

Design of Breeding Programs

Decisions in breeding programs

Where to go?

breeding objective (which traits)

Who and what to measure?

performance, DNA test

genetic evaluation

Who to select and mate?

reproductive technol.

gains vs inbreeding

Animal Breeding in a nutshell

Why do we need a design?

- Genetic Improvement:
 - Which animals to measure?
 - Where to select them?
 - Mating strategy
 - Reproductive and Genomic Technologies?
- Dissemination of Genetic Superiority
- Inbreeding

Basic Principle of making genetic progress

One-tier breeding program

One-tier breeding program

genetic improvement

measurement

Two-tier breeding program

Genetic merit of Nucleus versus Commercial

Rate of gain is the same in all tiers

3-tier breeding program

3-tier breeding program

Multiplication in Broiler Breeding Programs

Adapted from: Poultry Breeding and Genetics, Crawford (ed). Elsevier, 1990

Structure of Swine (Poultry) Breeding Programs

MARKET

Two-tier breeding program

What defines the nucleus?

Two-tier breeding program (can compare with 4 pathways)

Dispersed Nucleus

Nucleus: could be defined as

"the mothers and fathers of the future bulls"

Top studs

Delivering the genetics of the future bulls

Other studs

Acquire their genetic from top studs Themselves being merely multipliers

Local 'nucleus' can in fact be multiplier

Examples:

Angus Australia breeding program Holstein Australia Breeding program

Nucleus Breeding Schemes

Closed Nucleus

Replacement animals for nucleus only from nucleus

Selection only permanently effective in nucleus.

Nucleus objectives impact on whole scheme.

Common in pigs and poultry

Nucleus Breeding Schemes

Open Nucleus

Replacement animals for nucleus but also some from base

Selecting from base requires measurement in base

More genetic improvement than closed scheme (~15%)

Common in dairy

Open nucleus systems

- Select the best animals from lower tiers to compete for being nucleus parents
- degree of 'openness depends on
 - difference between nucleus and commercial
 - spread of their breeding values
- Open to nuclei

Open Nucleus

Open Nucleus: *effect of more information in base*

Benefit of selection in lower tier

Contributions of pathways

2 pathways

- Selection of sires
 Selection of sires
 2
 .5-.8
- Selection of dams 0.5-1 .5-.6
- \rightarrow S_{sires} : S_{dams} at least varies from 2:1 to 5:1
- Sire selection contribute more than 70%-90% to dG

Contributions of pathways

4 pathways in dairy

<u>contribution to dG</u>

- Selection of sires for sires 39
- Selection of sires for cows
- Selection of dams for sires
- Selection of dams for dams

39%	
38%	
22%	
1%	

Why need a design?

• Genetic improvement

Need decisions on

- which animals to measure or genotype nucleus males (females)
- where to select them nucleus/base
- mating strategy best to best → elite matings
- Dissemination of genetic superiority
 - Often a challenge when setting up a new program, esp in developing countries.
 - How to sell/give improved seedstock to local farmers
- Inbreeding

Making genetic progress is about

Keeping generation intervals short

Reproductive rates affect all of the above!

Reproductive technologies

- Increases selection intensities
- Increases accuracy of EBVs
- Decreases generation intervals

• Increases inbreeding

Adult dairy MOET scheme (1983)

More offspring of top cow after testing it

JIVET dairy scheme...

1998: Note that this is a bad design - EBV from grandparents!2015: Maybe it isn't when we use genomics selection!

Development of Breeding Strategies Summary

- Integration of the components of a breeding program into a structured system for genetic improvement, with the aim to maximize an overall objective (genetic gain, market share).
- Evaluate opportunities for improving upon current strategies.
- Evaluate the potential of new technologies.
 - How can they best be incorporated into current strategies?
 - Can their benefits best be capitalized on in a redesigned breeding structure?

Breeding Strategies - Summary

What tools are necessary to develop optimal strategies?

- Quantitative genetics theory
 - Predicting response to selection, selection index, inbreeding, etc.
- Systems analysis
 - Predicting and optimizing response in overall objective
- Common sense
- An open mind