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Lecture overview

1. Multi-environment plant breeding field trials <

— Genotype by environment (GxE) interaction
— Linear mixed models for MET data

2. A framework for simulating GxE interaction

— MET-TPE concepts

— Applications to comparing statistical approaches and different
breeding strategies over time.






Outline

 Background
* Genotype by environment (GxE) interaction

 Linear mixed models for GxE

— Main effects only

— Diagonal model

— Compound symmetry model
— Unstructured model

— Factor analytic model



Background

* Genotype by environment (GxE) interaction
complicates plant and animal breeder’s selection
decisions

— The relative response of individuals (genotypes) changes when
placed in different environments

— Some genotypes may tolerate harsh environments, while others
do not

— Can reflect substantial re-rankings between environments



GxE interaction

+ Often viewed using the Genetic correlations between
genetic correlations environments
between environments

— Cor. of 1 = perfect agreement
In rankings between
environments

Cor.

— Cor. of 0 = dissimilarity in
rankings between environments

Environment

— Cor. of -1 = complete reversal
In rankings between
environments

Environment



Toy example

* Consider two wheat varieties,
G1 & G2, grown in two
environments, E1 & E2

* The crops are harvested and
measured for grain yield
(tonnes/hectare)

* The response of the two
varieties changes between the
two environments, but is this just
GxE?

Yield (t/ha)

G1

G2

E1

E2



Toy example

« Environmental main effects

— E1 # E2, E2 yields more on E+ G+ GxE
average

* Genotype main effects

— G1 # G2, G1 yields more on
average

 GXE interaction effects

Yield (t/ha)

— Relative response of G1 and G2
changes (lines are not parallel) 0

— G2 yields more in E1 but G1 yields
more in E2

E1 E2



Yield (t/ha)

Toy example

E G GXxE
3
1 1
2 ,%Ez
Pt @ ® G1
/”’ + 0 ----------------- + O
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-1 -1
0
E1 E2 E1 E2 E1 E2

L GxE interaction effects as the
Environmental main effects as E1 + E2 Genotype main effects as G1 # G2 relative response of G1 and G2
changes (lines are not parallel)

— G2 yields more in E1 but G1
yields more in E2

~ E2 yields more on average — G1 yields more on average



Non-crossover and crossover GxE

Yield (t/ha)

Non-crossover GXxE

E1 E2

Non-crossover GxE interaction
effects as the relative response of
G1 and G2 changes but the lines
don'’t intersect

— G1 yields more in E1 and E2

Crossover GXE

E1 E2

Crossover GxE interaction
effects as the relative response of
G1 and G2 changes (lines are not
parallel)

— G2 yields more in E1 but G1
yields more in E2



So how can we handle GxE?

 GXE has been historically handled in one of three ways:

1. Ignore GXE by selecting the most favourable genotypes on
average

2. Reduce GxE by grouping similar environments together and
selecting within each group

3. Leverage GxE by selecting the most favourable individuals in
terms of average performance and stability (adaptability) €

« May also consider some combination of 2 and 3

Eisemann et al. (1990)



Ignore G X E interaction

 Select the most favourable Genetic correlations between
genotypes on average - environments
across all environments

Cor.

« Selection for increasing
overall genetic gain, but...

 Ignores important crossover
GXxE (re-rankings)

Environment

* Potential to release poorly
adapted genotypes to
growers!

Environment



Reduce G X E interaction

° Group similar environments Genetic correlations between
together environments

« Select the most favourable
genotypes on average
within each group

Cor.

« Selection for increasing
genetic gain within groups,
but...

« Assumes you can explain _ f |
the different groupings, e n
and they are repeatable Environment

Environment




Leverage G X E interaction

* Select the most favourable Genetic correlations between
genotypes for average «g environments

performance and stability \

« Selection for increasing
overall genetic gain, and
releasing well adapted
genotypes to growers!

Cor.

Environment



Multi-environment trial (MET) dataset

 Gauge GxE by accumulating and analysing multi-
environment trial (MET) data

0 TR e ANEEL S

Env 2 Env 3 Env4 ... Env 20

Plant genotypes .
May be incomplete and highly unbalanced across environments



Multi-environment trial (MET) dataset

 Gauge GxE by accumulating and analysing multi-
environment trial (MET) data

Year
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Actions

Make bi-parental crosses

Full-sib families,
produce DH lines

Visual selection for 50
lines per family

Yield trial, 1 location
Yield trial, 4 locations

Yield trial, 16 locations

Release variety
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Multi-environment trial (MET) dataset

 Gauge GxE by accumulating and analysing multi-
environment trial (MET) data

50 -

ER

40~

Multiple locations

Latitude

35 -

30 -

25 -
-120 -110 -100 -90 -80 -70
Longitude



Multi-environment trial (MET) dataset

 Gauge GxE by accumulating and analysing multi-

environment trial (MET) data

env block col row

<fctr> <fctr> <fctr> <fctr>
1 1 1 1 1
2 1 1 1 2
3 1 1 1 3
4 1 1 1 4
5 1 1 1 5
6 1 1 1 6
7 1 1 1 7
8 1 1 1 8
9 1 1 1 9
10 1 1 1 10

\

multiple year-location combinations

id
<fctr>
481
543
793
768
814
645
500
437
444
781

phe.Traitl

<dbl>
1.64066056
2.51841946
4.15104719
2.21278404
4.16124862
4.95910345
2.07052692
4.31971130
1.75114321
2.88818150






Randomised complete block (RCB) design

Yij = U+ gi t b + e

phenotype mean genotype block residual

« Simple to construct Block 1 Block 2

« Balanced, complete
and resolvable

« Genotypes and blocks
are orthogonal

 But, assumes blocks
are homogeneous




Extension to multiple environments

Viim = U+ Ty + geum + bjpy + €1jm

phenotype mean env. genotype block residual
in env. in env.

* ¥iim IS the phenotype of genotype i in block j in environment m (n
In total across all envs)

* u iIs the overall mean
* 7., IS the effect of environmentm (m =1, ...,n,)

* gein is the effect of genotype i in environment m (i = 1, ...,n,)

bim is the effect of block j in environment m (j = 1, ...,ny)

* e;jim IS the plot residual of genotype i in block j in environment m
(n in total)



Vector notation

y=1,u+Xt+7Zge + Wb + e

phenotype mean env. genotype block residual
in env. in env.

* y is the n-vector of phenotypes (ordered as plots in blocks in envs)
* u is the overall mean, 1,, is a n-vector of ones

* T is the n,-vector of environmental main effects with nxn, design matrix
X which links plots to environments

* ge is the n,xn,-vector of genotype effects in environments, with
nXx(ngyxn,.) design matrix Z which links plots to genotypes in envs.

b is the n, Xn,-vector of block effects, with nx(n,xn,) design matrix W
which links plots to blocks in environments

e e |s the n-vector of residuals



Model assumptions

Complex genetic and residual variance structures:

E=1,u+Xt and Var(y) =7Z(G.® G)Z' + WBW' + R

ge- 0] [Ge®G 0 O
b ~N(O, 0 B 0)

L e ol L 0 0 R

— Ge ® Gis a (nyxXn,)X(nyXn,) variance matrix with n,xn,
between-environment genetic variance matrix, G, and n, X
ng genotype relationship matrix, G

— B is a diagonal block variance matrix
— R is a nXn residual variance matrix



Models for the block effects

Var(b) = B = @zle B, =

— 2
Bm T O-bmlnb

2

* g5, Is the block variance for environment m

* I,,, is an identity matrix of order n,,




Models for the residuals

Ry, = O-SZm 2:(:m (pcm) X 2:rm (prm) O-erIn

. aszm Is the autoregressive scaling component for environment m
« ¥. iIs an.xXn, matrix with column autocorrelation p._ for env. m
m m
« ¥ is a n.Xn, matrix with row autocorrelation p,. for env. m
m m

. a,?m Is the random error variance component for env. m



Models for the genotype by environment effects

Ge, . G G G’

e1;1 e1;n,

Var(ge) = G, Q® G =

G G ... G G

L Cngl Cngng

* G, Is the n,Xn, between-environment genetic variance matrix
* G is the n,xXn, genotype relationship matrix



0. Main effects only model

. OF 0;G .. ;G
Ge=|: - and G, ®G=] : :
agz_ _ang ang_

deim =g, 1.e. ge= (1ne X g)

o . 2 2 . . .
Var(g) = o I, ., where g is the genotype main effect variance
component

« Assumes genotype effects are the same across environments!

— Does not model GxE interaction (ignores GxE)



1. Diagonal model

0fe, . 0 05.,G ... 0
G. = | : 25 and G, QG = ' ‘ , :
_ 0 v Ogen _ 0 v Ogep.

gemn 1.e. ge = (gej, ge,, .., ge, )

o _ 2 2 . . .
Var(ge,,) = OgenIn,, Where ag, is the genetic variance for env. m

« Assumes genotype effects across environments are independent

— Does not leverage GxE interaction




2. Compound symmetry model

-2 2
04 -+ Oge
G, = :

2
Og

Y€im

g ] (O' + 0 e)G oG
: and G, ® G = : E
o + 02, - oG w (040

=g, t+9gXe, le ge=(1, Qg)+gxe

 Var(g) = agzln , where g/ is the genotype main effect variance

* Var(ge) = O'geln «n,» Where a7, is the GXE interaction variance




2. Compound symmetry model

0F + 05 .. o; | (05 +05.)G .. g; G
Ge = : : and G, @ G = : ' :
2 2 | -2
o v OFF 05 - 0,G v (0f +05.)G]

geim = 9i + gXey, le. ge=(1, ®g)+gxe

* Assumes genotype effects across environments are
correlated

— But, not sensible, assumes same variance within environments and
same covariance between pairs of environments



3. Unstructured model

r 2 7 -, i
of .. Oip, oiG .. 01,G

G. =| : 2 and G, QX G= 25
_O-lne B O-ne | _O-lneG B O-neG |

ge = (gey, gey, ..., gey )’

g2 is the genetic variance for environment m
* 0j; Is the genetic covariance between environments j and m



3. Unstructured model

of .. Oin, ofG .. 01,G
Ge=| ¢ and G, QG = :

2 2
_O-lne B O-ne | _O-lneG B O-neG |

ge = (gey, gey, ..., gey )’

* Fully parameterised model with n,(n, — 1)/2 parameters

— Becomes computationally prohibitive for large number of envs.

— Captures noise and cannot be directly used to identify repeatable
GXxE Interaction



4. Factor analytic model

i A’%l + *ee + A»,an + lpl /111/11113 + *ee + Arl/lrne-
Ge — AA, + Y = : . :

_/111/11113 + oo+ Arllrne A%ne + oo+ /172”"'6 + lpne_

9Yeim = Almfli + et Akmfki + Oim .e. g€ = (A X Ik)f + 0

factor 1 factor k lack-of-fit

* L., is the latent covariate (loading) for environment m and factor r
(r=1,..,k), typically k is small
» f.; Is the slope (score) for genotype i and factor r, var(f,;) = 1g;;

* 0;n IS the lack-of-fit of genotype i in env. m, var(8;,,,) = ¥4 9
Smith et al. (2001)



4. Factor analytic model

i A’%l + *ee + A»,an + lpl /111/11113 + *ee + Arl/lrne-
Ge — AA, + Y = : . :

_/111/11113 + oo+ Arllrne A%ne + oo+ /172nne + l/)ne_

9Yeim = Almfli + et Akmfki + Oim .e. g€ = (A X Ik)f + 0

factor 1 factor k lack-of-fit

 Reduced rank model withn,(k+ 1) —k(k—1)/2
parameters, which is much smaller thann,(n, —1)/2

— Captures GxE with a small number of factors
— Can be used to capture repeatable GxE interaction Smith et al. (2001)



Making selections

» Overall performance for
genotype i:

OPF; = 14 f1;
A, is the mean loading for factor 1

o Stability for genotype i:

RMSD; = \/(Zklrmfri)z/ne

r=2

Root mean square of the deviations
around the regression for factor 1

Higher Performing

Ideal genotype for
broad adaptation

®G3e o':o.Gfo @

o»’”' '

.00
Q.G%‘..

More stable

Smith & Cullis (2018)



Making selections

* G3 is broadly adapted because
it is high performing on average
and stable

* G1 is likely to be specifically
adapted because it is high
performing on average but
unstable

« Summaries for a very large
number of genotypes and
environments

e Can be included within a
selection index

Higher Performing

Ideal genotype for
broad adaptation

o
®G3e o':o.Gfo

...’.. o .

.00
Q.G%‘..

More stable



Making selections

Ideal genotype for

3 G1 .
broad adaptation
G3 o))
£ o 00 ¢°
= G30 Qo0 > GPe
g 2 : ’ s "’
£ =
= T " ' .?",
~ o
T E . ® G ®
Y G2 -d=)
> ]
.
0
E1 E2

More stable



Small example — environments

Latitude

50 -

45 -

40 -

35 -

30 -

25 -

=0y

-120

-110

SRy
Y=g

b e 2017
O NC A Y
X AFb .-. @ ® 201 8
X % y
%x = () 2A
X ke A DA
: . - A Southeast
o Midsouth
X Texas
—1'00 —éo —2'30 —%0
Longitude

Tolhurst et al. (2022)



Small example — observed GxE interaction

Environment

Genetic correlations between environments

17GA1 =
17GA3 = I
17SC3 =

17GA4 -
17GA2 -
17SC1 =
17NC1 =
17S8Cc2 - A Southeast
17AR1 =
17AR2 =
17MO1 =
17MS2 -
17LA1 =
17MS1 =
17MS3 =
17LA2 =
17TX1 =

17TX3 =
17TX7 =1

CRPCORLPRECRRINNSSNLLLLLLLA

Environment



Small example — factor analytic regression plot

Genotype effect (t/ha)

Check C1 - Check C2 A Southeast o Midsouth X Texas
Factor 1 Factor 2 Factor 3 Factor 4
0.2= v, -43.7% V,=16.2%0 ¢ Vs =11,0% V,=4.0%
. (0]
0.1- L ¥R i
I O
I (o)
0 g il DRSTES RS ST M ... ........ o
i (o)
54 = Cx* A o
Ay B
: >><<X§
-0.2-

-04 -02 0 02 04

-04 -02 0 02 04

Environmental loadings

-04 -02 0 02 04




Small example — making selections

Factor 1 All regions
: 0.6 -
02 B V1 = 437°/O — Check C1
- : _‘CU : ® Check C2
_E b : ® Check C3
£ 01- Po o B G1
- 6 v : o2
8 : .o.' N
* m '.f. ‘ 9 °s =
b O E ® o e '.. °
v b~ » QKL E
w O e T T T T T I I T .O o O=:--"®..."5% .:........J"'... o .;. .................
S i “q:) . 4 NCORS
wd Q. -:. -
(@) 1 L
c e A o —
()] —01 = A)( ¥\ M -o03
U] X o
A >
Axx o
X
-0.2 - :
I i i [ [ 06
_0.4 _0.2 0 0.2 0.4 (I) 0?1 012

Environmental loadings Stability (RMSD)



Small example — making selections

Overall performance (t/ha)

0.6-

0.3-

o
1

-0.3-

-0.6 -

Southeast

1
0.1

1
0.2

06- -

03- -

-03-

-0.6- -

Midsouth

0.1

Stability (RMSD)

0.2

06- -

03- -

-03-

-0.6-

Texas
G1
< R LTOO WURRTI
071

0.2



Lecture overview

1. Multi-environment plant breeding field trials <

— Genotype by environment (GxE) interaction v
— Linear mixed models for MET data v

2. A framework for simulating GxE interaction

— MET-TPE concepts

— Applications to comparing statistical approaches and different
breeding strategies over time



