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Lecture overview

1. Design of plant breeding field trials

— Fundamental concepts of experimental design
— Classical and model-based designs

2. Linear mixed models for plants <

— Complex residual variance structures
— Spatial variation






Outline

 Background
 Formulating a linear mixed model

» Spatial variation

— Global and local trend
— Random error
— Extraneous variation



Randomised complete block (RCB) design

Yij = U+ gi t b + e

phenotype mean genotype block residual

« Simple to construct Block 1 Block 2

« Balanced, complete
and resolvable

« Genotypes and blocks
are orthogonal

 But, assumes blocks
are homogeneous




Scalar notation

Yij = Ut gi +bj + e
phenotype mean genotype block  residual
* y;; is the phenotype of genotype i in block j (n in total)
* u iIs the overall mean
* g; is the effect of genotype i (i =1, ...,n,)
* bj is the effect of block j (j =1, ..., 1)

e;; is the plot residual of genotype i in block j (n in total)



Scalar =2 vector notation

Y11

phenotype

* y;; is the phenotype of genotype i in block j (n in total)
* u is the overall mean

* g; is the effect of genotype i (i =1, ...,ny)

* b; is the effect of block j (j =1, ...,n,)
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e;; is the plot residual of genotype i in block j (n in total)
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Vector notation

y=1,u+7Zg+ Wb + e
phenotype mean genotype block residual
* y is the n-vector of phenotypes (ordered as plots within blocks)

* u is the overall mean, 1,, is a n-vector of ones

* g is the n,-vector of genotype effects, with nxn, design matrix Z
which links plots to genotypes

* b is the n,-vector of block effects, with nxn, design matrix W
which links plots to blocks

* e |s the n-vector of residuals



Linear mixed models (LMMs)

* Ordinary linear models comprise fixed effects + random error

* Linear mixed models comprise fixed + random effects +
random error

— Analysis of incomplete/unbalanced block designs with recovery of
interblock information (Patterson & Thompson, 1971)

— LMM with fixed genotype effects and random (incomplete) blocks
— First application of residual/restricted maximum likelihood (REML)

— Equivalent to ANOVA estimates when blocks are equal size
(Nelder, 1968)

Eisenhart (1947)



Fixed or random effects

* The choice of fitting effects as fixed or random is important
— Fixed effects

« Contribute to E(y)
 Best linear unbiased estimates (BLUES)

— Random effects

 Contribute to Var(y)
» Realisations of random variables

 Best linear unbiased predictions (BLUPs); shrinkage to mean
according to amount of information

Henderson (1975)



Shrinkage

« BLUP = BLUE x shrinkage

— Same number of replicates
= same information
= same shrinkage

— Different number of replicates
= different information
= different shrinkage

— Spatial variability in the field
= different information
= different shrinkage

-1 -
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Shrinkage

« BLUP = BLUE x shrinkage

— Same number of replicates
= same information
= same shrinkage

— Different number of replicates
= different information

= different shrinkage

— Spatial variability in the field
= different information
= different shrinkage



Model assumptions

Assume the genotype and block effects are fitted as random
E(y)=1,u  and  Var(y) = 62ZZ' + 6f WW' + 621,

P 01 |96, O 0
b(~N| |0],] 0 o5I,, O
e 011 o 0 o2l

2 . . . . . . .
— g5 Is a genetic variance, Ing s a n,xXn, identity matrix
— o7 is a block variance, [,,, is a n,Xxn, identity matrix

— 02 is a residual variance, I, is a nxn identity matrix



Updating model assumptions

Complex genetic and residual variance structures:

E(y)=1,u  and  Var(y) = 62ZGZ' + 6; WW’ + R

g- 01 [626 0 0O
bf~N{|0[,] 0 71, O
e 01 { o 0 R

— o/ is the genetic variance, G is a n,xn, genotype relationship matrix
— o}, is the block variance, 1,,, is a n, xn,, identity matrix

— R Is a nXxn residual variance matrix



Mixed model equations (MMEs)

« Estimates of fixed effects (BLUESs) and predictions of random
effects (BLUPs) obtained from the mixed model equations

1R 11, 1/ R 1Z 1/ R™1W a1 [1,R7 Yy
ZR'1, Z'R'Z+G 1/} Z'RTW gl=|zrYy
W'R 1, W'R™!Z WRW+1,, /o7 ['b]  |WRy.

(1,H°11,) 1,H 1y
oZGZ'H 1 (y — 1,,[) H = Var(y) = 62ZGZ' + ofWW' + R

Gy WH (y — 1,[) _

:c"* R “::>
I

Henderson (1950)



Residual variance structure (R)

* Variance component model:
R = 0%l

* Assumes plots within a field are independent

— Rarely sensible because plots are known to have some level of
correlation

— Spatial variation is ubiquitous in field trials



Residual variance structure (R)

 Covariance model:
R = O_ez 2:(:(pc) X Zr(pr)

— o2 is the residual variance
— X Is a n.Xn, matrix with column autocorrelation parameter p.
— X Is a n,.Xn, matrix with row autocorrelation parameter p..

* Assumes plots within a field are correlated

— Two-dimensional stochastic variance matrix
— Plots closer together are more correlated than those further apart



Spatial variation



Some concepts
« Spatial variation arises from heterogeneity across the trial
area

* Global and local trend (smooth spatial trend)
— Large and small scale changes in fertility/soil composition

 Random error (noise)
— Measurement error, or variability in the plots themselves

 Extraneous variation (systematic variation)
— Induced during the conduct of the trial

Gilmour et al. (1997)



Global and local trend (smooth spatial trend)

« Large and small scale changes in fertility/soil composition
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Global and local trend (smooth spatial trend)

« Large and small scale changes in fertility/soil composition
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Random error (noise)

Measurement error, or variability in the plots themselves

Column number
! 2 3 4 5 6 7 8 9 10

Grain yield (t/ha)
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Extraneous variation

* Induced during the conduct of the trial

Column number
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Extraneous variation

* Induced during the conduct of the trial

— Typically aligned with the field columns and row
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Total spatial variation

« Some combination of global and local trend, random error and
extraneous variation
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Spatial models



Some popular approaches

 Separable autoregressive process (Cullis & Gleeson, 1991)

— Stochastic variance matrix

* Tensor product penalised splines (Rodriguez-Alvarez et al., 2018)
— Smoothing function in two dimensions

* Nearest neighbour adjustments (Papadakis, 1937)
— Adjust phenotypes based on neighbouring plots



Accounting for trend and noise

* Autoregressive covariance model + random error:

R =07 Zc(pc) ® Zp(pr) + 071,

trend noise

— 02 is the autoregressive scaling component
— X. Is a n.xXn, matrix with column autocorrelation p,
— X Is a n,.Xn, matrix with row autocorrelation p.,

— g7 is the random error variance



Autoregressive covariance matrix

* Autoregressive covariance model + random error:

R =07 Zc(pc) ® Zp(pr) + 071,

trend noise

» Assumes the phenotypes are ordered as rows in cols
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Autoregressive covariance matrix

* Autoregressive covariance model + random error:

R =07 Zc(pc) ® Zp(pr) + 071,

trend

noise

* Assumes exponential decay according to a first order

process in the column and row directions (AR1x AR1)
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Semi-variance

Autoregressive covariance matrix

* Autoregressive covariance model + random error:

R =07 Zc(pc) ® Zp(pr) + 071,

. . trend noise
Theoretical variogram:

p. =0.3, p,=04, 62=0.5 p.=0.3, p,=08, 62=0.5 p. =03, p,=0.9, ¢ =05

Semi-variance
Semi-variance




Autoregressive covariance matrix

* Autoregressive covariance model + random error:

R = 0-52 2c(pc) @ Zp(pr) + O-rzln
trend noise

« Theoretical variogram (semi-variances):

cizj| |ri-j]
)

v=0a;(1-p. 'p,

— |c;—j| is the absolute column displacement between plots i and j
(lei-jl =01, ...,n. — 1), e.g. |c;_;| = 0 for plots in the same column

— |r;—;| is the absolute row displacement between plots i and j
(|ri-j| =0,1,..,n, — 1), e.g. |ri_;| = 1 for plots in adjacent rows



Autoregressive covariance matrix

* Autoregressive covariance model + random error:

R =07 Zc(pc) ® Zp(pr) + 071,

trend

noise

 Random error term captures any remaining error variation
not captured by the autoregressive covariance model
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Semi-variance

Autoregressive covariance matrix

* Autoregressive covariance model + random error:

R =07 Zc(pc) ® Zp(pr) + 071,

. . trend noise
Theoretical variogram:

o¢/(0& + 07) = 0.3 o/(0é + 0f) = 0.6 os/(0d +07) =1

Semi-variance
Semi-variance




Accounting for extraneous variation

» Typically diagnosed by observing a sample variogram, which
captures the average semi-variance between plots

* Accounted for by fitting additional fixed and random effects

Theoretical Sample

Semi-variance

% o7, aon 8 Gilmour et al. (1997)
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