

Optimizing Breeding Programs

Effect of Reproductive Technologies and Measurement

Aspects that need to be balanced:

• Selection accuracy versus generation interval

$$\frac{i_m r_{IAm} + i_f r_{IAf}}{L_m + L_f} \sigma_A$$

- Short generation intervals are good for fast progress, but young breeding animals have lower EBV accuracy
- Selection accuracy versus selection intensity
 - Money available for testing (either performance or DNA) can be used to test a few animals accurately, or to test more animals with lower accuracy. For example, testing fewer young bulls but giving them more test progeny.
- Selection intensity versus generation interval
 - Selecting fewer animals for breeding each year and keeping those longer
- Selection intensity versus inbreeding
- The relative emphasis in selection for multiple traits
- Cost versus benefits

Aspects that need to be balanced

une

Accuracy = 45%

the more accuracy, the more response

Accuracy of predicting a breeding value

increases as an animal gets older

Assumed heritability = 25%

Need to balance accuracy and generation interval!

une

BLUP helps selecting between old and young bulls

- EBVs can be compared directly over age classes
- Selection on BLUP EBVs optimizes generation interval

Optimizing age structure

une

7

Best to select on EBV, irrespective of accuracy /genotyped or not / age

	birth year	genotyped	progeny	EBV	асс
Kevin	2009	Y	0	+124	71
Tony	2005	Ν	345	+119	97
Bob	2009	Ν	0	+117	63
John	2008	Ν	45	+113	85
Paul	2006	N	1087	+112	99
Geoff	2009	Y	0	+106	40
Malcolm	2007	Ν	67	+105	89

Balancing inbreeding and merit

This graph will look different for each population

merit

inbreeding or co-ancestry

Between versus within family selection

More within-family selection - less inbreeding

Balancing Traits, weights and information

Multiple traits

Usually push the traits that have more information/higher EBV accuracy \rightarrow Balance may change with genomic information on 'hard to measure traits'

Importance of Trait measurement

1 The ultimate response of a trait will depend on:

Evaluating Breeding programs

- Deterministic vs Stochastic Simulation
- Optimization strategies