =             X'Y 

 







1 1 1 1 1 1 1

1 1 0 0 0 0 -1

0 0 1 1 1 1 -1

   













354

251

327

328

301

270

330

      =       







2161

275

896

 

 
 

        b̂            =                        (X'X)-1                           X'Y         =      result 
 

2000

2001

meanb

b
b

 
 
 
 
 

    =    









0.1944 -.0278 -.1111

-.0278 0.3611 -.0556

-.1111 -.0556 0.2778

  









2161

275

896

   =   









313

-10.5

-6.5
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The first solution (313) refers to the estimated mean; other solutions are year effects of Y2000 
and Y2001. There is no solution for Y2002 but this can easily be worked out as b2002 = -b2000 –
b2001 = 10.5 + 6.5 = +17. Hence the difference between years 2002 and 2000 is 27.5 kg. 
 
 
Summarising the different options for X, and the resulting solutions: 
 
General mean zero    First year zero     Last year zero    Sum of years to zero 

(b2000=0)      (b2002=0)      (b2000+ b2001 + 2002=0) 
X $b   X $b   X $b  X $b  
1 0 0 302.5  1 0 0 302.5  1 1 0 330 1 1 0     313 
1 0 0 306.5  1 0 0   4.0  1 1 0 -27.5 1 1 0   -10.5 
0 1 0 330  1 1 0 +27.5  1 0 1 -23.5 1 0 1     -6.5 
0 1 0   1 1 0   1 0 1  1 0 1 
0 1 0   1 1 0   1 0 1  1 0 1 
0 1 0   1 1 0   1 0 1  1 0 1 
0 0 1   1 0 1   1 0 0  1 -1-1 
   µ  =  0   µ = 302.5        µ = 330    µ =     313 
Y2000 = 302.5  Y2000= 0     Y2000 = -27.5 Y2000 =    -10.5 
Y2001 = 306.5  Y2001 = +4     Y2001 = -23.5 Y2001 =    -6.5 
Y2002 = 330  Y2002 = +27.5     Y2002 = 0 Y2002 =    17 
 
We see from the different restrictions that the important parameters are always the same. 
These important parameters result from ‘estimable functions’, those are linear combinations 
of observations. The expectation of any observation according to our model is  
 

E(yi) = µ + Y2002 
 
And the difference between observations in two different years is 
 
 E(yi –yj) = µ +Yi – µ – Yj = Yi - Yj 
 
Therefore, the difference between 2 year effects are estimable, and from the solutions we 
see that these differences are the same, not affected by the constraint we put on the 
solutions. 
 
  Year differences: Y2002 – Y2000 = 27.5 
     Y2002 – Y2001 = 23.5 
     Y2001 – Y2000 = 4 
 
A year effect by itself is not estimable, we can not find a combination of observation to 
estimate Yi as this is always confounded with µ. Another estimable function is the expected 
value of an observation, i.e. µ + Yi.  
 
  Expected observations:  µ + Y2000 = 302.5 
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      µ + Y2001 = 306.5 
      µ + Y2002 = 330  
 
and again these values are the same for all sets of solutions 
 
 
 
Model with Two Fixed Effects 
 
The previous section might have looked unnecessarily complicated as with only one fixed 
effect in the model, these year differences can be estimated from the raw means for each 
year. However, the story is different if we have more than one fixed effect. In that case the 
means of each fixed effect have to be adjusted for the other effect. In a linear model, we 
easily add extra effects to the model.  
 
Suppose we now consider also the sex effect on yearling weight. We want now an estimate 
for the year effects, but also for the sex effect. Estimates of one fixed effect should be 
corrected for the other fixed effect. If in a particular year there are more males than females, 
we should account for that if estimating the year effects. In a linear model, joint estimation 
for several effects is elegant and relatively simple.  
 
The model for two fixed effects becomes: 
 
 Weight = general mean + effect of year + effect of sex + random error 
 
 yijk = µ + Yi + Sj + eijk 

 
In matrix notation: 
 
 y = Xb + e  
  
With two fixed effects, we have to use two restrictions to obtain estimates. We will use the 
restriction that the solution of females in year 2002 is equal to zero (i.e. they represent the 
general mean). 
  
The X matrix, and the solution become: 

X     $b   meaning 
 
 
 

the mean of females in 2002 
the effect of year 2000 (relative to 2002) 
the effect of year 2001 (relative to 2002) 
the effect of males (relative to females) 

 



















−

−





























3.44
3.1

3.5
7.285

1001
0101
1101

0101
1101

0011
1011
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Note that the effect of year 2002 is greatly reduced because now we know that there was 
only an observation on a male. The difference between males and females was estimated 
with information from the previous years. In the first analysis we thought that 2002 was a 
particularly good year, but after consideration of the sex effect we know that the mean was 
only higher because there were relatively more males than females in 2002. Notice also that 
the difference between 2000 and 2001 has not changed. This is because within these years 
there were equal numbers of males and females.  
 
Correcting for other fixed effects is different from just taking raw means only if those other 
effects are unequally contributing to a fixed effect under consideration, e.g. if not all years 
have an equal amount of males and females. This is called a “balanced design”. In practice 
we hardly ever have a balanced design, and we need a linear model to correct appropriately 
for all other effects. 
 
The reasoning for using linear models to disentangle different fixed effects is also true for 
disentangling genetic and systematic environmental effects. To estimate herd effects, we 
need to take into account that some herds may have used better sires, and therefore have on 
average animals with better genetic effects. Jointly estimating fixed systematic environmental 
effects and random effects of animals’ breeding values is accommodated for in a mixed 
model.  
 
The same example in ASREML  

Datafile: exmp2.dat 

1990  Male    354 
1990  Female  251 
1991  Male    327 
1991  Female  328 
1991  Male    301 
1991  Female  270 
1992  Male    330 
 
ASREML file: exmp2.as 

analysis of test data 2 LM course 
  year 3 !A  
  sex 2 !A   
  weight 
exmp2.dat 
weight ~ mu sex year 
 
Output: exmp2.sln 

  year                 1990                   0.000       0.000     
  year                 1991                   4.000       33.92     
  year                 1992                   5.333       50.56     
  sex                  Male                   0.000       0.000     
  sex                  Female                -44.33       31.98     
  mu                              1           324.7       31.98     
 
And with forcing the sum of year solution to zero: 
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ASREML file: exmp2.as 

analysis of test data 2 LM course 
  year 3 !A  
  sex 2 !A   
  weight 
exmp2.dat 
weight ~ mu con(sex) con(year) 
Output: exmp2.sln 

  con(year)            1990                  -3.111       24.13     
  con(year)            1991                  0.8889       21.32     
  con(sex)             Male                   22.17       15.99     
  mu                              1           305.6       18.07     
 

Model with a Covariate 
 
In the two previous sections, we considered two fixed effects, both of them being class 
variables. Another type of fixed effect can be due to a continuous variable, and the most 
obvious example is age at measurement. Suppose the 7 animals were measured at slightly 
different ages. To correct the phenotypes for an age effect, we can first estimate this age 
effect in a linear model. A model with just one continuous variable is a regression model. For 
example, if we fit just age (with the age at measurement measured in months): 
 
 Weight = general mean + age of the animal  
 
 yi = µ + agei + ei 

 
In matrix notation: 
 
 y = Xb + e 
  
The X matrix, and the solution become: 

X $b   meaning 
 
 
 

 
the intercept: the weight at age 0  
the slope: the extra weight for one extra month of age 
 

Hence, there is only one column needed for a covariable: it takes only one degree of 
freedom, or one parameter to estimate (unless we also want to fit a quadratic effect of age), 
and rather than an “incidence” we simply put the age of measurement in the X-matrix. In a 
regression model we estimate the ‘mean’ as an intercept, which is basically the estimated 
weight at age 0. In this example, the value is pretty realistic to represent ‘birth weight’  but it 
could have been quite deviant from a realistic value as the observed values for age are far 
from birth weight, so it is based on extrapolation. Again, we can reparameterise the model, 

1 13
1 10

1 12
39.71

1 13
22 .42

1 1 1
1 1 1
1 14

 
 
 
 

  
  
  

 
 
  



3: Introduction to linear models 

3-12 

by expressing the covariable relative to a mean. We can choose to express age relative to 
12 months, and the estimated intercept will become the estimated weight at 12 months. 

y = 22.42x + 39.71

0

100

200
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400

0 2 4 6 8 10 12 14 16
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Regression analysis with observed ages (above) and ages as deviations (below) 
 

y = 22.42x + 308.71

200

300

400

-4 -3 -2 -1 0 1 2 3 4
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(k

g
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X     $b   meaning 
 
 
 

 
the intercept: the weight at the age of 12 months 
the slope: the extra weight for one extra month of age 
 

 
Hence, reparameterisation affects the solution for the intercept, but not the slope. We are 
still estimating that the animals grow 22.42 kg per month. 
 
Now, to put it all together, we can fit a model where the effects of year, sex and age are 
jointly fitted. 
 
   yiik = µ + Yi + Sj + ageijk + eijk 

 

1 1
1 2

1 0
308.71

1 1
22.42

1 1
1 2
1 1

+ 
 − 
 

  +   
  −

 
 
 + 
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In matrix notation: y = Xb + e  
  
The X matrix, and the solution become: 

X     $b    meaning 
 
 
 The mean for 2002, females, 12 mo 

The effect of 2000 relative to 2002 
The effect of 2001 relative to 2002 
The effect of males relative to females 
The effect of one extra month of age 

 
Now, after correcting all effects for each other we observe that 

 
• The difference between Y2000 and Y2001 is a bit smaller than 4, because the 

ages of the animals in those years were different. 
 

• The difference between Y2000 and Y2001 on one hand, and Y2002 on the other 
hand have changed drastically. Because animal 7 was measured at an older 
age, the year effect of 2002 has gone down. 

 
• The difference between males and females is also reduced because 

differences between males and females are partly explained by age of 
measurement (males were on average 12.5 months of age and females were 
on average 11.3 months old; animal number 7 does not count as he could not 
be compared with a female within his year).  

 

Model with interaction 
 
Consider the following small data set with 8 observations on weight  from 2 breeds (Angus 
and Brahman) in two environments (Tropical and Temperate): 
1 BRA TROP 255 
2 BRA TROP 245 
3 ANG TROP 262 
4 ANG TROP 238 
5 BRA TEMP 295 
6 BRA TEMP 305 
7 ANG TEMP 345 
8 ANG TEMP 355 
A simple 2 way analysis: 

analysis of test data 6 LM course 
  ID 
  breed 2 !A 
  environm 2 !A 
  weight 
exmp6.dat 
weight  ~ mu breed environm 
  environm                 TROP                   0.000       0.000 
  environm                 TEMP                   75.00       12.99 

1 1 0 1 1
1 1 0 0 2 250.5

1 0 1 1 0 51.8
1 0 1 0 1 49.2

1 0 1 1 1 26.7
1 0 1 0 1 26.4
1 0 0 1 2

 
 −               −     −   
  
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  breed                    BRA                    0.000       0.000 
  breed                    ANG                    25.00       12.99 
  mu                              1               237.5       11.25 
 
 
Analysis of Variance                   DF     F-incr 
   5 mu                                  1    1958.68 
   2 breed                               1       3.70 
   3 environm                            1      33.32 
 
However, it is useful to make a Table with the sub class means for the different 
combinations, like this 
 

TROP TEMP
BRA 250 250 250
ANG 300 350 325

275 300 287.5  
 
We see that there is definitely a breed effect in the temperate environment, but not in the 
tropics. This example calls for a test about whether there is an INTERACTION between the 
main effects. Practically, to test whether one effect depends on the levels of another effect, 
i.e. whether the breed effect depends on whether you are in the tropics or in Scandinavia. 
 
An interaction model: The model is: 
 
 yij =  µ + α i + β j + ?ij + eij, 
 
where  ?ij is an interaction term. The number of levels for ? is equal to the number of filled 
subclasses. With no missing data, that would be equal to nr. of levels of effect 1 x nr. of 
levels for effect 2. 
 
analysis of test data 6 LM course 
  ID 
  breed 2 !A 
  environm 2 !A 
  weight 
exmp6.dat 
weight  ~ mu breed environm breed.environm 
 
The X matrix look like (parameters printed above) 
 
( )1 2 1 2 11 12 21 22µ α α β β γ γ γ γ    
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1 1 0 1 0 1 0 0 0
1 1 0 1 0 1 0 0 0
1 0 1 1 0 0 1 0 0
1 0 1 1 0 0 1 0 0
1 1 0 0 1 0 0 1 0
1 1 0 0 1 0 0 1 0
1 0 1 0 1 0 0 0 1
1 0 1 0 1 0 0 0 1

 
 
 
 
 
     
 
 
 
  
 

 

 
 The incidence matrix has many dependencies; all main effects add up to the mean, as 
before, but now also, all interactions within a main effect subclass add up to that main effect. 
This means technically that it is hard to estimate both main effects and interactions. We can 
set restriction to the solutions, as before, but the interpretation becomes a bit more tricky. 
See below for two possible solutions, and try to interpret these, with an eye on the means 
table above. You can imagine that with missing subcells and with more levels, such 
interpretation could become more difficult (that’s why it is usually good to try a very simple 
example first. 
with solutions: 
 
not fitting µ   
 
  breed.environm       BRA.TROP                   0.000       0.000 
  breed.environm       BRA.TEMP                   0.000       0.000 
  breed.environm       ANG.TROP                   0.000       0.000 
  breed.environm       ANG.TEMP                   50.00       14.80 
  environm                 TROP                   0.000       0.000 
  environm                 TEMP                   50.00       10.46 
  breed                    BRA                    250.0       7.399 
  breed                    ANG                    250.0       7.399 
 
fitting µ and setting first of levels to 0. 
 
  breed.environm       BRA.TROP                   0.000       0.000 
  breed.environm       BRA.TEMP                   0.000       0.000 
  breed.environm       ANG.TROP                   0.000       0.000 
  breed.environm       ANG.TEMP                   50.00       14.80 
  environm                 TROP                   0.000       0.000 
  environm                 TEMP                   50.00       10.46 
  breed                    BRA                    0.000       0.000 
  breed                    ANG                    0.000       10.46 
  mu                              1               250.0       7.399 
 
and analysis of variance: 
 
Analysis of Variance                   DF     F-incr 
   5 mu                                  1    6038.81 
   2 breed                               1      11.42 
   3 environm                            1     102.74 
   6 breed.environm                      1      11.42 
 
 
We will discuss interactions further in a next chapter on analysis of variance. 



3: Introduction to linear models 

3-16 

For the moment, we are mainly interested in the meaning of the solutions obtained. The 

question here is: how relevant are the estimates of main effects in a dataset where significant 

interactions exist.  
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Exercise 3: Linear models 
 

A) Example of regression on covariables variables 
 
Give are the weights of six cows, and their age at which the measurement was taken 
 
cow ages(mo) weight (kg) 
  1  18    494 
  2  21    556 
  3  19    542 
  4  17    473 
  5  23    632 
  6  19    544 
 
Determine the effect of age on weight 
 
 Determine the first order regression 
 Compare the residuals 
 
Hint: The model is: y = Xb + e.  Determine X and y for this example (see Ch.2)  

Solutions are via Least squares: b
)

 = (X’X)-1X’y 
 Residuals calculated as bXye

)) −= . Residual sums of squares = SSE = ee )'ˆ  
 Residual variance = ee )v

' /(n-2) 
  
B) Example of regression on class variables 
 
Given are the weights of the same cows, but now we have discovered they are from 2 
different breeds, and they were raised under two different feeding regimes (intensive and 
extensive grazing) 
 
cow breed   feeding regime  weight (kg) 
  1  Angus    intensive  494 
  2  Angus   intensive  556 
  3  Angus   extensive  542 
  4  Hereford   extensive  473 
  5  Hereford   intensive  632 
  6  Hereford   extensive  544 
 
Determine the effects of breed and feeding regime by Least Squares Analysis 
(You may first assume equal ages now, but then also try to account for it) 
 
Compare estimates from different models and explain. 
 
 

 


