Selection Theory - Predicting Genetic Change

Expected genetic mean of progeny = mean of (selected) parents

$$E(g_{\text{progeny}}) = \frac{1}{2} g_{\text{sires}} + \frac{1}{2} g_{\text{dams}}$$

$$= \frac{1}{2} \bar{g}_{sires} + \frac{1}{2} \bar{g}_{dams} + \frac{1}{2} S_{sires} + \frac{1}{2} S_{dams}$$

Genetic mean of
parental generation Mean Selection Differential
of selected parents (S)

S = Genetic Superiority or Selection Differential

Selection Response = Mean of progeny generation – Mean of parent generation

Predicting Selection response

Selection Response =
$$\frac{1}{2}S_{sires} + \frac{1}{2}S_{dams}$$

Predict S from breeding value = additive genetic effect (what a parent passes on to offspring)

Predicting S from average EBV of selected parents, as regression $b_{a,EBV} = 1$

S =
$$\overline{\hat{a}}_{selected sires}$$
 - $\overline{\hat{a}}_{contemporaries}$

Predict as $S = i \sigma_{EBV} = i r_{IA} \sigma_{a}$

i = selection intensity

r_{IA} = selection accuracy

 σ_a = additive genetic SD

How much genetic change?

Selection intensity

selint.xls

Superiority of selected group (in SD units)

X: cumulative density function($x > \infty$) = p x= -NORMSINV(p) in excel

$$z = e^{-0.5x^2} / \sqrt{2\pi}$$
 i = z/p

i is reduced in smaller populations, more so for small p and N

Burrows
$$i_{corrected} = i - \frac{N - Np}{2Np(N+1).i}$$
 or $p_{corrected} = \frac{Np + \frac{1}{2}}{N + (\frac{Np}{2N})}$ (approx)

Selection intensity - correct for correlated EBV

Criteria for selection often correlated amongst selection candidates

e.g. if EBV= Parent Average, all FS will have same EBV

with 10 FS families: selecting 10 out of 100 is really selecting 1 out of 10

$$i_{corrected} = \sqrt{(1-t_{av})}$$
.

t_{av} is average correlation between EBV across all candidates

Rawlings (1976)

$$t_{av} = \frac{t_{fs}(n_w - 1) + t_{hs}n_w (n_{fs} - 1)}{n_w n_{fs} n_{hs} - 1}$$

 t_{fs} = correlation among FS

t_{hs} = correlation among HS n_{hs} sires n_{fs} dams per sire n_w progeny per dam

Selection intensity - correct for correlated EBV

Example Prop = 10%	ample	Finite Population Size	100	
	•	Nr Sires nhs	10	
I	= 1.755	Nr dams/sire nfs	1	
	selint.xls	nw offspring per dam	10	
		FS EBV correlation	1	
		HS EBV Correlation	0.4	
		Corrected for populat	ion size	1.730
		t_average	0.090909	
		Corrected for related	1.649	
Adjustment has limited effect, and irrelevant with optimal contribution selection				

Response per year

• Response per generation

Superiority of parents averaged over males and females

• Response per year

 $\frac{1}{2}$ S_{sires} + $\frac{1}{2}$ S_{dams} $\frac{1}{2}$ L_{sires} + $\frac{1}{2}$ L_{dams}

 $S_{sires} + S_{dams}$ $L_{sires} + L_{dams}$

Generation interval (in years) averaged over males and females

Generation interval is average age of sires (dams) when their progeny are born

Derivation of S_{sires} + S_{dams}

 $L_{sires} + L_{dams}$

Mean of offspring generation Mean of sires' generation Mean of dams' generation Mean of sires Mean of dams

$$\begin{split} \bar{g}_{o} \\ \bar{g}_{o} &- L_{S}.R_{yr} \\ \bar{g}_{o} &- L_{D}.R_{yr} \\ \bar{g}_{o} &- L_{S}.R_{yr} + S_{s} \\ \bar{g}_{o} &- L_{D}.R_{yr} + S_{d} \end{split}$$

Mean of offspring

$$\frac{1}{2}(\bar{g}_{o} - L_{S}.R_{yr} + S_{s}) + \frac{1}{2}(\bar{g}_{o} - L_{D}.R_{yr} + S_{d}) = \bar{g}_{o}$$

$$\frac{1}{2}(-L_{S}.R_{yr} + S_{s}) + \frac{1}{2}(-L_{D}.R_{yr} + S_{d}) = 0$$

$$\frac{1}{2}(S_{s}) + \frac{1}{2}(S_{d}) = \frac{1}{2}(L_{S}) + \frac{1}{2}(L_{D})R_{yr}$$

 $\rightarrow (S_s + S_d) / (L_s + L_D) = R_{yr}$

Select 20 animals from 3 age classes

Candidates Age Class	Nr Candidates in age group	mean	SD
1	200	0.5	0.30
2	200	0.25	0.40
3	200	0	0.70

Nr Selected
5
3
12

Select 20 animals from 3 age classes

Candidates Age Class	Nr Candidates in age group mean SD				
1	200	0.7	0.30		
2	200	0.35	0.40		
3	200	0	0.70		

More R_{vr}

Nr
Selected
9
3
8

→ select more young animals

Select 20 animals from 3 age classes

Candidates	Nr Candidates		
Age Class	in age group	mean	SD
1	200	0.5	0.50
2	200	0.25	0.60
3	200	0	0.70

→ select more young animals

More accuracy younger animals

If means and SD of distributions are known

Algorithm

(Ducrocq and Quaas, 1989)

```
target = 20; LowTH = - 5; UppTH = + 5
Loop until LowTH ~ UppTH
TH = (MaxTH + MinTH)/2
Calculate Nr. selected (Nsel) for current TH
IF Nsel > target THEN LowTH=TH
ELSE UppTH=TH
```

truncsel.xls

Next

Optimize selection across age classes in a breeding program If age class (AC) me

Algorithm: Iterate

Start R_{yr} =0 Loop until R_{yr} does not change Calculate AC means from R_{yr} Calculate TH for given means Calculate S and L for given TH Calculate R_{yr} from S and L

Next

If age class (AC) means and SD are NOT known

E.g. when optimizing a breeding program

SD will depend on EBV accuracy AC means will depend on R_{vr}

But R_{vr} will depend on S and L !

For males as well as females

Optimize selection across age classes in a breeding program

Just a reminder

In real breeding programs BLUP selection optimizes generation intervals automatically.

Truncation Selection modeling is needed for deterministic modeling and prediction of breeding program outcomes

Response with selection across age classes in a breeding program Calculation of Response

Mean of offspring generation Mean of age class i (with age L_i)

Mean of animals selected from age class i

 S_i = superiority of animals selected within age class i

Proportion of parents originating from age class i p_i ($\Sigma p_i = 1$)

(this is not split over sexes, assume same i, for sires and dams

$$\Sigma p_i(\bar{g}_o - L_i R_{yr} + S_i) = \bar{g}_o$$

$$\rightarrow \Sigma p_i (-L_i R_{yr} + S_i) = 0$$

$$\rightarrow \Sigma p_i S_i = \Sigma p_i L_i R_{yr}$$

 $\Sigma p_i S_i$ weighted mean of within age class superiority $\Sigma p_i L_i$ weighted mean of ages = L

 \bar{g}_{0}

 $\bar{g}_{o} - L_{i}.R_{vr}$

 $\bar{g}_{o} - L_{i}R_{vr} + S_{i}$

 $R_{yr} = \sum p_i S_i / \sum p_i L_i$

Mean of offspring

Response with selection across age classes in a breeding program Calculation of Response

different i,L for males and females:

ps_i and pd_i are proportions and Sd_i ad Sd_i are superiorities within age class for sires and dams resp.

Mean of offspring

$$\frac{1}{2} \sum ps_i(\bar{g}_o - L_i R_{yr} + Ss_i) + \frac{1}{2} \sum pd_i(\bar{g}_o - L_i R_{yr} + Sd_i) = \bar{g}_o$$

$$\rightarrow \dots$$

$$\rightarrow R_{yr} = \underline{\Sigma ps_i Ss_i + \Sigma pd_i Sd_i}$$

$$\Sigma ps_i L_i + \Sigma pd_i L_i$$

Weighted mean of within-AC-superiority (sum over sexes)
 Weighted mean of AC-age (sum over sexes)

Response with selection in a 4 pathway program

Asymptotic response/yr =
$$R_{yr} = \frac{S_{sm} + S_{dm} + S_{sf} + S_{df}}{L_{sm} + L_{dm} + L_{sf} + L_{df}}$$

Response with selection in a 4 pathway program

Example

	Proportion Selected	Intensity	Accuracy	Genetic Superiority	Generation Interval (yr)
Pathway	(p_i)	(<i>i</i> _{<i>i</i>})	(r_i)	$(S_i = i r_i \sigma_g)$	(L_i)
Sires of males	2 %	2.42	0.90	2.178 σ _g	6
Sires of females	10 %	1.75	0.90	1.575 σ _g	7
Dams of males	0.5 %	2.89	0.60	1.743 σ _g	5
Dams of females	90 %	0.19	0.60	0.114 σ _g	6
TOTAL				$\Sigma S = 5.601 \sigma_g$	$\Sigma L = 24$

 $R_{yr} = \frac{(2.42 \text{ x } 0.9 + 1.75 \text{ x } 0.9 + 2.89 \text{ x } 0.6 + 0.19 \text{ x } 0.6)}{6 + 7 + 5 + 6} \sigma_g = 0.233 \sigma_g \text{ per yr}$

genetic gain.xls

Some concluding comments

- In general this theory provides a good <u>framework to predict outcomes of</u> <u>breeding strategies</u>, including introducing new technologies (such as reproductive and genomic technologies
- Much of the theory is applicable to a <u>closed breeding nucleus</u>, in reality we often have many of these nucleii interchanging breeding material (esp. in beef, sheep), and means, variances and genetic backgrounds between these might differ.
- The theory is often assuming one homogeneous population and it is about exploiting genetic <u>variance within populations</u> or breeds. In reality we can exploit genetic variation between lines, breeds, populations as well (esp. with genomics!)