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Genome-based genetic evaluation



Learning objectives

• Understand limitations of estimates from the pedigree-based 
model à why we would need genome-based model

• Understand how to combine phenotype information from all 
relatives connected via genomic data

• Practice inference of breeding values with the genome-
based model
– simple cases using R matrix algebra
– using other packages
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Learning objectives

• Understand limitations of estimates from the pedigree-based 
model

• Understand how to combine phenotype information from all 
relatives connected via genomic data

• Practice inference of breeding values with the genome-
based model
– simple cases using R matrix algebra
– using other packages



Limitations with pedigree-based model

• With pedigrees we can apriori describe
expected amount of variation
– between pedigree founders (assumed unrelated)
– between families

(variation between family means / parent average terms)
– within families

(variation between Mendelian sampling terms)



Expected and realised relatedness

Coop (2013)

Expected
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Expected and realised relatedness
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b
Pedigree design
4 individuals from 2 families,
including 1 MZ twin pair and
1 DZ twin pair

G =

1
1
0
0

1
0
0

1
0.5 1

Within-family design
4 individuals from 2 families,
including 2 full sibling pairs

G =

1
0.543

0
0

1
0
0

1
0.476 1

Population design
4 ‘unrelated’ individuals
from the same population

G =

1.002
–0.016
–0.003
0.015

1.018
–0.006
0.021

0.994
–0.011 0.983
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Figure 1
(a) Distributions of the off-diagonal elements for the genetic relationship matrix G in the pedigree design using monozygotic (MZ) and
dizygotic (DZ) twin pairs ( green), the within-family design using full-sibling pairs ( pink), and the population design using unrelated
individuals (blue). The distribution of off-diagonal elements for the genetic relationship matrix G for the pedigree design represents the
expected proportion of genome-wide identity-by-descent (IBD) for MZ (=1) and DZ (=0.5) twin pairs. The distribution of the actual
proportion of the genome that is shared IBD within full-sibling pairs in the within-family design varies around 0.5, whereas the
distribution of the actual proportion of the genome that is shared identity-by-state (IBS) for individuals not knowingly related to each
other varies around zero. IBD and IBS estimates for the within-family design and the population design, respectively, are derived from
data from the Framingham Heart Study (FHS). Mean IBD was estimated at 0.5028 with a standard deviation of 0.0368 for full siblings.
Mean IBS was estimated at −0.0002 with a standard deviation of 0.0046 for pairs of unrelated individuals. Only full-sibling pairs were
selected for the IBD estimation in the within-family design, whereas for the IBS estimation in the population design only one sibling
per family was selected and one member of each of the remaining pairs of individuals that had an estimated genetic relationship of more
than 0.025 was removed. Estimates of IBS are relative to an arbitrary base population with an average relationship between all pairs of
individuals of zero. In this analysis, the sample under study is used as the base population; consequently, the average relationship
between all pairs of individuals is zero, and the average relationship of an individual with him or herself is one. (b) Examples of the
genetic relationship matrix G for four individuals in the pedigree design (upper matrix), the within-family design (middle matrix), and
the population design (lower matrix). Diagonal elements in matrix G represent an individual’s estimated genetic relatedness with him or
herself. Off-diagonal elements in matrix G represent genetic similarity between individuals. Note that matrix G is symmetrical and that
for clarity only elements in the lower triangular are provided. In the pedigree design, off-diagonal elements represent expected
genome-wide IBD sharing for four individuals (one MZ twin pair and one DZ twin pair) from two independent families in which
parents are assumed to be unrelated. In the within-family design, the off-diagonal elements represent actual variation around the
expected genome-wide IBD sharing [E(π̂ ) = 0.5] for two independent full-sibling pairs. In the population design, the off-diagonal
elements represent actual genome-wide IBS for four (i.e., six pairs) individuals that are not knowingly related. In the population design,
an individual’s genetic relatedness with him or herself (diagonal elements) is an estimate of 1 + F, with F being the inbreeding coefficient
relative to the base population.

is unknown but dense genetic-marker data are
available, G contains estimates of coefficients
of additive genetic covariance between pairs
of individuals that are captured by the markers
used to construct G. These coefficients are
scaled to vary around zero for pairs of indi-
viduals that are not knowingly related. See
Figure 1b for graphical representation of
matrix G for the three designs.

In all the designs we review, the sampling
variance of the estimate of heritability is a func-
tion of sample size and the variation among
the elements of G; more variation implies
smaller sampling variance (see Figure 1a for a
graphical representation of the distribution of
elements in matrix G). In extended or complex
pedigrees, the coefficients in matrix G are
1/2k for individuals and descendants who are

80 Vinkhuyzen et al.

A
nn

u.
 R

ev
. G

en
et

. 2
01

3.
47

:7
5-

95
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lre

vi
ew

s.o
rg

by
 U

ni
ve

rs
ity

 o
f A

ar
hu

s o
n 

01
/2

9/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.

Vinkhuyzen et al. (2013)



Limitations with pedigree-based model

• With pedigrees we can apriori describe
expected amount of variation
– between pedigree founders (assumed unrelated)
– between families

(variation between family means / parent average terms)
– within families

(variation between Mendelian sampling terms)
• When we fit the model, we aposteriori estimate 

“realised” deviations
(phenotype resemblance updates assumed pedigree relationships)
à the more information per individual, the higher accuracy



Limitations with pedigree-based model

• What does all this mean in practice:
– Decent accuracy of estimated breeding values for individuals with 

own phenotypic data or progeny with phenotypic data
(genomic data won’t add much more information!)
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(genomic data can add more information)



Limitations with pedigree-based model

• What does all this mean in practice:
– Decent accuracy of estimated breeding values for individuals with 

own phenotypic data or progeny with phenotypic data
(genomic data won’t add much more information!)

– Low accuracy of estimated breeding values for individuals without 
own phenotypic data or progeny with phenotypic data
(genomic data can add more information)

– Zero accuracy of estimated breeding values within a family with 
progeny prediction!!! à we can not differentiate full-sibs :(
(progeny prediction does not capture Mendelian sampling terms,
so genomic data can add a lot of information)



Limitations with pedigree-based model

• Pedigree could be
– wrong!
– partially missing
– missing altogether!

• Genomic data should help with all the mentioned issues!



Data

Recall the 0/1 encoding of haplotypes and 0/1/2 encoding of 
genotypes



Data - example

ID Pheno Marker1 Marker2 Marker3 Marker4 Marker5

1 7.2 2 2 2 0 1

2 3.5 0 2 1 1 0

3 5.7 1 1 1 1 1

4 6.3 2 1 0 1 2



How could we model this data?

• Let’s focus on one locus first

ID Pheno Marker1 Marker2 Marker3 Marker4 Marker5

1 7.2 2 2 2 0 1

2 3.5 0 2 1 1 0

3 5.7 1 1 1 1 1

4 6.3 2 1 0 1 2



How could we model this data?

• Let’s focus on one locus first

• We have:
– continuous variable (Pheno) à response
– continuous variable (Marker1) à covariate

ID Pheno Marker1 Marker2 Marker3 Marker4 Marker5

1 7.2 2 2 2 0 1

2 3.5 0 2 1 1 0

3 5.7 1 1 1 1 1

4 6.3 2 1 0 1 2



Linear regression (single marker)

• Estimating the association between phenotypic value and 
marker 1 genotypes (as allele dosage)

• Assuming causality,    is allele substitution effect

!! = 7.2 = & + 2(! + )! 
!" = 3.5 = & + 0(! + )" 
!# = 5.7 = & + 1(! + )# 
!$ = 6.3 = & + 2(! + )$ 
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Linear regression (single marker)

• Estimating the association between phenotypic value and 
marker 1 genotypes (as allele dosage)
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Breeding values at single marker

• Model:
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Breeding values at single marker

• Model:

• Estimator/Predictor:
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Questions?!



Multiple linear regression (multiple markers)

• Estimating the association between phenotypic value and 
marker 1-5 genotypes (as allele dosage)
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Multiple linear regression (multiple markers)

• Estimating the association between phenotypic value and 
marker 1-5 genotypes (as allele dosage)
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Role of the prior for marker effects

Regularization
Shrinkage   in action!!!
Penalization
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Breeding values over all markers

• Model:
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Breeding values over all markers

• Model:

• Estimator/Predictor:
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Questions?!



Prediction of genomic prediction accuracy (“global”)

• Effective no. of chr. segments

• Prop. of genetic variance captured by markers

• Reliability of GEBV
• Reliability of    EBV

Goddard (2011), Dekkers (2007)
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Inputs

• M no. of genome-wide markers
• Ne effective population size
• L average size of chromosomes in Morgans
• C no. of chromosomes
• h2 heritability of training phenotypes
• n  no. of training individuals



Maize example (train and predict in family)
• M no. of genome-wide markers = 200
• Ne effective population size = 1
• L average size of chromosomes = 2
• C no. of chromosomes = 10
• h2 heritability of phenotype included into training = 0.25
• n  no. of training individuals = 100
• Effective no. of chr. segments

Me=2NeLC/ln(NeL)=2×1×2×10/ln(1×2)=58
• Prop. of genetic variance captured by markers

q2=M/(M+Me)=200/(200+58)=0.76
• Reliability of GEBV

R2≈T/(1+T), T=nq2h2/Me
T=100×0.76×0.25/58=0.34, R2≈0.25, r≈0.5

• Reliability of    EBV
R2≈(T/(1+T))q2=0.19, r≈0.44



Maize example (predict from other families)
• M no. of genome-wide markers = 10,000
• Ne effective population size = 50
• L average size of chromosomes = 2
• C no. of chromosomes = 10
• h2 heritability of phenotype included into training = 0.25
• n  no. of training individuals = 2000
• Effective no. of chr. segments

 Me=2NeLC/ln(NeL)=2×50×2×10/ln(50×2)=434
• Prop. of genetic variance captured by markers

 q2=M/(M+Me)=10000/(10000+434)=0.96
• Reliability of GEBV

 R2≈T/(1+T), T=nq2h2/Me
 T=2000×0.96×0.25/434=1.1, R2≈0.53, r≈0.72

• Reliability of    EBV
 R2≈(T/(1+T))q2=0.50, r≈0.71



Dairy bulls example
• M no. of genome-wide markers = 50,000
• Ne effective population size = 50
• L average size of chromosomes = 1
• C no. of chromosomes = 30
• h2 heritability of phenotype included into training = 0.80
• n  no. of training individuals = 1000
• Effective no. of chr. segments

Me=2NeLC/ln(NeL)=2×50×1×30/ln(50×1)=767
• Prop. of genetic variance captured by markers

q2=M/(M+Me)=50,000/(50,000+767)=0.98
• Reliability of GEBV

R2≈T/(1+T), T=nq2h2/Me
T=1000×0.98×0.80/767=1.02, R2≈0.50, r≈0.71

• Reliability of    EBV
R2≈(T/(1+T))q2=0.50, r≈0.70



Dairy cows example
• M no. of genome-wide markers = 50,000
• Ne effective population size = 50
• L average size of chromosomes = 1
• C no. of chromosomes = 30
• h2 heritability of phenotype included into training = 0.30
• n  no. of training individuals = ??? How many to get R2 EBV of 0.50???
• Effective no. of chr. segments

 Me=2NeLC/ln(NeL)=2×50×1×30/ln(50×1)=767
• Prop. of genetic variance captured by markers

 q2=M/(M+Me)=50000/(50000+767)=0.98
• Reliability of GEBV

 R2≈T/(1+T), T=nq2h2/Me
 T=???×0.98×0.30/767=???, R2≈??? , r≈???

• Reliability of    EBV
 R2≈(T/(1+T))q2=??? , r≈???



Dairy cows example



~10,000 ***good*** markers works quite well

de Los Campos et al. (2010)



Information for an individual – pedigree vs. genomics



Questions?!



Marker & individual genome-based models

• Marker genome-based model (SNP-BLUP)

• Individual genome-based model (G-BLUP)
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Z so we can include
non-phenotyped individuals



Marker & individual genome-based models

• Marker genome-based model (SNP-BLUP)

• Individual genome-based model (G-BLUP)
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Marker & individual genome-based models

• Marker genome-based model (SNP-BLUP)

• Individual genome-based model (G-BLUP)
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non-phenotyped individuals



Genomic covariance-like coefficient matrices

• Genotype matrix W is nInd x nLoc
• Between individuals

• Between loci
– sum-of-squares

– covariance 
– correlation 

!"#(%) = !"#(())
= (!"#())(!

= ((!*"#
 

 

Covariance-like coefficients
between individuals

(nInd x nInd)
similar to NRM matrix

!!! 
 

!!! 
 

Covariance-like coefficients
between loci
(nLoc x nLoc)

similar to LD matrix

!"#(%) = ( = )%− +(%),!)% − +(%),/(. − 1) 
!"#(%) = ()*+(,)!!",()*+(,)!!"  
 



Genomic covariance-like coefficient matrices

Between individualsBetween loci



Genomic covariance-like coefficient matrices

• Genotype matrix W is nInd x nLoc
• Between individuals

– sum-of-squares

– covariance 

– correlation 

I want the genome-based NRM
(following the pedigree-based NRM)!?

Covariance-like coefficients
between individuals

(nInd x nInd)
similar to NRM matrix!!! 
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Genome-based NRM

• Maybe we don’t need it! !"#(%) = !"#(())
= (!"#())(!

= ((!*"#
 

 



Genome-based NRM

• Maybe we don’t need it!

• Many proposed versions:
– [-1, 0, 1] centering

• diagonals = the number of homozygous loci for individuals
• off-diagonals = the number of alleles shared between individuals
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Genome-based NRM

• Maybe we don’t need it!

• Many proposed versions:
– [-1, 0, 1] centering

• diagonals = the number of homozygous loci for individuals
• off-diagonals = the number of alleles shared between individuals

– VanRaden 1 (to match pedigree NRM)

– Many other versions!!!

!"#(%) = !"#(())
= (!"#())(!

= ((!*"#
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Genome-based NRM

• Whatever the choice, there is useful information in G!
• Take a trio of diploid individuals and use [-1, 0, 1] coding in w

• Realised shared number of alleles between individuals
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Genome-based NRM - What do these terms mean?

• Diagonal: prior variances indicating how much individual breeding 
values could deviate from population mean
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Genome-based NRM - What do these terms mean?

• Off-diagonal: prior co-variances indicating how much individual 
breeding values could correlate compared to the “average pair”
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Genome-based NRM - gametic relationships 

• If genotypes are phased we can build gametic relationships 

à How much gametes/genomes could deviate or correlate
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Genome-based NRM – between & within family

• Expected genotype (=parent average) & deviation 
(=Mendelian sampling)

à How many alt. alleles do we expect from parents (vs. mean)

à How many more or less alt. alleles did individual get
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Genome-based NRM – between & within family

• Expected genotype (=parent average) & deviation 
(=Mendelian sampling) per genome

à from father

à from mother
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Genome-based NRM variants & interpretation

• Centering shifts reference population

! = #$ +&'+ (
= #$ +&'− *(&)' + *(&)' + (
= #$ + (&− *(&))' + *(&)' + (
= #$ + (&− *(&))' + - + (
= (#$ + -) + (&− *(&))' + (
= #$! +&!' + (	

 

 



Genome-based NRM variants & interpretation

• Scaling changes variance meaning
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• Depending on k we can get
very different estimates of 
(genomic variance)

• Many pedigree and genomic
variance comparisons may be
dubious?
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Flexible (temporal and genomic) analysis of genetic variation



Temporal analysis of genetic variation
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Topics not covered

• “Bayesian models” – different assumptions about marker 
effects & commonly approached with methods used in 
Bayesian statistics (MCMC/VB)

• Single-step GBLUP (ssGBLUP and variants) – combining all 
phenotype, pedigree, and genomic data

• ”APY”/SVD/… – approximations for large-scale

• Non-additive genetic or other effects
(note that     captures a bit of dominance, epistasis, GxE, …) ! 



Limitations with current genome-based models?

• Markers vs. QTL

• Admixed populations, multiple populations, …

• Whole-genome sequence data

• …



Learning objectives

• Understand limitations of estimates from the pedigree-based 
model à why we would need genome-based model

• Understand how to combine phenotype information from all 
relatives connected via genomic data

• Practice inference of breeding values with the genome-
based model
– simple cases using R matrix algebra
– using other packages



Questions?!
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