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GWAS Applications in Livestock

* Understanding the genetic architecture of traits

* Uncovering causative mutations affecting
economically important traits

* Improving accuracy of Genomic Selection
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Major gene + polygene More polygenic

Results from the first 700 Ontario commercial Holsteins tested as part of the 5000 cow project — Dr. Mallard




Steps for Conducting GWAS

a Data collection b Genotyping
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h Post-GWAS analyses

Uffelmann, E., Huang, Q.Q., Munung, N.S. et al. Genome-wide association studies. Nat Rev Methods Primers 1, 59 (2021).

Methods

* SNP by SNP GWAS
* SNP by SNP GWAS when fitting G matrix
* GBLUP/RBLUP/ssGBLUP

Bayesian method

+Haplotype models




Methods

*  Family-based GWAS
* Random samples (Mostly common variants)
* Selective genotyping (Mostly rare variants)

* Isolated population
* Rare variants may be observed in higher frequencies

Points to Consider When Performing GWAS




Genome-Wide Association Studies (GWAS)

* GWAS identifies SNPs which are associated with a trait. Most of
the time it cannot specify causal genes/mutations.

* Missing hZ: Genetic variation calculated from GWAS does not
completely explain the heritability of quantitative traits.

Some Challenges

* Sample size (for mapping rare variants)
* Extent of LD and fine mapping

* Population stratification & structure

* Multiple testing (association by chance)

* Under-representation of rare variants due to
ascertainment bias

* GWAS on EBV or de-regressed EBV




Extent of LD and Fine Mapping

When LD is extended over long distances, fine
mapping is challenging

High extent of LD Low extent of LD
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GWAS from different breeds may provide additional info to locate the causative mutation

Population Stratification & Structure

Ref: Genes mirror geography within Europe. John November et al. Nature 2008. 10
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Population Stratification & Structure

* Unusual allele frequency differences between subpopulations
* Phenotypes correlated with locations cause spurious associations

* Family structure or cryptic relatedness also results in spurious
associations

* Systematic ancestry differences between subgroups and also
admixture
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Population Stratification & Structure
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Population Stratification & Structure

Solution:

* Structured association (clustering)

* Fitting principal components as covariates in the model

* Fitting genomic relationship matrix in the model (Genomic control)

* GBLUP/RBLUP/ssGBLUP
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Population Stratification & Structure

Uniform QQ plot of -logyo(p) for traitl

Uniform QQ plot of -logyo(p) for traitl
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Multiple Testing Issue

HO = SNP is not associated with the phenotype (a = 5%)
Probability of type | error for single test is a
Type | error: Incorrect rejection of HO (False positive)

If there are 1000 tests and tests are independent, then we expect 50 false
positive associations!
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Multiple Testing Issue

Controlling type | error rate:

*  Permutation
¢ Bonferroni correction
* False discovery rate

* Positive false discovery rate
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Multiple Testing Issue

Bonferroni correction:

o/n
Simple but very conservative

a=0.05
n =1000

Significant level = 0.00005
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Multiple Testing Issue

False Discovery Rate (FDR):
For controlling FDR at 5% level

* Sort p-values from the smallest to the largest

* Find the first p-value that is larger than (j / n) * 0.05,
where j is the rank of p-value

* Declare all p-values with rank less than j as significant
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Multiple Testing Issue

Positive False Discovery Rate (pFDR)
More complicated than FDR but in some cases better
than FDR
With this method p-values are transformed to g-values
https://www.bioconductor.org/packages/release/bioc/html/qvalue.html
https://github.com/StoreyLab/gvalue
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Ascertainment Bias

e Ascertainment bias is introduced when SNPs are not a
random sample of DNA polymorphism

* SNP chips are designed so that well segregating SNP
(intermediate allele frequency) are selected (under-
representation of rare variants)

* One solution is to impute to the sequence level (not
practical yet!)
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GWAS for Sex-Limited Traits
Dairy cattle case:
* Almost all males are genotyped
* Only fraction of females are genotyped
* Calculate EBV for males using daughters information
* Double counting issue
* Calculate de-regressed EBV for males
* There could be bias in de-regressed EBV
22
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Functional Follow-up of GWAS

* Inthe last decade, a large number of GWAS on high quality phenotypes
and big genomic data has resulted in uncovering of numerous SNP
association for many traits

* Now, the big challenge is the interpreting the results in biological context
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Functional Follow-up of GWAS

a What are the associated loci?
1007

-log,,(P)

0 T T 1 T T T T T T T = " 1 [rrrrm7
il 3 5 7 9 11 1 19 23

Chromosome

Uffelmann E., et al., Nature Review (2021) 1:59 24
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Functional Follow-up of GWAS

Use statistical fine-mapping to identify the most credible
SNP set

What are the likely causal variants?
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Uffelmann E., et al., Nature Review (2021) 1:59
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Functional Follow-up of GWAS

Identify most likely target genes by mapping expression Quantitative
Trait Loci (eQTLs)

What are the target genes in the locus?
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Uffelmann E., et al., Nature Review (2021) 1:59
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Functional Follow-up of GWAS

Identify pathways that may mediate the trait using enrichment analysis

What are the affected pathways?
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Confirmation

Replication in independent samples
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