







# Day 4 A framework for simulating genotype by environment interaction Simulation of multi-environment trials

Jon Bancic, Chris Gaynor, Gregor Gorjanc, Daniel Tolhurst



## Lecture overview



- Introduction
- Framework for simulating GxE interaction
- Framework application
  - Statistical model comparison
  - Breeding simulation

# Why implement GxE into simulation?



- Introduces more realistic structure and complexity to simulated field trial data
- Answer more targeted questions
  - What level of (partial) replication is required?
  - How many locations are required?
  - Where should material be deployed?
- Fine tuning a breeding pipeline
  - Comparison of breeding strategies, experimental designs and statistical analysis approaches in long-term

# Genotype by environment (GxE) interaction



Genotype by environment (GxE) interaction complicates breeding



# Plant breeding program



| Year | Stage              |                                  | Population   | Env | $h^2$ | Action                    |
|------|--------------------|----------------------------------|--------------|-----|-------|---------------------------|
| 1    | Crossing           | $P_i \times P_j  \longleftarrow$ | 100 crosses  |     |       | Crosses with 100 parents  |
| 2    | F <sub>1</sub> /DH |                                  | 100 families |     |       | Produce 100 DHs per cross |
| 3    | HDRW               |                                  | 10,000       | 1   | 0.10  | Grow DHs                  |
| 4    | PYT                |                                  | 500          | 2   | 0.20  | Field trial               |
| 5    | AYT                |                                  | 50           | 5   | 0.50  | Field trial               |
| 6    | EYT                |                                  | 10           | 20  | 0.70  | Field trial               |
| 7    | Variety            |                                  |              | 1   |       | Release inbred variety    |

## **MET: Multi-environment trials**





Plant genotypes

Field trials with pre-defined experimental design grown in selected environments

# Multi-environment trial (MET) dataset



| Id | Env | Block | Column | Row | Phenotype |  |
|----|-----|-------|--------|-----|-----------|--|
| 1  | 1   | 1     | 1      | 1   | 1.20      |  |
| 2  | 1   | 1     | 5      | 2   | 1.07      |  |
| 3  | 1   | 1     | 2      | 3   | 0.75      |  |
| :  | :   |       | :      | :   | :         |  |
| 50 | 1   | 1     | 6      | 3   | 1.19      |  |
| :  | :   |       | :      | :   | :         |  |
| 50 | 5   | 1     | 1      | 1   | 0.77      |  |

# Overview of plant breeding field trials



# **Experimental** design & trials



#### **Data collection**

| Id | Env | Block | Column | Row | Phenotype |
|----|-----|-------|--------|-----|-----------|
| 1  | 1   | 1     | 1      | 1   | 1.20      |
| 2  | 1   | 1     | 5      | 2   | 1.07      |
| 3  | 1   | 1     | 2      | 3   | 0.75      |
| :  | :   |       | :      | :   | :         |
| 50 | 1   | 1     | 6      | 3   | 1.19      |
| :  | ÷   |       | :      | :   | :         |
| 50 | 5   | 1     | 1      | 1   | 0.77      |

## **Statistical analysis**

```
asreml(y ~ 1 + Env,
    random = ~ fa(Id, 3) + diag(Env)block,
    residual = ~ dsum(ar1(Col):ar1(Row)|Env),
    data = MET df)
```

## Interpretation

#### **Candidate selection list**

| ID | Main effect | Stability | Rank |
|----|-------------|-----------|------|
| 1  | 1.14        | 0.12      | 1    |
| 2  | 1.068       | 0.26      | 2    |
| 3  | 1.062       | 0.19      | 3    |
| 50 | 0.954       | 0.25      | 4    |

## Between-environment genetic correlation matrix, C<sub>e</sub>



# Overview of plant breeding field trials



# **Experimental** design & trials



#### **Data collection**

| Id | Env | Block | Column | Row | Phenotype |
|----|-----|-------|--------|-----|-----------|
| 1  | 1   | 1     | 1      | 1   | 1.20      |
| 2  | 1   | 1     | 5      | 2   | 1.07      |
| 3  | 1   | 1     | 2      | 3   | 0.75      |
| :  | :   |       | :      | :   |           |
| 50 | 1   | 1     | 6      | 3   | 1.19      |
| :  | :   |       | :      | :   |           |
| 50 | 5   | 1     | 1      | 1   | 0.77      |

### **Statistical analysis**

```
asreml(y ~ 1 + Env,
    random = ~ fa(Id, 3) + diag(Env)block,
    residual = ~ dsum(ar1(Col):ar1(Row)|Env),
    data = MET df)
```

#### Interpretation

#### **Candidate selection list**

| ID | Main effect | Stability | Rank |
|----|-------------|-----------|------|
| 1  | 1.14        | 0.12      | 1    |
| 2  | 1.068       | 0.26      | 2    |
| 3  | 1.062       | 0.19      | 3    |
| 50 | 0.954       | 0.25      | 4    |

## Between-environment genetic correlation matrix, C<sub>e</sub>



# Simulate this!

# Simulating phenotypes





# **Multiplicative models**



- Effective at capturing and interpreting GxE
- Decompose GxE into a small number (k) of multiplicative terms
- Each term is the product of genotype effects and environment effect

$$\mathbf{ge} = (\mathbf{s}_1 \otimes \mathbf{f}_1) + (\mathbf{s}_2 \otimes \mathbf{f}_2) + \dots + (\mathbf{s}_k \otimes \mathbf{f}_k)$$

$$= (\mathbf{S}_k \otimes \mathbf{I}_v)\mathbf{f}_k$$

$$= (\mathbf{s}_k \otimes \mathbf{I}_v)\mathbf{f}_k$$
Environment effects

Genotype effects

# Overview of plant breeding field trials



# **Experimental** design & trials



#### **Data collection**

| Id | Env | Block | Column | Row | Phenotype |
|----|-----|-------|--------|-----|-----------|
| 1  | 1   | 1     | 1      | 1   | 1.20      |
| 2  | 1   | 1     | 5      | 2   | 1.07      |
| 3  | 1   | 1     | 2      | 3   | 0.75      |
| :  | ÷   |       | i      | ÷   | :         |
| 50 | 1   | 1     | 6      | 3   | 1.19      |
| :  | ÷   |       | :      | ÷   | :         |
| 50 | 5   | 1     | 1      | 1   | 0.77      |

## **Statistical analysis**

```
asreml(y ~ 1 + Env,
    random = ~ fa(Id, 3) + diag(Env)block,
    residual = ~ dsum(ar1(Col):ar1(Row)|Env),
    data = MET_df)
```

## **Start here**



## Interpretation

#### **Candidate selection list**

| ID | Main effect | Stability | Rank |
|----|-------------|-----------|------|
| 1  | 1.14        | 0.12      | 1    |
| 2  | 1.068       | 0.26      | 2    |
| 3  | 1.062       | 0.19      | 3    |
| 50 | 0.954       | 0.25      | 4    |

## Between-environment genetic correlation matrix, C<sub>e</sub>



**1.** Between-environment genetic variance matrix,  $\mathbf{G}_{e}$ 



$$\mathbf{G}_{\mathrm{e}} = \mathbf{D}_{\mathrm{e}}^{1/2} \mathbf{C}_{\mathrm{e}} \mathbf{D}_{\mathrm{e}}^{1/2}$$

Simulate or provide  $G_{\rm e}$  and  $D_{\rm e}$ 

**2.** Decompose variance matrix,  $G_e$ , and take k terms



Simulate or provide  $G_e$  and  $D_e$ 

**2.** Decompose variance matrix,  $G_e$ , and take k terms





$$\mathbf{G}_{\mathrm{e}} = \mathbf{D}_{\mathrm{e}}^{1/2} \mathbf{C}_{\mathrm{e}} \mathbf{D}_{\mathrm{e}}^{1/2}$$

Simulate or provide  $G_e$  and  $D_e$ 



**3.** Obtain environmental covariates,  $S_k$ , and simulate genotype slopes,  $f_k$ 

$$S_k = U_k$$



$$\mathbf{f}_k \sim N(\mathbf{0}, \mathbf{L}_k \otimes \mathbf{G}_e)$$

**2.** Decompose variance matrix,  $G_e$ , and take k terms

**1.** Between-environment genetic variance matrix,  $G_e$ 



$$\mathbf{G}_{e} = \mathbf{D}_{e}^{1/2} \mathbf{C}_{e} \mathbf{D}_{e}^{1/2}$$

Simulate or provide  $G_e$  and  $D_e$ 



**3.** Obtain environmental covariates,  $S_k$ , and simulate genotype slopes,  $f_k$ 

**4.** Genotype by environment effects 
$$\mathbf{u} = (\mathbf{S}_k \otimes \mathbf{I}_{\nu})\mathbf{f}_k$$



$$\mathbf{f}_k \sim N(\mathbf{0}, \mathbf{L}_k \otimes \mathbf{G}_e)$$

# Simulating between-environment variance matrix G<sub>e</sub>

- Simulate C<sub>e</sub> by specifying mean, variability, skew, noise structure
- Measures for tuning C<sub>e</sub>

|      | Varia | Variance explained |       |       |  |  |  |  |  |
|------|-------|--------------------|-------|-------|--|--|--|--|--|
| GxE  | $v_g$ | $v_{ge}$           | $v_n$ | $v_c$ |  |  |  |  |  |
| Low  | 0.51  | 0.49               | 0.67  | 0.33  |  |  |  |  |  |
| High | 0.08  | 0.92               | 0.24  | 0.76  |  |  |  |  |  |



**Environment** 

# Simulating between-environment variance matrix G<sub>e</sub>

- Simulate C<sub>e</sub> by specifying mean, variability, skew, noise structure
- Measures for tuning C<sub>e</sub>

|      | Varia | Variance explained |      |       |  |  |  |  |  |
|------|-------|--------------------|------|-------|--|--|--|--|--|
| GxE  | $v_g$ | $v_g  v_{ge}  v_n$ |      | $v_c$ |  |  |  |  |  |
| Low  | 0.51  | 0.49               | 0.67 | 0.33  |  |  |  |  |  |
| High | 0.08  | 0.92               | 0.24 | 0.76  |  |  |  |  |  |

• Simulate  $\mathbf{D}_{e}$  from inverse gamma distribution by adjusting shape and rate



# Simulating phenotypes



$$y = 1_n \mu + X\tau + Zge + Wb + e$$
 phenotype mean fixed genotype block residual

- y is the n-vector of phenotypes
- $\mu$  is the overall mean,  $\mathbf{1}_n$  is a n-vector of ones
- $\tau$  is the p-vector of environmental effects, with  $n\times n_p$  design matrix X which links plots to environments
- **ge** is the  $n_g$ -vector of genotype effects, with  $n \times n_g$  design matrix **Z** which links plots to genotypes  $\leftarrow$  new framework
- b is the n<sub>b</sub>-vector of block effects, with n×n<sub>b</sub> design matrix W which links plots to blocks
- e is the n-vector of residuals 

   simulation of these demonstrated earlier

## Simulate a MET dataset





|   | env<br><fctr></fctr> | block<br><fctr></fctr> | <b>col</b><br><fctr></fctr> | row<br><fctr></fctr> | id<br><fctr></fctr> | true_mean<br><dbl></dbl> | true_envEff<br><dbl></dbl> | true_ge<br><dbl></dbl> | true_blockEff<br><dbl></dbl> | true_e<br><dbl></dbl> | simulated_yield<br><dbl></dbl> |
|---|----------------------|------------------------|-----------------------------|----------------------|---------------------|--------------------------|----------------------------|------------------------|------------------------------|-----------------------|--------------------------------|
| 1 | 1                    | 1                      | 1                           | 1                    | 114                 | 4                        | 0.1396509                  | 4.213213               | -0.1242964                   | -0.004663820          | 4.223903                       |
| 2 | 1                    | 1                      | 1                           | 2                    | 72                  | 4                        | 0.1396509                  | 3.801605               | -0.1242964                   | 0.779757230           | 4.596717                       |
| 3 | 1                    | 1                      | 1                           | 3                    | 135                 | 4                        | 0.1396509                  | 4.445786               | -0.1242964                   | 1.757523988           | 6.218665                       |
| 4 | 1                    | 1                      | 1                           | 4                    | 63                  | 4                        | 0.1396509                  | 4.269491               | -0.1242964                   | 0.061263382           | 4.346109                       |
| 5 | 1                    | 1                      | 1                           | 5                    | 49                  | 4                        | 0.1396509                  | 4.309022               | -0.1242964                   | 0.758258394           | 5.082635                       |
| 6 | 1                    | 1                      | 1                           | 6                    | 65                  | 4                        | 0.1396509                  | 3.582597               | -0.1242964                   | -0.007580564          | 3.590371                       |
| 6 | 1                    | 1                      | 1                           | 6                    |                     |                          |                            |                        |                              |                       |                                |

# **Demonstrating examples**



- 1. Comparison of statistical models
  - → Answer a target question
- 2. Breeding program simulations
  - → Breeding program fine tuning

# **TPE: Target population of environments**



## On farm conditions

**TPE** – target population of environments



MET-TPE alignment  $cor(gv_{MET}, gv_{TPE})$ 



# Simulating target population of environments



### On farm conditions

**TPE** – target population of environments





## 1. Simulate 1000 x 1000 TPE



**GxE: Low, Mod, High** 











## Model accuracy decreases as GxE increases

- More environments increase accuracy
- FA models are best overall

## **Average summary of 1000 reps**



# **New opportunities**

Hab

- Model comparison
  - Non-additive genetic effects
  - Spatial models
  - Multiple phenotypic traits
- Experimental design optimization
- MET dataset design optimization

# **Example 2: Breeding program simulation**



## Simulation:

- AlphaSimR
- 20-year breeding
- Yield trait
- Additive effects only
- 20 replicates

## **Line breeding program**

| Year | Stage          |                                                                               | Genotypes    | Envs | Reps | $\sigma^2_\epsilon$ | Action          |
|------|----------------|-------------------------------------------------------------------------------|--------------|------|------|---------------------|-----------------|
| 1    | Crossing       | $\begin{array}{c} \mathbf{P_1} \times \mathbf{P_2} \\ \downarrow \end{array}$ | 100 crosses  |      |      |                     | Make crosses    |
| 2    | F <sub>1</sub> |                                                                               | 100 families |      |      |                     | Produce DHs     |
| 3    | Stage 1        |                                                                               | 10,000       | 1    | 1    | 8                   | Advance 500 DHs |
| 4    | Stage 2        |                                                                               | 500          | 2    | 1    | 4                   | Yield trial     |
| 5    | Stage 3        |                                                                               | 50           | 5    | 2    | 2                   | Yield trial     |
| 6    | Stage 4        |                                                                               | 10           | 20   | 2    | 2                   | Yield trial     |
| 7    | Variety        |                                                                               | 1            |      |      |                     | Release variety |

Program scenarios: Pheno & GS

# **Current plant breeding simulations**



#### **Current simulations**

#### **E2 E3 E1 E4 E5** $\boldsymbol{g}$ **G1** 0.20 0.08 | 0.13 | 0.31 -0.02 **G1** 0.14 G2 0.07 |-0.20|-0.17 | 0.43 G2 0.07 **G**3 0.19 |-0.24 | 0.08 |-0.03 |-0.23 **G**3 0.05 **G**4 -0.25 0.39 -0.01 -0.16 0.24 **G4** -0.04

Can be done with multiple correlated traits but becomes computationally challenging with large breeding simulations.

What we want

# **Sampling from TPE**



## 1. Simulate 1000 x 1000 TPE

(constant across simulation reps)



Environment

**GxE:** Low, Mod, High

# **Sampling from TPE**



## 1. Simulate 1000 x 1000 TPE

(constant across simulation reps)



**Sampling from TPE Simulation of TPE genetic effects** → True performance 1. Simulate 1000 x 1000 TPE (constant across simulation reps) 2. Sample for each simulation year **Simulation of MET genetic effects** Year 1 → Estimated/observed performance Year 2 (e.g. Stage 1 ~ 1 env, Environment Stage 4 ~ 20 env) Year 3 Year 4 Year 20 **Environment GxE: Low, Mod, High** 

Environment

# Genetic gain and variance in Stage 1



- Gain and variance loss decrease as GxE increases
- GS outperforms PS by 1.4 1.7 times
- Too optimistic projections in absence of GxE



# **Accuracy in Stage 1**

## MET-TPE alignment

 $cor(gv_{MET}, gv_{TPE})$ 

- Main effect accuracy and MET-TPE alignment decrease as GxE increases
- Main effect accuracy and MET-TPE alignment are higher for GS



# **New opportunities**



- Long-term statistical model comparison
- Model selection at different breeding stages
- Selection for genotype stability
- Long-term alignment with TPE
- Recreation of long-term GEI patterns

# Take home messages



## Scalable and reproducible framework for simulating GxE

- 1. simulate realistic MET datasets
- 2. model plant breeding programs

## Framework can simulate

- large number of environments
- different magnitudes of non-crossover and crossover GxE
- different correlated genetic effects
- multiple TPE and multiple phenotypic traits