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Learning objectives

« Understand limitations of estimates from the pedigree-based
model - why we would need genome-based model

* Understand how to combine phenotype information from all
relatives connected via genomic data

* Practice inference of breeding values with the genome-
based model
— simple cases using R matrix algebra
— using other packages
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Learning objectives

« Understand limitations of estimates from the pedigree-based
model

« Understand how to combine phenotype information from all
relatives connected via genomic data

* Practice inference of breeding values with the genome-
based model
— simple cases using R matrix algebra
— using other packages



Limitations with pedigree-based model

* With pedigrees we can apriori describe
expected amount of variation
— between pedigree founders (assumed unrelated)

— between families

(variation between family means / parent average terms)
— within families

(variation between Mendelian sampling terms)



Expected and realised relatedness

Expected

Realised

Coop (2013)
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Limitations with pedigree-based model

* With pedigrees we can apriori describe
expected amount of variation

— between pedigree founders (assumed unrelated)

— between families
(variation between family means / parent average terms)

— within families
(variation between Mendelian sampling terms)
« When we fit the model, we aposteriori estimate

“realised” deviations
(phenotype resemblance updates assumed pedigree relationships)
- the more information per individual, the higher accuracy




Limitations with pedigree-based model

* What does all this mean in practice:

— Decent accuracy of estimated breeding values for individuals with
own phenotypic data or progeny with phenotypic data
(genomic data won’t add much more information!)



Limitations with pedigree-based model

* What does all this mean in practice:

— Low accuracy of estimated breeding values for individuals without
own phenotypic data or progeny with phenotypic data
(genomic data can add more information)



Limitations with pedigree-based model

 What does all this mean in practice:

— Zero accuracy of estimated breeding values within a family with
progeny prediction!!! - we can not differentiate full-sibs :(
(progeny prediction does not capture Mendelian sampling terms,
so genomic data can add a lot of information)



Limitations with pedigree-based model

» Pedigree could be
— wrong!
— partially missing
— missing altogether!

* Genomic data should help with all the mentioned issues!



Data

Recall the 0/1 encoding of haplotypes and 0/1/2 encoding of

genotypes
Haplotype 1 0 1 1 0 0 1
Haplotype 2 1 1 1 1 0 0

Genotype 1 2 2 1 0 1




Data - example

ID Pheno Marker1! Marker2 Marker3 Markerd Marker5

1 7.2 2 2 2 0 1
2 3.5 0 2 1 1 0
3 5.7 1 1 1 1 1
4 6.3 2 1 0 1 2




How could we model this data?

 Let’s focus on one locus first

ID Pheno Marker1

1 7.2 D : .

2 35 0 & °

3 57 1 #

4 63 2 ) - . .

Marker1 genotype



How could we model this data?

e Let’s focus on one locus first

ID Pheno Marker1

~ o
1 7.2 2 s .
2 35 0 & °
3 57 1 #
4 63 2 o0 5 i 7
« We have: S SRR

— continuous variable (Pheno) - response
— continuous variable (Marker1) = covariate




Linear regression (single marker)

» Estimating the association between phenotypic value and
marker 1 genotypes (as allele dosage)

vi=72=u+2ay +eq
v, =35=u+0a; + e,
V3 =5.7=u+ 1la; + e
Va =63 =u+2ay+e,

e;~N(0,02)

« Assuming causality, a is allele substitution effect



Linear regression (single marker)

» Estimating the association between phenotypic value and
marker 1 genotypes (as allele dosage)

V1 7.2 1 2 e
21 (35| [1 0 e
vs | T 57 | T {1 W] (@) +] e,
Va 6.3 1 1 €4

y=Xb+Wa+e (XTE—lx XTE—lw) (B) _(X'E™ly
e~N(0,Ec?) WTE-lx WTE-'w/\a WTE 1y
Var(aly) = diag(C™")q 0¢



Breeding values at single marker

a
. Model: ai (2)
a3:1 |1 (a1) = ay = Wa
(41 1

E(a,)) =E(Wa) = WE(a)
Var(a,) = Var(Wa) = WVar(a)W?'



Breeding values at single marker

a
. Model: ai (2)
a3:1 11 (@) =, =Wa
(41 1

E(a,)) =E(Wa) = WE(a)

Var(a,) = Var(Wa) = WVar(a)W?'
 Estimator/Predictor:

E(aily) =a, =Wa

Var(a,|y) = WVar(a|y)W"



Questions?!



Multiple linear regression (multiple markers)

» Estimating the association between phenotypic value and
marker 1-5 genotypes (as allele dosage)

a
V1 7.2 1 22201 /a;\ 1
va\_[35)_[1 02110 2
— — a
a | T\s7 )Tl )W i) 2 )T e
Va 6.3 1 11012/ \, ) \es
5

yv=Xb+Wa+e
e~N(0,Ec?)



Multiple linear regression (multiple markers)

» Estimating the association between phenotypic value and
marker 1-5 genotypes (as allele dosage)

04
V1 7.2 1 22201 /a;\ 1
V2 3.5 1 02110 e
— — a
a | T\s7 )Tl )W i) 2 )T e
Va 6.3 1 11012/ \, ) \es
y=Xb+Wa+e (X"ET'X X"E~'w \(B\_ (XTEly
e~N(0,Eo;) WIET'X WTET'W + 1% (a)_ WTE 1y
a~N(0,Ic7) @

Var(aly) = diag(C™")q ¢



Role of the prior for marker effects a~N(0,15?)

. arization
s kage in action!!!
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Breeding values over all markers

» Model: [“1 22201 / \
a2\ _[02110 Y We
a3 11111 a4
ay 11012/ \,. )

E(a)=E(Wa) =WE(a) =0
Var(a) = VarWa) = WVar(e)W! = WW'o/



Breeding values over all markers

» Model: /1 22201 / \
a2\ _[02110 Y We
3 11111 a4
iy 11012/ \,. )

E(a)=E(Wa) =WE(a) =0

Var(a) = VarWa) = WVar(e)W! = WW'o/
» Estimator/Predictor:

E(aily) =a, =Wua

Var(a,|y) = WVar(a|y)W"



Questions?!



Prediction of genomic prediction accuracy (“global”)

« Effective no. of chr. segments
M, = 2N,LC/In(N,L)
* Prop. of genetic variance captured by markers
q°=M/M+ M,)
 Reliability of GEBV R*=T/(1+T),T =nqg°h*/M,
- Reliability of EBV R*=(T/(1+T))q*

Goddard (2011), Dekkers (2007)



Inputs

M no. of genome-wide markers

N, effective population size

L average size of chromosomes in Morgans
C no. of chromosomes

h? heritability of training phenotypes

n no. of training individuals



Maize example (train and predict in family)

* M no. of genome-wide markers = 200

N, effective population size = 1

L average size of chromosomes = 2

C no. of chromosomes = 10

h? heritability of phenotype included into training = 0.25
n_no. of training individuals = 100

Effective no. of chr. segments
Mc=2N.LC/In(N.L)=2x1x2x10/In(1%x2)=58
Prop. of genetic variance captured by markers
q?=M/(M+M,)=200/(200+58)=0.76
Reliability of GEBV
R2=T/(1+T), T=ng?h?/M,
T=100%0.76%0.25/58=0.34, R*=0.25, r=0.5
Reliability of EBV
R2=(T/(1+T))g?=0.19, r=0.44




Maize example (predict from other families)

* M no. of genome-wide markers = 10,000

N, effective population size = 50

L average size of chromosomes = 2

C no. of chromosomes = 10

h? heritability of phenotype included into training = 0.25
n_no. of training individuals = 2000

Effective no. of chr. segments
M.=2N.LC/In(N.L)=2x50%2x%10/In(50%2)=434
Prop. of genetic variance captured by markers
q?=M/(M+M,)=10000/(10000+434)=0.96
Reliability of GEBV
R2=T/(1+T), T=ng?h?/M,
T=2000%0.96x0.25/434=1.1, R?=0.53, r=0.72
Reliability of EBV
R2=(T/(1+T))g?=0.50, r=0.71




Dairy bulls example

* M no. of genome-wide markers = 50,000

N, effective population size = 50

L average size of chromosomes = 1

C no. of chromosomes = 30

h? heritability of phenotype included into training = 0.80
n_no. of training individuals = 1000

Effective no. of chr. segments
Mc=2N.LC/In(N.L)=2x50%x1x30/In(50%1)=767
Prop. of genetic variance captured by markers
q*=M/(M+M,)=50,000/(50,000+767)=0.98
Reliability of GEBV
R2=T/(1+T), T=ng?h?/M,
T=1000%0.98%0.80/767=1.02, R*=0.50, r=0.71

Reliability of EBV
R2=(T/(1+T))q2=0.50, r=0.70




Dairy cows example

* M no. of genome-wide markers = 50,000

N, effective population size = 50

L average size of chromosomes = 1

C no. of chromosomes = 30

h? heritability of phenotype included into training = 0.30

n_no. of training individuals = ??? How many to get R? EBV of 0.50?7?7?

Effective no. of chr. segments
Mc=2N.LC/In(N.L)=2x50%x1x30/In(50%1)=767
Prop. of genetic variance captured by markers
q*=M/(M+M,)=50000/(50000+767)=0.98
Reliability of GEBV
R2=T/(1+T), T=ng?h?/M,
T=??7x0.98x0.30/767=???, R?=??7? , r=???
Reliability of EBV
R2=(T/(1+T))g?=??7? , r=?7??




Dairy cows example
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~10,000 ***good™*** markers works quite well

Box 3 | Whole-genome marker-enabled prediction: an example application

07 ~
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de Los Campos et al. (2010)



Information for an individual — pedigree vs. genomics
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Questions?!



Marker & individual genome-based models

« Marker genome-based model (SNP-BLUP)

v=Xb+Wa+e
e~N(0,Ec?)
a~N(0,Ic?)

Individual genome-based model (G-BLUP)
v=Xb+ZWa + e Z so we can include
y = Xb+Za+e non-phenotyped individuals
e~N(0,Ec?)
a~N(0,?c%)



Marker & individual genome-based models

« Marker genome-based model (SNP-BLUP)

v=Xb+Wa+e
e~N(0,Ec?)
a~N(0,Ic7)

* Individual genome-based model (G-BLUP)

v=Xb+ZWa + e Z so we can include
y = Xb+Za+e non-phenotyped individuals
e~N(0,Ec?)

Var(a) = Var(Wa)
a~N(0,?c%)

= WVar(a)WT
= WWTg/



Marker & individual genome-based models

« Marker genome-based model (SNP-BLUP)
y=Xb+Wa+e (X'E'X X"E-'w
e~N(0,Ec?) (WTE‘1X WTE~lw + 1“%) (
a~N(0,107) Var(aly) = diag(€ ), o7
Individual genome-based model (G-BLUP)

v=Xb+ZWa + e Z so we can include
y = Xb+Za+e non-phenotyped individuals

e~N(0, Ec2) (XTE‘lx X'E7'z ) (5)

ISV~ )

):

T -1 T -1 T—10¢
a~N(0,ww'c?) \ZTETX ZTET'Z+ww'TZ

Oq

Var(aly) = diag(€C™1) .0

(

XT'E 1y
WTE-1y

)

XTE-1y
ZTE 1y



Genomic covariance-like coefficient matrices

* Genotype matrix W is nind x nLoc
* Between individuals

Var(a) = Var(Wa) Covariance-like coefficients
z x:;;g(g)WT WWT .be.tv(vnelig ;?(rjlll\r/ll(cjl;Jals.
similar to NRM matrix
 Between loci Covariance-like coefficients
— sum-of-squares WTW (ﬁto\'\éef :1%%')

similar to LD matrix

— covariance Cov(W) =C = (W — E(W)) (W EW))/(n—1)
_ correlation Cor (W) = diag(€)“zCdiag (€)™



Genomic covariance-like coefficient matrices

Between loci Between individuals




Genomic covariance-like coefficient matrices

* Genotype matrix W is nlnd x nLoc Covariance-like coefficients
o between individuals
 Between individuals (nInd x nind)

. Sum-of-squares WWT similar to NRM matrix

— covariance Cov(WT) = € = (W — EWW))(W — EW))' /(n — 1)

— correlation Cor(WT) = diag(C)‘%Cdiag(C)‘%

| want the genome-based NRM
(following the pedigree-based NRM)!?



Genome-based NRM

- Maybe we don’t need it! Var(a) =Var(Wa)
=WVar(a)W’
= WWT'g2



Genome-based NRM

- Maybe we don’t need it! Var(a) =Var(Wa)
= WVar(a)WT
= WWT'g2
 Many proposed versions:
—[-1, 0, 1] centering (W — 1)(W — 1)T
 diagonals = the number of homozygous loci for individuals
« off-diagonals = the number of alleles shared between individuals



Genome-based NRM

- Maybe we don’t need it! Var(a) =Var(Wa)
=WVar(a)W?’
= WWT'g2
 Many proposed versions:
—[-1, 0, 1] centering (W — 1)(W — 1)T
 diagonals = the number of homozygous loci for individuals
« off-diagonals = the number of alleles shared between individuals
— VanRaden 1 (to match pedigree NRM)
T :
G=W-EW)(W-EW)) /X diag(Cov(W))
EW;) = 2p;
Var(W;) = 2p;q;(1 + F;)
— Many other versions!!!



Genome-based NRM

 \Whatever the choice, there is useful information in G!
« Take a trio of diploid individuals and use [-1, O, 1] coding in w
Wri) = Weid1 T Wr(i),2
W) = Wm@,1 T Wm@),2
W, =W;; +W;,
 Realised shared number of alleles between individuals
WrOWr Sym.
Wm<i>W?<i> Wm<i>W3;z(i>

T T T
WiWr i)y WiWmi@p — WiW;



Genome-based NRM - What do these terms mean?

WrOWr() Sym.
Win@Wriy Wi Wm()
WiW,Z(i) WiW1Tn(i) WiWiT

« Diagonal: prior variances indicating how much individual breeding
values could deviate from population mean

o

©
[=)

a; ~N(O' WinTO-(,%)

)

NG
pes

0.0




Genome-based NRM - What do these terms mean?

WrOWr() Sym.
Win@Wriy Wi Wm()
WiW;(i) WiW1T71(i) WiWiT

 Off-diagonal: prior co-variances indicating how much individual
breeding values could correlate compared to the “average pair”

---------
||||||

— T T T
individual1 COT(Cli, aj) o Wiwj/ W,W; W;W;

individual2

individual2

2222222



Genome-based NRM - gametic relationships

* If genotypes are phased we can build gametic relationships
Wri) = Wr,1 T Wr),2
Win@i@) = Wm@),1 T Wm@),2
Wi =W;1tW;,

Wf(i)'lw;(i),l sym. \
Wrn2Winn  WrD2Wio,2

W‘m(i),lw}w(i),l Wm(i),1W;(i),2 Wm(i),1WTm(i),1

Win02Wro1 Wm02Wine WmWmp1 Wm®2 W,

WiiW 1 WiiWr )2 WiiWi(i)1 WiiWnya  WiiWia
Wi,ZW}I‘;(i),l Wi,ZW}I;(i),Z Wi,ZWTm(i),l Wi,zwz;z(i),z Wi,zwiT,1 Wi,zwiT,Z/

- How much gametes/genomes could deviate or correlate



Genome-based NRM - between & within family

Wri) = Wra T Wr@),2
Win@i) = Wm@),1 T Wm(i),2
Wi =W;1 tW;,

« Expected genotype (=parent average) & deviation
(=Mendelian sampling)
E(wi) = E(qws+wmewl) = 3Wr @) + 3Wm()

- How many alt. alleles do we expect from parents (vs. mean)
wi =w;— (GWr@) +3Wma))

- How many more or less alt. alleles did individual get



Genome-based NRM - between & within family

« Expected genotype (=parent average) & deviation
(=Mendelian sampling) per genome

E(wi1) = EGwraHwrm2wi) = Wraa +2Wra2
wii =wi1 — Gwre + 2wra)2)

- from father
—_ 1 1 — 1 1
E (Wi,Z) =L (Ewm(i),l"'EWm(i),Z"'W{l) = Wm(@)1 + SWm(i),2

Wi, =Wy — (%Wm(i),1 + %Wm(i),z)
- from mother



Genome-based NRM variants & interpretation

« Centering shifts reference population

v=Xb+Wa-+e
=Xb+Wa—-EW)a+ E(W)a +e
=Xb+(W-EW)a+EW)a+e
=Xb+(W-EW))a+c+e
=Xb+c)+(W—-—EW))a+e
=Xb*+ W« + e



Genome-based NRM variants & interpretation

« Scaling changes variance meaning
Var(a) = Var(Wa) * Depending on k we can get

= WWTq? very different estimates of ¢
) . .
_ WWTO.C%kE (genomic variance)
wwT * Many pedigree and genomic
= — Oak variance comparisons may be
= Go/” dubious? |- ER



Flexible (temporal and genomic) analysis of genetic variation

the

g e n et i css O C i ety www.nature.com/hdy

ARTICLE W) Check for updates
Temporal and genomic analysis of additive genetic variance in
breeding programmes

Leticia A. de C. Lara(®'™, Ivan Pocrnic®’, Thiago de P. Oliveira®’, R. Chris Gaynor®' and Gregor Gorjanc(®'



Temporal analysis of genetic variation

- True --- Estimated
\1, A Parents F1 HDRW B Parents F1
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P, x P,
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Genomic analysis of genetic variation

HDRW

Chr 1

Chr 2

Chr Nc

0.05-

o ‘ EYT

0.00-

-0.051

Genetic Genic Within-LD  Between-LD



Genomic analysis of genetic variation

HDRW

Chr 1

Chr 2

Chr Nc

0.05-

o ‘ EYT

0.00-

-0.051

Genetic Genic Within-LD  Between-LD



Topics not covered

« “Bayesian models” — different assumptions about marker
effects & commonly approached with methods used in
Bayesian statistics (MCMC/VB)

» Single-step GBLUP (ssGBLUP and variants) — combining all
phenotype, pedigree, and genomic data

« "APY?/SVD/... — approximations for large-scale

* Non-additive genetic or other effects
(note that a captures a bit of dominance, epistasis, GxE, ...)



Limitations with current genome-based models?

« Markers vs. QTL

Admixed populations, multiple populations, ...

Whole-genome sequence data



Learning objectives

« Understand limitations of estimates from the pedigree-based
model - why we would need genome-based model

* Understand how to combine phenotype information from all
relatives connected via genomic data

* Practice inference of breeding values with the genome-
based model
— simple cases using R matrix algebra
— using other packages



Questions?!
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