Genomic information and inbreeding

AABSC
Inbreeding - revision

• Mating of relatives

• Consequences
 – Many are bad, but not all.....

• Management – restricting mating of relatives
 – Optimal contribution selection

• How does Genomics change this?
 – If performing truncation selection....
 – If performing optimal contribution selection...
Truncation selection

- TBLUP or Pedigree BLUP

\[V_s = \frac{1}{4} \text{sire} + \frac{1}{4} \text{dam} + \frac{1}{2} \text{MS} \]

- Genomic breeding value (GBLUP)

- Variation in BV among selection candidates
What information is used in BVs

- \(\text{Va} = \frac{1}{4} \text{sire} + \frac{1}{4} \text{dam} + \frac{1}{2} \text{MS} \)

Table 2 - The proportion of variation in breeding value explained by between family (Sire and Dam) and within family (MS) information.

<table>
<thead>
<tr>
<th></th>
<th>LIC</th>
<th>ADHIS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BV Sire</td>
<td>Dam</td>
</tr>
<tr>
<td>PA EBV</td>
<td>0.56</td>
<td>0.44</td>
</tr>
<tr>
<td>GEBV</td>
<td>0.43</td>
<td>0.26</td>
</tr>
<tr>
<td>PT</td>
<td>0.21</td>
<td>0.31</td>
</tr>
</tbody>
</table>
Correlation of breeding values and co-selection of relatives

<table>
<thead>
<tr>
<th>Breeding value type</th>
<th>Half sib correlation</th>
<th>Full Sib correlation</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA EBV</td>
<td>0.55</td>
<td>1.0</td>
<td>0.45</td>
</tr>
<tr>
<td>GEBV</td>
<td>0.50</td>
<td>0.85</td>
<td>0.57</td>
</tr>
<tr>
<td>TBV</td>
<td>0.26</td>
<td>0.53</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Full Sibs
- share the same Parent average BV (½ sire ½ dam)
- no longer the case with genomics

Half Sibs
- Share different PA breeding values
- Small advantage of using G to restrict inbreeding
Sonesson et al 2013

(A) truncation selection - TBLUP

Higher

(B) truncation selection - GBLUP

Lower

----- Selecting 100 sires and 100 dams from 3000 cand. ---- After 10 generations
Truncation selection on breeding values estimated using TBLUP or GBLUP

<table>
<thead>
<tr>
<th>Breeding value estimation</th>
<th>ΔG (se)</th>
<th>ΔF<sub>ped</sub> (se)</th>
<th>ΔF<sub>IBD</sub> (se)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBLUP</td>
<td>2.49 (0.035)</td>
<td>0.0156 (0.0001)</td>
<td>0.0235 (0.0009)</td>
</tr>
<tr>
<td>GBLUP</td>
<td>2.77 (0.026)</td>
<td>0.0053 (0.0002)</td>
<td>0.0209 (0.0005)</td>
</tr>
</tbody>
</table>
Genomics and Optimal contributions

• Measures of genetic merit (\tilde{g})
 – Pedigree vs genomic

 Pedigree based BLUP --- Genomic BLUP

• Measures of inbreeding
 – Pedigree vs genomic (A or G)

 NRM (Pedigree) --- GRM (genomic)

\[
\text{Max} = c_t' \tilde{g}_t - \lambda c_t' A_t c_t
\]
Measuring inbreeding

• Pedigree
 – The probability that animals share alleles IBD.

• Genomics
 – GRM (IBS) or what is shared.
 – others
Genomic Inbreeding estimates

• Estimates of the number of homozygotes
 – Sharing of markers (IBS)
 – Long runs of homozygotes (more IBD)

• Genomic relationships (IBS)
 – Various methods
 – Choice of allele frequencies
Example GRM

• \(Z = M - 2(\pi - 0.5) \)
• \(ZZ'/2 * \text{sum } \pi(qi) \) (more weighting to rare alleles)

• Choice of allele frequencies
 – Forni 2012
 – Sets base population
 – Although this is relative and is more important when combining data (Single step)
management

• Optimal contribution

• Pedigree or genomic
 – Pedigree – expected based on IBD prob.
 – Genomic observed (although an estimate)
<table>
<thead>
<tr>
<th>Ntest</th>
<th>ΔF_d</th>
<th>ΔG (se)</th>
<th>ΔF_{ped} (se)</th>
<th>ΔF_{IBD} (se)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ΔF_A constraint – GBLUP</td>
<td>ΔF_G constraint – GBLUP</td>
<td>ΔF_A constraint – TBLUP</td>
<td>ΔF_G constraint – TBLUP</td>
</tr>
<tr>
<td>3000</td>
<td>0.005</td>
<td>3.08 (0.035)</td>
<td>0.0050 (0.0001)</td>
<td>0.0211 (0.0004)</td>
</tr>
<tr>
<td>6000</td>
<td>0.005</td>
<td>3.10 (0.035)</td>
<td>0.0048 (0.0001)</td>
<td>0.0226 (0.0004)</td>
</tr>
<tr>
<td>6000</td>
<td>0.010</td>
<td>3.31 (0.037)</td>
<td>0.0098 (0.0003)</td>
<td>0.0422 (0.0008)</td>
</tr>
<tr>
<td>3000</td>
<td>0.005</td>
<td>1.91 (0.026)</td>
<td>0.0041 (0.0001)</td>
<td>0.0051 (0.0001)</td>
</tr>
<tr>
<td>6000</td>
<td>0.005</td>
<td>1.95 (0.024)</td>
<td>0.0039 (0.0001)</td>
<td>0.0053 (0.0001)</td>
</tr>
<tr>
<td>6000</td>
<td>0.010</td>
<td>2.41 (0.028)</td>
<td>0.0071 (0.0002)</td>
<td>0.0102 (0.0002)</td>
</tr>
<tr>
<td>3000</td>
<td>0.005</td>
<td>2.26 (0.003)</td>
<td>0.0050 (0.0001)</td>
<td>0.0068 (0.0001)</td>
</tr>
<tr>
<td>6000</td>
<td>0.005</td>
<td>2.50 (0.003)</td>
<td>0.0049 (0.0001)</td>
<td>0.0074 (0.0001)</td>
</tr>
<tr>
<td>6000</td>
<td>0.010</td>
<td>2.63 (0.003)</td>
<td>0.0102 (0.0002)</td>
<td>0.0151 (0.0003)</td>
</tr>
<tr>
<td>3000</td>
<td>0.005</td>
<td>1.41 (0.041)</td>
<td>0.0193 (0.0004)</td>
<td>0.0121 (0.0002)</td>
</tr>
<tr>
<td>6000</td>
<td>0.005</td>
<td>1.44 (0.039)</td>
<td>0.0185 (0.0004)</td>
<td>0.0122 (0.0002)</td>
</tr>
<tr>
<td>6000</td>
<td>0.010</td>
<td>1.48 (0.046)</td>
<td>0.0300 (0.0008)</td>
<td>0.0183 (0.0003)</td>
</tr>
</tbody>
</table>

Genetic gain (ΔG), rate of inbreeding based on pedigree (ΔF_{ped}) and on genomic IBD (ΔF_{IBD}) relationship matrices at generation G10 when the constraint on relationship was either pedigree-based (ΔF_A) or marker-based (ΔF_G) with TBLUP or GBLUP breeding value estimates.

aNtest = number of test sibs; ΔF_A = desired rates of inbreeding; number of selection candidates = 3000.
Entire frontier

![Graph showing Merit (TBV) vs Genomic co-ancestry for GEBV and PA EBV.](image-url)
Half sibs

The graph shows the relationship between Merit (TBV) and genomic co-ancestry for half sibs, with two lines representing genomic and pedigree methods.
Full sibs
Genomic information helps to manage inbreeding

• In two ways:
 • 1. Using genomic relationships helps to restrict genomic inbreeding.
 • 2. GEBV’s utilize more Mendelian sampling variance.